• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Brain Tumor Segmentation using Multi-View Attention based Ensemble Network

    2022-11-11 10:49:02NoreenMushtaqArfatAhmadKhanFaizanAhmedKhanMuhammadJunaidAliMalikMuhammadAliShahidChitapongWechtaisongandPeerapongUthansakul
    Computers Materials&Continua 2022年9期

    Noreen Mushtaq,Arfat Ahmad Khan,Faizan Ahmed Khan,Muhammad Junaid Ali,Malik Muhammad Ali Shahid,Chitapong Wechtaisong,*and Peerapong Uthansakul

    1COMSATS University Islamabad,Islamabad Campus,45550,Pakistan

    2Suranaree University of Technology,Nakhon Ratchasima,30000,Thailand

    3COMSATS University Islamabad,Lahore Campus,54000,Pakistan

    4Virtual University of Pakistan,Islamabad Campus,45550,Pakistan

    5COMSATS University Islamabad,Vehari Campus,61100,Pakistan

    Abstract: Astrocytoma IV or glioblastoma is one of the fatal and dangerous types of brain tumors.Early detection of brain tumor increases the survival rate and helps in reducing the fatality rate.Various imaging modalities have been used for diagnosing by expert radiologists, and Medical Resonance Image (MRI)is considered a better option for detecting brain tumors as MRI is a non-invasive technique and provides better visualization of the brain region.One of the challenging issues is to identify the tumorous region from the MRI scans correctly.Manual segmentation is performed by medical experts, which is a time-consuming task and got chances of errors.To overcome this issue,automatic segmentation is performed for quick and accurate results.The proposed approach is to capture inter-slice information and reduce the outliers.Deep learning-based brain tumor segmentation techniques proved best among available segmentation techniques.However,deep learning may miss some preliminary info while using MRI images during segmentation.As MRI volumes are volumetric, 3D U-Net-based models are used but complex.Combinations of multiple 2D U-Net predictions in axial, sagittal,and coronal views help to capture inter-slice information.This approach may reduce the system complexity.Moreover, the Conditional Random Fields(CRF)reduce the predictions’false positives and improve the segmentation results.This model is applied to Brain Tumor Segmentation (BraTS)2019 dataset, and cross-validation is performed to check the accuracy of results.The proposed approach achieves Dice Similarity Score (DSC)of 0.77 on Enhancing Tumor(ET),0.90 on Whole Tumor(WT),and 0.84 on Tumor Core(TC)with reduced Hausdorff Distance(HD)of 3.05 on ET,5.12 on WT and 3.89 on TC.

    Keywords: Brain tumor; deep learning; detection; conditional random field;segmentation

    1 Introduction

    In the present era,cancer is considered one of the common and growing fatal diseases worldwide.Cancer is the irregular growth of cells in the body.This irregular growth would start in any region of the body, and the root cause is unknown.Among the types of cancers, Brain cancer is the most lethal type of cancer [1].Depending on the initial origin, brain tumours can be separated into two kinds,primary and metastatic brain tumours.Primary brain tumours start from brain cell tissues,but metastatic brain tumours are cancerous and emerge from any other portion of the body.Gliomas are primary brain tumours that are derived from glial cells.Researchers focus on gliomas because these are the main type of tumors.Gliomasare used to describe the WHO grading of glioma, the Low-Grade Gliomas(LGG)and High-Grade Gliomas(HGG)[2].LGG are also known as Astrocytoma and Oligendroglioma.In comparison,HGG(grade IV)is glioblastoma or Astrocytoma IV,the most aggressive brain tumor[3].

    Early diagnosis of tumors gives hope to a patient to increase the survival time, less painful treatment, and more chances to survive.There are many medical imaging techniques to diagnose tumors, Computed Tomography (CT), Single Photon Emission Computed Tomography (SPECT),Positron Emission Tomography (PET), Magnetic Resonance Spectroscopy (MRS)[4].These procedures allow you to obtain information about the tumour’s size,shape,location,and metabolism.MRI is a conventional procedure since it does not require ionizing radiation and good soft-tissue contrast instead of other procedures.MRI is not harmful to the human body because it does not use radiations but magnetic fields and radio waves[5].In one MRI,around 150 slices of 2D images were produced to represent the 3D brain volume.T1 images are used to distinguish healthy tissues.T2 images are used to demarcate the edema region.T1-Gd images distinguish the tumor border,while Fluid-Attenuated Inversion Recovery(FLAIR)images help distinguish the edema region from the Cerebrospinal Fluid(CSF).

    The purpose of segmentation is to transform the image into a meaningful and more accessible form for evaluation.The segmentation process divides the images into different segments,and these segments help the system diagnose tumor areas.In the medical field,one can say that segmentation is a complex problem because of unknown noise in medical images,missing boundaries,and some other problems.Segmentation of the brain tumour comprises diagnosis,delineation,and tissue separation.Tumor tissue,activated cells,necrotic nucleus,and edema can also be classified into three components.The normal brain tissues in the comparison include Gray Matter (GM), White Matter (WM), and Cerebrospinal Fluid(CSF).Manual annotation and segmentation are in practice which is a very timeconsuming task.Using deep learning methods,high segmentation performance is achieved[6].

    2 Related Work

    In [7], the authors proposed a 3D convolutional neural network that collects information from long-range 2D backgrounds for brain tumor segmentation.He used features learned from a 2D network in three different views (Sagittal, Axial, and Coronal), then fed them to a 3D model to capture more rich information in three orthogonal directions.They used a novel voting technique to combine the exects of multi-class segmentation.The approach they suggest reduces the computational complexity and increases the performance as compared to 2D architectures.

    In [8], the authors suggested adaptive function recombination and recalibration for the task of segmenting tumorous regions from a brain tumor.They used function map recalibration and recombination.Instead of the number of feature maps, they combined compressed data with linear feature expansion.The baseline architecture is a hierarchical Fully Convolutional Network (FCN).Since segmenting the WT region is difficult, they approach it as a binary segmentation problem,reducing false positives.RR blocks are not present in their Binary FCN.They used the Binary FCN prediction to find a Region of Interest (ROI), useful for segmenting multiple tumors within the ROI.The approach they propose is computationally intensive.In [9], for the task of brain tumor segmentation, a deep convolutional symmetric neural network is suggested.The proposed model adds symmetric masks to different layers of the Deep Convolutional Neural Network (DCNN).Their proposed method is robust and performs well when segmenting MRI volumes in less than ten seconds.To capture information at different scales,they used weighted dilated convolutions with various weights.The inference time and model complexity are substantially reduced when Dilated Multi-Fiber Networks(DMFNet)is used.The dice scores achieved by their proposed architecture are competitive[10].

    In[11],instead of changing the architecture,the authors proposed changing the training process.They make minor changes to the U-Net architecture by using a large patch size and a dice loss feature.It would be possible to obtain good results by training the model on previous BraTS challenges datasets,using model cascade,combinations of dice and cross-entropy,and a simple post-processing technique.In[12],the authors implemented a 3D Convolutional Neural Network(CNN)architecture for image segmentation.Input given to this architecture has four dimensions,3 for 3D spatial intensity information,and the fourth dimension provides information about MRI modalities.This architecture gave 87%results for the whole tumor region on the BraTS dataset.As compared to the architecture presented in[12],the authors developed a less dimensional method that transforms the 4D data[13].It uses 2D-CNN simple architecture for brain tumor segmentation.

    In[14],the authors used Deep Neural Network(DNN)classifier to classify brain tumors among three types GBM, sarcoma, and metastatic brain tumors.The authors used a Discrete Wavelet Transform(DWT)to extract features from MRI images and segment them using the Fuzzy C-means clustering technique.These extracted features are further given to DNN to train the architecture.In [15], the authors’performed the image segmentation using a hybrid clustering technique named K-means integrated with Fuzzy C-means (KIFCM).The K-means clustering technique is fast and straightforward,but sometimes it fails to detect the entire tumor-like metastatic brain tumor on large datasets.

    In [16], the authors presented a fully automatic segmentation method using deep CNN.The proposed technique completes its work in three steps, pre-processing, CNN, and post-processing.A morphological method is used in the post-processing stage that improves the segmentation results.Datasets used to train and test this system are BraTS 2013 and 2015 versions.Experiment results showed promising results.However,the authors used dropout after every convolutional layer,resulting in scarce features and overfitting.In[17],the authors used a biologically inspired algorithm for image segmentation and an enhanced Support Vector Machine(SVM)to classify the tumor.The proposed technique completes its task in different steps.

    In this paper,we proposed the approach to capture inter-slice information and reduce the outliers.Deep learning-based brain tumor segmentation techniques proved best among available segmentation techniques.However,deep learning may miss some preliminary info while using MRI images during segmentation.As MRI volumes are volumetric, 3D U-Net-based models are used but complex.Combinations of multiple 2D U-Net predictions in axial, sagittal, and coronal views help capture inter-slice information.This approach may reduce the system complexity.

    Moreover,the CRF reduces the false positive from the predictions and improve the segmentation results.This model has been applied to BraTS 2019 dataset,and cross-validation is performed to check the accuracy of results.The proposed approach achieves a DSC of 0.77 on ET,0.90 on WT,and 0.84 on TC with a reduced HD of 3.05 on ET,5.12 on WT,and 3.89 on TC.

    3 Proposed Methodology

    Our proposed approach for the segmentation of brain tumors is mainly divided into four blocks.In the first step, we have different and multiple input images of the brain.These input images are given to the second block,known as data processing.In this step,after getting the data images from normalization, if performed.After normalization, augmentation is performed on this normalized data.The reason behind performing augmentation is to increase data.The reason behind increasing the data is that deep learning approaches or algorithms are data-hungry and perform better if training is performed on a large dataset.After normalization and augmentation,the data is fed to the proposed technique for training and validation purposes.The proposed architecture is shown in Fig.1.As the figure shows,the whole methodology is divided into four stages.In the first stage,we have the input data,then we apply data pre-processing in the second stage,in which we apply Z-score normalization to sequence the data,and the data augmentation is applied to increase the data.Data augmentation also helps the model to converge fast.Then the third stage is the training of the model,in which the model is fine-tuned on the augmented and normalized data.In the fourth and final stage,post-processing is performed in which we used CRF.

    Figure 1:Proposed system model

    3.1 Pre-Processing

    As the internet data traffic has been increasing with every passing day, it is vital to pre-process the data[18-21].In this paper,all the MRI volumes are normalized using the Z-Score normalization technique.Various pre-processing methods have been proposed in the literature to normalize the intensity range values.We have normalized each slice value with z-score normalization to make the intensity values in some range by using the following equation:

    3.2 Data Augmentation

    One of the key issues in deep learning-based systems is the limited availability of data.As most of the deep learning algorithms based on CNN requires more data to generalize well.Due to the limited data availability,we need to do a data augmentation task to make model convergence easy and overcome limited data.For augmentation,we duplicate the images by:

    ? Randomly shifting images horizontally.

    ? Randomly shift images vertically.

    ? Horizontally flip.

    ? Vertically flip.

    ? Rotating images by 90 degrees.

    ? Adding noise in images.

    3.3 Model Training

    In this study, Keras, a deep learning library, is used for training with the google colab platform having 12 GB ram, 12 GB Nvidia Titan-X GPU.The model is trained by manually dividing the dataset into 80/20, where 80% of data is training, and 20% belongs to testing images.The proposed algorithm used to perform experiments is shown in Algorithm 1.The proposed algorithm mainly performs three operations,training of 3 models,their ensemble,and post-processing.In the first step,the data consisting of MRI volumes and ground truth is split into 5 folds.The baseline model used to perform experiments is U-Net.After data split,three models based on the MRI views Axial,Saggital and Coronal.After training of these models,their predictions are combined using the majority voting ensemble technique.Then on the final predictions,CRF technique is applied.

    3.4 Post Processing

    For post-processing,we have applied CRF as a post-processing technique[22].CRF is a statistical modeling approach used in different machine learning and pattern recognition-based tasks.Most of the models fail to map the relationship between the pixel values in classification or segmentation,which CRF overcomes to map all the neighborhood pixel values to find the dependencies between pixel values.In this study, we have used CRF after the predictions from the proposed Multi-view training of U-Net.The output predictions,along with training images,are given to the model to refine the predictions.The evaluation results on the testing set show the improvement of dice scores of more than 2 percent on ET,WT and TC types.The motivation behind using CRF is to handle pixels-wise relationships to prevent outliers and reduce HD measure.In medical cases, False Positives (FP)are considered very dangerous as they lead to incorrect treatment.

    4 Proposed Model

    In the underline proposed approach, we use three different views of an image to our proposed network.Our proposed approach consists of three blocks.A convolutional layer is connected to multiple neurons; after this layer, a ReLu activation function is implemented.Then, the output of the previous layer is given to the next layer.In the next layer,max pooling is implemented.The idea behind using the max-pooling layer is to reduce the dimensionality of the output coming from the previous layer; its purpose is to down-sample the previous layer’s output.After passing through the pooling layer, the output is the input of the batch normalization layer.The purpose of this layer is to standardize the output of the pooling layer.We can use batch normalization before or after the activation function.This is the working of first block and same it goes for the next coming blocks.After going through these blocks a simple convolutional layer.Later on,In the further block we use the same approach with a change.Here in these blocks upsampling is implemented instead of downsampling.Here in these blocks while using the output of the previous block we also added up output of the comparative block from when we were performing down-sampling.

    The proposed architecture is shown in Fig.2.The network consists of two down-sampling and two up-sampling paths.In literature, it is shown that short paths capture more spatial information.Each layer block consists of a Convolution layer followed by ReLu activation function and then Max Pooling and Batch Normalization (BN)layer, BN helps to prevent overfitting and learn more refined information.This simple approach helps to achieve good results.The ensemble approach is shown visually in Fig.3 in which models are trained on three views Axial,Sagittal and Coronal.The three models are then combined using majority voting technique and CRF is applied on the ensemble predictions.

    Figure 2:Proposed system model

    5 Experiment and Results

    The Tab.1 unveils the setting used for training of model training.

    Figure 3:Proposed system model ensemble

    Table 1: Hyper-parameters used for training of the proposed model

    5.1 Evaluation Metrics

    For evaluation of the proposed architecture, we have used these three performance measures named as DSC,sensitivity and HD.The DSC computes the similarity between the actual and predicted values.

    Sensitivity is a measure that finds out how correctly it identifies the true positives from the predictions.

    The HD is the longest distance you can be forced to travel by an opponent who chooses a point in one of the two sets and then forces you to travel to the other set.In other words,it is the longest distance between a point in one set and the nearest point in the other set.

    5.2 Training and Testing Results

    We have trained the proposed multi-view dataset on the standard U-Net architecture and compared it with training on single view to compare the effectiveness of the proposed approach.The results on four performance measures,DSC,sensitivity,specificity and HD is shown in Tabs.2-5.The Tab.2 shows the DSC score of ET, WT and TC comparison with baseline 2D U-Net architecture.The results show an improvement of 2% on ET, WT, and TC sub-tumor types using a multi-view training approach.

    Table 2: DSC score results using testing set

    Table 3: Sensitivity scores on test set

    Table 4: Specificity scores on testing set

    Table 5: Hausdorff distance score on testing setting

    Similarly, the Tab.3 shows the sensitivity scores of ET, WT and TC sub-tumor types.The comparison of sensitivity scores with baseline 2D U-Net is quite promising as the scores of WT and TC is better as compared to 2D U-Net due to capturing contextual information using multi-view approach.

    The Tab.4 shows the Specificity scores of sub-tumor types ET, WT and TC.The scores of specificity is similar to sensitivity.

    5.3 Analysis

    The proposed multi-view approach helps to capture inter-slice information, and the combined approach outperforms the vanilla U-Net.The CRF post-processing technique also increases the performance and reduces the Hausdorff distance.This embedded post-processing approach reduces the outliers.

    As far as the dataset is concerned, the BraTS Dataset consists of T1, T1-Contrast Enhanced(T1-CE), T2, and FLAIR are the four modalities used in the BraTs dataset for HGG and LGG volumes.Each MRI volume has a dimension of 155240240.Ground Truth(GT)labels for each patient segmentation include ET,Non-Enhancing Tumor(NET),and Peritumoral Edema(PE).The data set is comprised of 349 volumes(259 HGG and 76 LGG).The distribution of labels in the training and testing set is shown in Figs.4-6 shows every separated label from a single patient slice.

    Figure 4:Distribution of labels in training set

    Figure 5:Distribution of labels in test set

    Figure 6:Distribution of labels in test set

    5.4 Visual Results

    The visual results of segmented tumor regions on the validation set are shown in axial,sagittal,and coronal views with heat maps generated from intermediate CNN slides to assess results visually.The sub-tumor types are represented in different colors for proper evaluation.The Figs.7-9 are from a slice from a sample patient.This overlapping fusion enables to capture of inter-slice information.

    Figure 7:Heatmaps and tumor overlap on sample slice of patient in axial plane

    Figure 8:Heatmaps and tumor overlap on sample slice of patient in coronal plane

    Figure 9:Heatmaps and tumor overlap on sample slice of patient in saggitial plane

    The visual results of different patients in different slices are shown in Figs.10-13.The sub-tumor types are represented in different colors for proper evaluation.

    Figure 10:Distribution of labels in test set

    Figure 11:Distribution of labels in test set

    Figure 12:Distribution of labels in test set

    Figure 13:Distribution of labels in test set

    6 Conclusions

    In this study, we have proposed a novel multi-view training strategy for the brain tumor segmentation problem.Instead of combining multi-view model predictions,multi-view input is given to U-Net-based architecture, which achieved better results than U-Net-based architecture.Assessment of results shows the effectiveness of the proposed approach.In addition, the CRF reduced the false positives from the predictions and improved the segmentation results.This model has been applied to BraTS 2019 dataset,and cross-validation is performed to check the accuracy of results.The proposed approach achieves DSC of 0.77 on ET,0.90 on WT,and 0.84 on TC with a reduced HD of 3.05 on ET,5.12 on WT,and 3.89 on TC.

    Funding Statement:This research was supported by Suranaree University of Technology, Thailand,Grant Number:BRO7-709-62-12-03.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    老汉色∧v一级毛片| 人人妻人人添人人爽欧美一区卜| 午夜精品久久久久久毛片777| 中文字幕另类日韩欧美亚洲嫩草| 亚洲视频免费观看视频| 欧美变态另类bdsm刘玥| 国产成人系列免费观看| 久久精品国产a三级三级三级| 国产日韩欧美视频二区| 97人妻天天添夜夜摸| 亚洲专区字幕在线| 在线观看舔阴道视频| 午夜福利影视在线免费观看| 成人永久免费在线观看视频 | 亚洲中文字幕日韩| 中亚洲国语对白在线视频| 老司机影院毛片| 欧美在线一区亚洲| 国产单亲对白刺激| 精品少妇内射三级| 天天躁夜夜躁狠狠躁躁| 久久久欧美国产精品| 天堂中文最新版在线下载| 亚洲熟女精品中文字幕| 淫妇啪啪啪对白视频| 一边摸一边抽搐一进一出视频| 好男人电影高清在线观看| 国产91精品成人一区二区三区 | 两个人看的免费小视频| 在线观看66精品国产| 日韩成人在线观看一区二区三区| 99国产精品免费福利视频| 一个人免费在线观看的高清视频| 久久九九热精品免费| 美女扒开内裤让男人捅视频| 变态另类成人亚洲欧美熟女 | 我的亚洲天堂| 黄网站色视频无遮挡免费观看| 国产av一区二区精品久久| 国产福利在线免费观看视频| 国产精品欧美亚洲77777| 女性被躁到高潮视频| 亚洲精品粉嫩美女一区| 成年人黄色毛片网站| 91大片在线观看| 老熟妇乱子伦视频在线观看| 99re在线观看精品视频| 亚洲精华国产精华精| 免费久久久久久久精品成人欧美视频| 国产精品免费视频内射| 久久精品国产亚洲av香蕉五月 | 午夜激情久久久久久久| 欧美日韩av久久| 丁香六月天网| 90打野战视频偷拍视频| 99热国产这里只有精品6| 精品少妇久久久久久888优播| 日本黄色视频三级网站网址 | 一边摸一边抽搐一进一小说 | 国产视频一区二区在线看| 久久精品aⅴ一区二区三区四区| 亚洲九九香蕉| 亚洲国产中文字幕在线视频| 老司机亚洲免费影院| 侵犯人妻中文字幕一二三四区| 又紧又爽又黄一区二区| 搡老岳熟女国产| 91av网站免费观看| 波多野结衣一区麻豆| 人妻久久中文字幕网| 亚洲国产欧美网| 侵犯人妻中文字幕一二三四区| 色在线成人网| 麻豆av在线久日| 亚洲成a人片在线一区二区| 9191精品国产免费久久| 午夜成年电影在线免费观看| 久久人妻av系列| 一本大道久久a久久精品| 久久婷婷成人综合色麻豆| 久久久国产欧美日韩av| 五月开心婷婷网| 99久久国产精品久久久| 国产精品电影一区二区三区 | 欧美日韩亚洲国产一区二区在线观看 | 国产高清国产精品国产三级| 欧美日韩成人在线一区二区| 国产成人欧美| 成人特级黄色片久久久久久久 | 午夜福利,免费看| 亚洲av第一区精品v没综合| 亚洲熟女精品中文字幕| 国产高清videossex| 国产成人精品久久二区二区免费| 激情视频va一区二区三区| 欧美av亚洲av综合av国产av| 国产精品av久久久久免费| 亚洲熟女精品中文字幕| av天堂久久9| 黑人操中国人逼视频| 蜜桃国产av成人99| 欧美变态另类bdsm刘玥| 精品国产一区二区三区久久久樱花| 黄色视频,在线免费观看| 视频在线观看一区二区三区| 成人国语在线视频| 中文字幕av电影在线播放| 不卡av一区二区三区| 免费在线观看视频国产中文字幕亚洲| 欧美日韩精品网址| 国产成+人综合+亚洲专区| 国产在线精品亚洲第一网站| 亚洲精品美女久久久久99蜜臀| 另类亚洲欧美激情| 老熟女久久久| 日韩制服丝袜自拍偷拍| 亚洲视频免费观看视频| 亚洲五月色婷婷综合| 岛国在线观看网站| 午夜视频精品福利| 免费少妇av软件| 日本黄色日本黄色录像| 最近最新中文字幕大全免费视频| 91国产中文字幕| 久久久久久亚洲精品国产蜜桃av| 夜夜骑夜夜射夜夜干| 久久婷婷成人综合色麻豆| 亚洲国产看品久久| 精品福利永久在线观看| 日日摸夜夜添夜夜添小说| 欧美成人午夜精品| 狠狠精品人妻久久久久久综合| 天天添夜夜摸| 一区在线观看完整版| 久久久精品94久久精品| 午夜日韩欧美国产| 国产无遮挡羞羞视频在线观看| 亚洲精品国产精品久久久不卡| 嫁个100分男人电影在线观看| 婷婷丁香在线五月| 美女国产高潮福利片在线看| 丁香六月天网| 亚洲性夜色夜夜综合| 午夜精品久久久久久毛片777| 黑人欧美特级aaaaaa片| 一边摸一边做爽爽视频免费| 久久毛片免费看一区二区三区| 中文字幕人妻丝袜制服| 无人区码免费观看不卡 | 免费观看a级毛片全部| 久久国产精品人妻蜜桃| 精品少妇一区二区三区视频日本电影| 亚洲精品国产精品久久久不卡| a在线观看视频网站| 91国产中文字幕| 午夜日韩欧美国产| 国产深夜福利视频在线观看| 12—13女人毛片做爰片一| 日本精品一区二区三区蜜桃| 两性夫妻黄色片| 亚洲国产av影院在线观看| 国产成人av激情在线播放| 麻豆成人av在线观看| 国产又爽黄色视频| 国产精品免费一区二区三区在线 | 在线观看一区二区三区激情| 免费观看人在逋| 一本—道久久a久久精品蜜桃钙片| 丰满少妇做爰视频| 亚洲欧美日韩另类电影网站| 女人久久www免费人成看片| 国产精品亚洲av一区麻豆| 99九九在线精品视频| 亚洲全国av大片| 国产午夜精品久久久久久| 亚洲黑人精品在线| 美女福利国产在线| 男女无遮挡免费网站观看| 日韩视频一区二区在线观看| 亚洲熟女精品中文字幕| 成人永久免费在线观看视频 | 十八禁人妻一区二区| 一边摸一边抽搐一进一小说 | 免费人妻精品一区二区三区视频| 亚洲性夜色夜夜综合| 啦啦啦中文免费视频观看日本| 亚洲国产欧美在线一区| 99国产精品一区二区蜜桃av | 又大又爽又粗| 久久久久国内视频| 狠狠婷婷综合久久久久久88av| 亚洲av国产av综合av卡| 久久中文字幕一级| 悠悠久久av| 纯流量卡能插随身wifi吗| 久久国产精品影院| 国产精品亚洲一级av第二区| 在线十欧美十亚洲十日本专区| 精品国产国语对白av| 国产亚洲精品一区二区www | 黄色 视频免费看| 久久狼人影院| 亚洲色图 男人天堂 中文字幕| 亚洲国产中文字幕在线视频| 女人被躁到高潮嗷嗷叫费观| 大香蕉久久网| 亚洲精品国产色婷婷电影| 欧美精品亚洲一区二区| 日本精品一区二区三区蜜桃| tocl精华| 精品高清国产在线一区| 成人av一区二区三区在线看| 免费看十八禁软件| 国产成人av激情在线播放| 欧美亚洲日本最大视频资源| 香蕉丝袜av| 老司机午夜十八禁免费视频| 亚洲自偷自拍图片 自拍| 人人妻,人人澡人人爽秒播| 国产淫语在线视频| 99re在线观看精品视频| 久久人妻av系列| 夫妻午夜视频| 久久ye,这里只有精品| 曰老女人黄片| 日本欧美视频一区| 男女免费视频国产| 国产精品 欧美亚洲| 日日摸夜夜添夜夜添小说| 午夜视频精品福利| 在线观看人妻少妇| 色在线成人网| videosex国产| av福利片在线| 在线播放国产精品三级| 两个人看的免费小视频| 91字幕亚洲| 19禁男女啪啪无遮挡网站| 色婷婷av一区二区三区视频| 国产在视频线精品| 热99久久久久精品小说推荐| 亚洲av欧美aⅴ国产| 欧美精品一区二区免费开放| 国产免费视频播放在线视频| av在线播放免费不卡| 色精品久久人妻99蜜桃| 久久ye,这里只有精品| 女同久久另类99精品国产91| 亚洲av日韩精品久久久久久密| 性少妇av在线| 午夜福利视频精品| 久热这里只有精品99| 久久亚洲真实| 午夜免费鲁丝| av天堂在线播放| 久久九九热精品免费| 热re99久久国产66热| 丝袜喷水一区| 男女下面插进去视频免费观看| www.熟女人妻精品国产| 国产精品久久久久久精品古装| 女人久久www免费人成看片| 18禁裸乳无遮挡动漫免费视频| 免费女性裸体啪啪无遮挡网站| 久久久久久久久免费视频了| 超碰97精品在线观看| 高清黄色对白视频在线免费看| 午夜激情久久久久久久| 97在线人人人人妻| 老鸭窝网址在线观看| 高清在线国产一区| 国产成人系列免费观看| 中国美女看黄片| 黄片播放在线免费| 久久亚洲精品不卡| 精品国产一区二区久久| 欧美精品亚洲一区二区| 久久精品国产亚洲av高清一级| 亚洲国产中文字幕在线视频| 好男人电影高清在线观看| 在线观看免费日韩欧美大片| 亚洲午夜理论影院| 亚洲欧美色中文字幕在线| 日本一区二区免费在线视频| 一本大道久久a久久精品| 久久毛片免费看一区二区三区| 中亚洲国语对白在线视频| 丰满迷人的少妇在线观看| 亚洲专区中文字幕在线| 亚洲九九香蕉| 国产亚洲精品一区二区www | 波多野结衣av一区二区av| 电影成人av| 亚洲精品国产色婷婷电影| 巨乳人妻的诱惑在线观看| 久久免费观看电影| 久久 成人 亚洲| 99精品欧美一区二区三区四区| 国产精品美女特级片免费视频播放器 | 母亲3免费完整高清在线观看| 国产aⅴ精品一区二区三区波| 国产日韩欧美亚洲二区| 1024视频免费在线观看| 午夜福利视频精品| 午夜精品国产一区二区电影| 久久香蕉激情| 亚洲精品一卡2卡三卡4卡5卡| 日本a在线网址| 一级毛片电影观看| 一级黄色大片毛片| 日韩视频一区二区在线观看| 日本一区二区免费在线视频| 18禁观看日本| 国产成人影院久久av| 欧美日韩精品网址| 亚洲av美国av| 亚洲伊人久久精品综合| 丝瓜视频免费看黄片| 久久久久久久久久久久大奶| 久久99热这里只频精品6学生| 国产精品国产av在线观看| 日本av免费视频播放| 久久精品国产综合久久久| 女性生殖器流出的白浆| 国产精品免费大片| 在线观看免费视频日本深夜| 交换朋友夫妻互换小说| 午夜福利视频精品| 日韩熟女老妇一区二区性免费视频| 亚洲精品国产一区二区精华液| 亚洲国产欧美日韩在线播放| 欧美日韩福利视频一区二区| 美女国产高潮福利片在线看| 久久国产精品大桥未久av| 亚洲 欧美一区二区三区| 亚洲国产看品久久| 国产亚洲午夜精品一区二区久久| 免费在线观看日本一区| 久久毛片免费看一区二区三区| av网站在线播放免费| 亚洲成人免费av在线播放| 黄色片一级片一级黄色片| 少妇粗大呻吟视频| 欧美成狂野欧美在线观看| 久热爱精品视频在线9| 久久精品aⅴ一区二区三区四区| 亚洲综合色网址| av电影中文网址| 亚洲男人天堂网一区| 黄色丝袜av网址大全| 久久国产精品影院| 久久中文字幕人妻熟女| 高潮久久久久久久久久久不卡| 亚洲少妇的诱惑av| 亚洲一区二区三区欧美精品| 少妇 在线观看| 亚洲性夜色夜夜综合| 久久久久久亚洲精品国产蜜桃av| 免费看a级黄色片| 日韩大码丰满熟妇| 亚洲av成人一区二区三| 成人免费观看视频高清| 天堂8中文在线网| 国产日韩欧美亚洲二区| 18禁黄网站禁片午夜丰满| 在线观看66精品国产| 麻豆av在线久日| 看免费av毛片| 少妇精品久久久久久久| 久久久国产一区二区| 欧美日韩黄片免| 精品人妻熟女毛片av久久网站| 精品欧美一区二区三区在线| 999精品在线视频| 一个人免费看片子| av又黄又爽大尺度在线免费看| 激情视频va一区二区三区| 国产av精品麻豆| 一本久久精品| 精品人妻熟女毛片av久久网站| 青草久久国产| 动漫黄色视频在线观看| 高清黄色对白视频在线免费看| 一边摸一边抽搐一进一出视频| 欧美日本中文国产一区发布| 亚洲欧洲精品一区二区精品久久久| 久久精品国产亚洲av香蕉五月 | 欧美日韩视频精品一区| 热99国产精品久久久久久7| 亚洲av日韩在线播放| 国产成人免费无遮挡视频| 在线永久观看黄色视频| 免费av中文字幕在线| 亚洲少妇的诱惑av| 99热国产这里只有精品6| 丝瓜视频免费看黄片| 一级,二级,三级黄色视频| 黄色成人免费大全| 亚洲av第一区精品v没综合| 国产一区二区 视频在线| 一区二区日韩欧美中文字幕| 欧美成人免费av一区二区三区 | 一二三四在线观看免费中文在| 成人免费观看视频高清| 久久午夜综合久久蜜桃| 啦啦啦 在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 天天躁夜夜躁狠狠躁躁| 亚洲伊人久久精品综合| 999精品在线视频| 精品国产一区二区三区久久久樱花| 亚洲欧美一区二区三区久久| 欧美激情极品国产一区二区三区| 国产精品电影一区二区三区 | 国产精品亚洲av一区麻豆| 天天影视国产精品| 午夜老司机福利片| 国产精品一区二区精品视频观看| 中文欧美无线码| 国产老妇伦熟女老妇高清| 天天添夜夜摸| 国产成人精品久久二区二区免费| 国产有黄有色有爽视频| 丁香六月欧美| 性高湖久久久久久久久免费观看| 人人澡人人妻人| 久久国产精品男人的天堂亚洲| 欧美中文综合在线视频| 精品亚洲乱码少妇综合久久| 国产黄色免费在线视频| 国产精品99久久99久久久不卡| 亚洲av第一区精品v没综合| 精品福利观看| 天天添夜夜摸| 人人澡人人妻人| 国产精品国产av在线观看| 免费不卡黄色视频| 狠狠精品人妻久久久久久综合| 人成视频在线观看免费观看| av国产精品久久久久影院| videos熟女内射| 成在线人永久免费视频| 国产成人免费无遮挡视频| 国产免费av片在线观看野外av| 成人18禁高潮啪啪吃奶动态图| 成年动漫av网址| av片东京热男人的天堂| 亚洲少妇的诱惑av| 国产成人精品无人区| 在线观看舔阴道视频| 久久av网站| 久久热在线av| 久热这里只有精品99| 青青草视频在线视频观看| 久久狼人影院| 一区二区av电影网| 国产xxxxx性猛交| 少妇的丰满在线观看| 欧美变态另类bdsm刘玥| 少妇的丰满在线观看| 国产免费av片在线观看野外av| 亚洲avbb在线观看| 久热这里只有精品99| √禁漫天堂资源中文www| 91成人精品电影| 2018国产大陆天天弄谢| 久久国产精品男人的天堂亚洲| 欧美精品av麻豆av| 午夜福利欧美成人| 久久人人爽av亚洲精品天堂| kizo精华| 精品一区二区三区四区五区乱码| 91字幕亚洲| 欧美乱妇无乱码| 国产深夜福利视频在线观看| 成年人黄色毛片网站| 丝袜美足系列| 俄罗斯特黄特色一大片| 国产成+人综合+亚洲专区| 久久中文字幕一级| 99国产精品99久久久久| 久久久精品免费免费高清| www.精华液| 亚洲第一av免费看| 国产亚洲欧美在线一区二区| 9191精品国产免费久久| 黄片小视频在线播放| 啦啦啦中文免费视频观看日本| 1024香蕉在线观看| 精品国内亚洲2022精品成人 | 一级毛片电影观看| 精品少妇黑人巨大在线播放| av天堂久久9| 五月开心婷婷网| 国产精品一区二区在线不卡| 国产精品国产av在线观看| 国产片内射在线| 日韩 欧美 亚洲 中文字幕| 91大片在线观看| 91字幕亚洲| 国产精品.久久久| 久久精品91无色码中文字幕| 欧美日韩精品网址| 麻豆av在线久日| 亚洲国产中文字幕在线视频| 精品少妇黑人巨大在线播放| 怎么达到女性高潮| 狠狠狠狠99中文字幕| 欧美激情久久久久久爽电影 | 亚洲av成人不卡在线观看播放网| 99re6热这里在线精品视频| 69精品国产乱码久久久| 国产精品熟女久久久久浪| 国产av精品麻豆| av又黄又爽大尺度在线免费看| 中文字幕制服av| 久热爱精品视频在线9| 国产熟女午夜一区二区三区| 国产精品 国内视频| 色综合欧美亚洲国产小说| 久久人人97超碰香蕉20202| 精品国产乱码久久久久久小说| 亚洲欧美激情在线| 欧美日韩福利视频一区二区| 亚洲精品中文字幕在线视频| 一区二区三区精品91| 国产深夜福利视频在线观看| 亚洲精品粉嫩美女一区| 成人影院久久| 亚洲精品久久成人aⅴ小说| 国产一区二区在线观看av| 成年动漫av网址| 2018国产大陆天天弄谢| 另类亚洲欧美激情| 久久人妻av系列| 一区二区日韩欧美中文字幕| 久久久精品94久久精品| 蜜桃在线观看..| 91大片在线观看| 亚洲,欧美精品.| 精品午夜福利视频在线观看一区 | 这个男人来自地球电影免费观看| 亚洲欧美精品综合一区二区三区| 亚洲人成电影免费在线| 成人国产一区最新在线观看| 美女扒开内裤让男人捅视频| 亚洲国产看品久久| 一级毛片电影观看| 精品一区二区三卡| 亚洲精品久久午夜乱码| 视频区欧美日本亚洲| 99久久99久久久精品蜜桃| 女人久久www免费人成看片| 亚洲情色 制服丝袜| 久久人妻福利社区极品人妻图片| 欧美日韩国产mv在线观看视频| 欧美日韩亚洲综合一区二区三区_| 亚洲av成人一区二区三| 19禁男女啪啪无遮挡网站| 窝窝影院91人妻| 国产成人精品在线电影| 亚洲国产欧美网| 丝袜美腿诱惑在线| 色播在线永久视频| 免费观看人在逋| 另类精品久久| 精品久久久久久电影网| 欧美日韩av久久| 亚洲成av片中文字幕在线观看| 香蕉国产在线看| 亚洲精品国产色婷婷电影| videos熟女内射| 欧美成狂野欧美在线观看| 青青草视频在线视频观看| av在线播放免费不卡| 久久性视频一级片| 超碰成人久久| 亚洲中文av在线| 国产精品 欧美亚洲| 国产无遮挡羞羞视频在线观看| 国内毛片毛片毛片毛片毛片| 欧美大码av| 三上悠亚av全集在线观看| 国产精品一区二区在线观看99| 十分钟在线观看高清视频www| 999久久久精品免费观看国产| 肉色欧美久久久久久久蜜桃| 91老司机精品| 男女无遮挡免费网站观看| 国产欧美日韩综合在线一区二区| 欧美人与性动交α欧美软件| 99国产精品免费福利视频| 久久精品国产99精品国产亚洲性色 | 免费一级毛片在线播放高清视频 | 一级毛片女人18水好多| 国产日韩欧美在线精品| 欧美亚洲 丝袜 人妻 在线| 在线观看免费视频日本深夜| 国产精品av久久久久免费| 青青草视频在线视频观看| 免费看a级黄色片| 黄网站色视频无遮挡免费观看| 在线永久观看黄色视频| 丝袜人妻中文字幕| 精品一区二区三区av网在线观看 | 麻豆国产av国片精品| 99国产精品一区二区三区| 1024香蕉在线观看| 久久毛片免费看一区二区三区| 国产成人精品久久二区二区91| 久久久久视频综合| 曰老女人黄片| 男女床上黄色一级片免费看| 日韩一卡2卡3卡4卡2021年| 九色亚洲精品在线播放|