• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hybrid Metaheuristics Based License Plate Character Recognition in Smart City

    2022-11-11 10:48:52EsamAlQarallehFahadAldhabanHalahNasseifBassamAlqarallehandTamerAbuKhalil
    Computers Materials&Continua 2022年9期

    Esam A.AlQaralleh,Fahad Aldhaban,Halah Nasseif,Bassam A.Y.Alqaralleh,*and Tamer AbuKhalil

    1School of Engineering,Princess Sumaya University for Technology,Amman,11941,Jordan

    2MIS Department,College of Business Administration,University of Business and Technology,Jeddah,21448,Saudi Arabia

    3Department of Computer Science,Faculty of Information Technology,Al-Hussein Bin Talal University,Ma’an,71111,Jordan

    Abstract: Recent technological advancements have been used to improve the quality of living in smart cities.At the same time, automated detection of vehicles can be utilized to reduce crime rate and improve public security.On the other hand,the automatic identification of vehicle license plate(LP)character becomes an essential process to recognize vehicles in real time scenarios,which can be achieved by the exploitation of optimal deep learning(DL)approaches.In this article, a novel hybrid metaheuristic optimization based deep learning model for automated license plate character recognition(HMODL-ALPCR)technique has been presented for smart city environments.The major intention of the HMODL-ALPCR technique is to detect LPs and recognize the characters that exist in them.For effective LP detection process, mask regional convolutional neural network (Mask-RCNN)model is applied and the Inception with Residual Network (ResNet)-v2 as the baseline network.In addition, hybrid sunflower optimization with butterfly optimization algorithm (HSFO-BOA)is utilized for the hyperparameter tuning of the Inception-ResNetv2 model.Finally, Tesseract based character recognition model is applied to effectively recognize the characters present in the LPs.The experimental result analysis of the HMODL-ALPCR technique takes place against the benchmark dataset and the experimental outcomes pointed out the improved efficacy of the HMODL-ALPCR technique over the recent methods.

    Keywords: Smart city; license plate recognition; optimal deep learning;metaheuristic algorithms;parameter tuning

    1 Introduction

    Continual urbanization possesses difficult problems on living quality and sustainable development of urban residents in smart cities [1].The idea of smart cities is to make very effective usages of scarce resources, and enhance the quality of public services and citizen lives [2].With the growth of embedded devices,Internet of Things(IoT),for example,mobiles phones sensors,Radio Frequency Identifications (RFIDs), and actuators, constructed into all the fabrics of urban environment and coupled together [3].Several smart city applications were deployed and developed, e.g., smart healthcare, intelligent transportation, public safety, and environment monitoring, etc.License plate recognition (LPR)system is often a great advantage for parking, traffic, cruise control, and toll management applications[4].Regarding security management and monitoring of any region or place,LPR system is utilized as tracing assistance to help eyes for the safety teams.In terms of law and safety enforcement, LPR system plays an important part in safeguarding, monitoring the borders,and physical intrusion [5].Different types of LPR systems are introduced by utilizing many smart computation models to attain efficiency and accuracy.

    Various recognition approaches were described to implement many intermediate processing phases at the time of Region of Interest (ROI)extraction.Nonetheless, fraud situations such as replacement and alteration, LPR system is related to intelligence method for effectiveness [6].The first phase of LPR systems is plate localization that is related to a recognition method for license plates(LP)in the input image.Algorithms like threshold or edge detection[7]are utilized by the video sequence.But Gabor filter is taken into account as a promising method for plate recognition through RBG image[8],whereas the previous one employs grey scale conversion for binary images.As well,generate histogram by means of vertical and horizontal prediction on the input images to recognize ROI based histogram that identifies the plates through multiple objects.Also, Hough conversion is employed for finding the edges bounded by the number plate[9].

    This paper develops an intelligent hybrid metaheuristic optimization based deep learning model for automated license plate character recognition (HMODL-ALPCR)technique that has been presented for smart city environments.The HMODL-ALPCR technique involves mask regional convolutional neural network (Mask-RCNN)model is applied and the Inception with Residual Network(ResNet)-v2 as the baseline network.In addition,hybrid sunflower optimization with butterfly optimization algorithm(HSFO-BOA)is utilized for the hyperparameter tuning of the Inception-ResNetv2 model.Finally, Tesseract based character recognition model is applied to effectively recognize the characters present in the LPs.The experimental result analysis of the HMODL-ALPCR technique takes place against the benchmark dataset.

    2 Literature Review

    Deep learning (DL), a comparatively young learning model in the CI family, has its source from Artificial Neural Networks (ANN).It enables computation model that is made up of multiprocessing layers to learn representation of information with multi stages of abstraction, also it is capable of discovering complex structures from natural information in their new form without needing complex feature tuning and engineering [10].In comparison with conventional ML models, DL method could develop exceptionally complex functions over layers of nonlinear conversion trainable from the start to the termination.In [11], proposed a cascaded DL method for constructing an effective Automatic license plate(ALP)recognition and detection method for the vehicle of northern Iraq.The LP in northern Iraq contains country region, plate number, and city region.Initially, the presented technique uses various pre-processing methods like adaptive image contrast enhancement and Gaussian filtering for making the input image better suitable for additional processing.Next,a deep semantic segmentation network is utilized for determining the three LPs of the input images.Then,Segmentation is performed by using deep encoder-decoder network framework.

    Chen[12]resolves the issues of car LP recognition through a YOLO darknet DL architecture.In the work,we employ YOLO seven convolution layers to identify an individual class.The recognition model is a sliding-window method.The object is to identify Taiwan car LP.Izidio et al.[13]introduced a method to engineer systems to recognize and detect Brazilian LP with CNN i.e., appropriate for embedded systems.The resultant systems detect LP in the captured image through Tiny YOLOv3 framework and recognize its character with second convolution networks trained on synthetic image and finetuned with actual LP image.Pustokhina et al.[14] proposed an efficient DL-based VLPR method with optimum K-means (OKM)cluster-based classification and CNN based detection method.The presented method works on three major phases such as LP segmentation,detection with OKM cluster method,and LP number detection with CNN method.In the initial phase,LP detection and localization method take place.

    3 The Proposed Model

    In this article, an automated HMODL-ALPCR technique has been presented to detect LPs and recognize the characters that exist in them for smart city environments.The HMODL-ALPCR technique involves Mask-RCNN for the detection of LPs and Inception with ResNet-v2 as the baseline network.Moreover, the HSFO-BOA is utilized for the hyperparameter tuning of the Inception-ResNetv2 model.Lastly,Tesseract based character recognition model is applied to effectively recognize the characters present in the LPs.

    3.1 Phase I:Mask RCNN Based LP Detection Process

    The MaskR-CNN technique is melioration dependent upon FasterR-CNN detection technique that presents the fully convolutional network(FCN)for generating masks.During the real time target detection procedure,the pixel of target are categorized accurately,and after that,the contour of target was judged.An image was primary input as to the backbone network consisting of Inception with ResNet v2 and FPN [15].The structure of Mask RCNN is shown in Fig.1.The backbone network removes any shared feature map(FM)which integrates the coordinate data of detection target place and the form texture data.Afterward, the RPN region offer network utilizes a sliding window for traversing this FM for generating many anchor frames with group of fixed scale and aspect ratio.

    Figure 1:Mask RCNN structure

    Afterward,the non-maximum suppression(NMS)technique was utilized for selecting the anchor box with superior score[16].During the RoIAlign layer of MaskR-CNN technique,the quantization function from the feature aggregation procedure was changed by bilinear interpolation technique that keeps the issue of mismatching and enhancing the accuracy of detecting and segmenting.In the trained procedure,the MaskR-CNN technique determines the multitask loss function to all sampled RoI as

    Lclsimplies the classifier error,Lboxrefers the recognition error,andLmaskstands for the segmented error.LclsandLboxfrom the Mask,R-CNN is determined as:

    wherepisignifies the forecasted probability ofithtarget on anchor point.p*ihas referred to as the sign of anchor point samples.If the anchor point instance was positive,p*iis 1;else,it can be 0.Combined oftiandt*iare vectors consisting of 4 translation and scaling parameters that correspondingly.The weightNcls,Nreg,andλcontrol the 2 losses for keeping balance.The classification and regression losses are determined as:

    where smooth(x)refers the robust loss that is referred as the translationχof modified frame on the horizontal axis at anchor points.It can be demonstrated as:

    Lmaskin Mask,R-CNN is the average binary cross entropy function which explains the loss of semantic segmentation branch.During the mask branch,an input FM is resultant as tok×m×mformats then process,andkandm,correspondingly,controls the dimensional and scale of the FMs.The|x|<l,comparative entropy was reached by the pixel-by-pixel sigmoid computation of resultant FM,and the average entropy error isLmask.

    In the Mask RCNN model,the Inception with ResNetv2 is utilized as the baseline network.DL concentrates on effectiveness as a human mind.If the child was trained on distinct animals,an arbitrary image was created from the mind of child which is a dog as follows and cat as follows,and from the future,the child is identified as this animal.In DL work on a similar rule.Transfer learning(TL)is the next stage from DL.In trained a NN technique needs several times and various runs for capturing the accurate weight based on this model condition.It can be tedious works and could not be simple to student a novel to the field for entering TL.The TL manages the methods led by field experts to the public that skip the necessity of determining compatible weight and carry on to next stage of trained method on novel input data.An Inception ResNetV2 is introduced [17] by combining the 2 most famous DCNN, Inception and ResNet, and utilizing batch-normalization (BN)to the convention layer before summation.The leftover components are specially employed for enabling a superior amount of Inception block and consequence, deeper method.As already mentioned, the extremely noticeable complexity compared with highly deep network is the trained phase.It can be managed to utilize remaining connection.But, an enormous amount of filters were utilized from the system, the remaining was scaled down in an effectual manner for dealing with the trained complexity.If the amount of strainer surpasses 1000,the remaining variants encounter variability,and the network could not be trained.Thus the outcome,the remaining supports are scaled from network trained stabilization.

    The sigmoid function was numerically measured which is the feature of transmitting some actual value to range amongst zero and one, shaped like the letter “S.”The logistic function was another name to the sigmoid function.The sigmoid function is written as:

    An important benefit of the sigmoid function is that it occurs amongst 2 points, 0 and 1.Thus the result can be most effective from this technique where it is required for anticipating probability as outcome.It can be selected this function as the possibility of something happening is only amongst zero and one.

    3.2 Phase II:Design of HSFO-BOA Based Hyperparameter Tuning

    In order to optimally adjust the hyperparameters involved in the Inception with ResNetv2 model,the HSFO-BOA is derived.A sunflower lifecycle is reliable:as they arise,accompany the sun daily and the needles of clock.Here,the inverse square law radiation is another key nature-based optimization.The heat quantityQreceived by the plant is shown as follows[18]:

    WhilePindicates the source power andrirepresent the distance between the existing paramount and the planti.

    The sunflower stride in the directionscan be evaluated as follows:

    Here,λshows the perpetual value that determines a “inertial” dislocation of the plant,Pi(‖Xi-Xi-1‖)indicates the possibility of pollination as follows:

    In the equation,XmaxandXmindenotes the upper and lower limits,andNpopindicates the overall amount of plants:

    The process initiates with population generation that may be random or even.Corresponding individual ratings assist in choosing which one would be moved towards the sun.Next, each entity will position itself into the sun and move in a random manner.However,it is proposed to include the capacity to function with different suns in a future version,now it is restricted to the study.Paramount plants would pollinate around the sun.

    For improving the efficacy of the SFO algorithm, the HSFO-BOA is derived by the integration of BOA to it.The BOA imitates the natural behavior of the butterflies on food sources finding and mating.This approach uses two distinct navigation patterns for searching the domains [19].In the exploration stage(r1≤p), butterflies move to the optimal butterfly of the colony whereas in the exploitation stage(r1>p), butterfly performs an arbitrary search within the searching space by moving to a random butterfly in the colony.The mathematical expression of both patterns are given in the following:

    Whenr1≤p,the global search process becomes

    Whenr1>p,the local search process becomes

    Here,tandt+1 indicate the present and upgraded states.As well,position of optimal butterfly in the colony has been demonstrated asg*,andtXiandtXk,are positions of two arbitrarily designated butterflies;r1,r2andr3indicates three random scalars uniformly chosen within[0,1],·φirepresent the fragrance factor and it is determined by the following equation:

    Whereas,φiindicates the fragrance magnitude forithbutterfly;cdenotes a coefficient,I,andashows the intensity of the stimulus and the fluctuating absorption degree.Iis related to the objective function, and for ith butterfly, it is consideredf (Xi), whereasfreturn objective function of the problem.Theaandccoefficients are designated within [0,1],·pindicates the likelihood switch that describes the search behavior.

    3.3 Phase III:Tesseract Based Character Recognition

    Primarily,Adaptive Thresholding was implemented for changing the image as to binary version utilizing Otsu’s technique [20].The page layout analysis is the next stage and was implemented by removing the text block in the region.Afterward,the baselines of all lines were identified and the texts were separated as words with the application of finite as well as fuzzy spaces.During the next phase,the character summaries are removed in the words.The text detection was introduced as 2-pass technique.Primary pass,a word detection was implemented with the application of static classifier.All the words are passed suitably for adaptive classifying from the procedure of trained data.The secondary pass was run on the page utilizing a novel adaptive classifier technique where the words are not studied comprehensively for re-examining the modules.

    4 Experimental Validation

    The performance validation of the HMODL-ALPCR technique takes place using three benchmark datasets namely FZU Cars,Stanford Cars,and HumAIn 2019 dataset.Few sample images are depicted in Fig.2.

    Fig.3 illustrates the sample results obtained by the HMODL-ALPCR technique.From the figure,it is clear that the HMODL-ALPCR technique has proficiently detected the LP and recognized the characters.

    Tab.1 offers the LP detection outcome analysis of the HMODL-ALPCR technique under distinct epochs.Fig.4 examines the LP detection result analysis of the HMODL-ALPCR technique under distinct epochs on FZU Cars dataset.With 100 epochs,the HMODL-ALPCR technique has offeredprecn,recal,Fscore,andmAPof 99.05%,99.07%,98.91%,and 98.56%respectively.Also,with 200 epochs,the HMODL-ALPCR technique has attainedprecn,recal,Fscore,andmAPof 99.05%,99.54%,98.71%,and 98.42% respectively.Similarly, with 300 epochs, the HMODL-ALPCR technique has providedprecn,recal,Fscore,andmAPof 99.05%,99.42%,98.73%,and 97.86%respectively.Likewise,with 400 epochs,the HMODL-ALPCR technique has exhibitedprecn,recal,Fscore,andmAPof 99.00%,99.40%,98.76%,and 98.37%respectively.

    Figure 2:Sample images

    Figure 3:Sample visualization results of HMODL-ALPCR technique

    Table 1: LP detection results of HMODL-ALPCR technique

    Table 1:Continued

    Figure 4:Classification results of HMODL-ALPCR technique on FZU Cars dataset

    Fig.5 inspects the LP detection result analysis of the HMODL-ALPCR system under different epochs on Stanford Cars dataset.With 100 epochs, the HMODL-ALPCR approach has offeredprecn,recal,Fscore, andmAPof 98.99%, 99.00%, 97.86%, and 96.95% correspondingly.Besides, with 200 epochs,the HMODL-ALPCR methodology has reachedprecn,recal,Fscore,andmAPof 98.12%,99.27%,98.46%,and 97.81%respectively.In addition,with 300 epochs,the HMODL-ALPCR system has offeredprecn,recal,Fscore, andmAPof 97.74%, 98.96%, 98.54%, and 96.32% correspondingly.Moreover,with 400 epochs,the HMODL-ALPCR methodology has demonstratedprecn,recal,Fscore,andmAPof 98.49%,99.11%,98.48%,and 97.08%correspondingly.

    Figure 5:Classification results of HMODL-ALPCR technique on Standford Cars dataset

    Fig.6 demonstrates the LP detection result analysis of the HMODL-ALPCR system under distinct epochs on HumAIn 2019 dataset.With 100 epochs, the HMODL-ALPCR technique has obtainableprecn,recal,Fscore, andmAPof 98.57%, 99.14%, 99.31%, and 97.74% respectively.Along with that, with 200 epochs, the HMODL-ALPCR approach has reachedprecn,recal,Fscore, andmAPof 98.47%,98.97%,98.72%,and 98.32%respectively.Similarly,with 300 epochs,the HMODLALPCR technique has accessibleprecn,recal,Fscore,andmAPof 99.34%,99.13%,98.63%,and 98.11%correspondingly.At last, with 400 epochs, the HMODL-ALPCR system has exhibitedprecn,recal,Fscore,andmAPof 98.94%,99.25%,98.82%,and 98.40%respectively.

    Figure 6:Classification results of HMODL-ALPCR technique on HumAIn 2019 dataset

    Tab.2 and Fig.7 investigate the comparison study of the HMODL-ALPCR technique with recent methods on the test FZU Cars dataset.The results demonstrated that the CNN-VGG16 and DLResNet50 techniques have obtained lower performance with the minimal values ofprecn,recal,Fscore,andmAP.In line with, the DL-ResNet101 and HT-SSA-CNN techniques have attained slightly enhanced values ofprecn,recal,Fscore, andmAP.Next to that, the DL-VLPNR and OKM-CNN techniques have reached reasonable values ofprecn,recal,Fscore, andmAP.However, the HMODLALPCR technique has outperformed the other methods with the maximumprecn,recal,Fscore, andmAPof 99.04%,99.36%,98.80%,and 98.18%respectively.

    Table 2: Comparative LP detection results of HMODL-ALPCR technique on FZU Cars dataset

    Figure 7: LP detection result analysis of HMODL-ALPCR with recent techniques on FZU Cars dataset

    Tab.3 and Fig.8 examine the comparison study of the HMODL-ALPCR approach on the test Stanford Cars dataset.The outcomes exhibited that the CNN-VGG16 and DL-ResNet50 algorithms have reached lesser performance with the minimal values ofprecn,recal,Fscore,andmAP.Likewise,the DL-ResNet101 and HT-SSA-CNN techniques have attained slightly enhanced values ofprecn,recal,Fscore,andmAP.Followed by,the DL-VLPNR and OKM-CNN techniques have reached reasonable values ofprecn,recal,Fscore, andmAP.At last, the HMODL-ALPCR system has outperformed the other methods with the maximumprecn,recal,Fscore,andmAPof 98.46%,99.09%,98.21%,and 97.10%respectively.

    Table 3:Comparative LP detection results of HMODL-ALPCR technique on Stanford Cars dataset

    Figure 8:LP detection result analysis of HMODL-ALPCR with recent techniques on Stanford Cars dataset

    Tab.4 and Fig.9 examine the comparison study of the HMODL-ALPCR approach on the HumAIn 2019 dataset.The outcomes exhibited that the CNN-VGG16 and DL-ResNet50 systems have obtained lesser performance with the reduced values ofprecn,recal,Fscore,andmAP.Besides,the DL-ResNet101 and HT-SSA-CNN techniques have attained somewhat enhanced values ofprecn,recal,Fscore, andmAP.Afterward, the DL-VLPNR and OKM-CNN algorithms have obtained reasonable values ofprecn,recal,Fscore,andmAP.But,the HMODL-ALPCR system has outperformed the other algorithms with the maximalprecn,recal,Fscore, andmAPof 98.81%, 99.09%, 98.89%, and 98.14%correspondingly.

    After examining the above mentioned tables and figures,it is obvious that the HMODL-ALPCR technique has outperformed the other techniques on all the datasets.

    Table 4:Comparative LP detection results of HMODL-ALPCR technique on HumAIn 2019 dataset

    Figure 9:LP detection result analysis of HMODL-ALPCR with recent techniques on HumAIn 2019 dataset

    5 Conclusion

    In this article, an automated HMODL-ALPCR technique has been presented to detect LPs and recognize the characters that exist in them for smart city environments.The HMODL-ALPCR technique involves Mask-RCNN for the detection of LPs and Inception with ResNet-v2 as the baseline network.Moreover, the HSFO-BOA is utilized for the hyperparameter tuning of the Inception-ResNetv2 model.Lastly,Tesseract based character recognition model is applied to effectively recognize the characters present from the LPs.The experimental result analysis of the HMODL-ALPCR technique takes place against the benchmark dataset and the experimental outcomes pointed out the improved efficacy of the HMODL-ALPCR technique on existing techniques.In future,the detection performance can be improvised by the design of hybrid DL models for smart city environments.

    Funding Statement:This Research was funded by the Deanship of Scientific Research at University of Business and Technology,Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲欧美精品综合一区二区三区| 99热网站在线观看| 久久中文字幕一级| 99精国产麻豆久久婷婷| 91成年电影在线观看| 精品国产乱码久久久久久男人| 最近最新中文字幕大全免费视频| 国产福利在线免费观看视频| 大型av网站在线播放| av超薄肉色丝袜交足视频| 久久天躁狠狠躁夜夜2o2o| 电影成人av| a在线观看视频网站| 欧美乱妇无乱码| 亚洲人成电影免费在线| 成年人黄色毛片网站| 国产熟女午夜一区二区三区| 日本一区二区免费在线视频| 久久久久久亚洲精品国产蜜桃av| 夜夜夜夜夜久久久久| 日韩大片免费观看网站| aaaaa片日本免费| av又黄又爽大尺度在线免费看| 高清av免费在线| 国产精品一区二区在线不卡| 久久热在线av| 精品国内亚洲2022精品成人 | 欧美激情极品国产一区二区三区| 亚洲熟妇熟女久久| 性高湖久久久久久久久免费观看| 亚洲九九香蕉| 欧美精品人与动牲交sv欧美| 最近最新免费中文字幕在线| 免费人妻精品一区二区三区视频| 欧美日韩视频精品一区| 无人区码免费观看不卡 | 97在线人人人人妻| 国产又色又爽无遮挡免费看| 日韩精品免费视频一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 乱人伦中国视频| 午夜福利欧美成人| 日韩欧美三级三区| 国产午夜精品久久久久久| 亚洲人成77777在线视频| 久久人妻福利社区极品人妻图片| 亚洲国产精品一区二区三区在线| 亚洲精品自拍成人| 波多野结衣一区麻豆| 国产成人一区二区三区免费视频网站| 亚洲成国产人片在线观看| 亚洲欧洲日产国产| 窝窝影院91人妻| 91九色精品人成在线观看| 一级黄色大片毛片| 一本色道久久久久久精品综合| av片东京热男人的天堂| 亚洲精品国产色婷婷电影| 亚洲午夜精品一区,二区,三区| 国产日韩欧美亚洲二区| 国产欧美亚洲国产| 亚洲精华国产精华精| 91麻豆av在线| 成人精品一区二区免费| 又紧又爽又黄一区二区| 国产深夜福利视频在线观看| 在线观看免费视频网站a站| 国产一区二区三区在线臀色熟女 | 黄色视频在线播放观看不卡| 大型黄色视频在线免费观看| 成年动漫av网址| 叶爱在线成人免费视频播放| 久久香蕉激情| 狠狠狠狠99中文字幕| 后天国语完整版免费观看| 蜜桃国产av成人99| 另类精品久久| 蜜桃国产av成人99| 色在线成人网| videos熟女内射| 在线永久观看黄色视频| 亚洲精品一二三| 一区福利在线观看| 亚洲精品美女久久久久99蜜臀| 女性生殖器流出的白浆| 欧美精品一区二区大全| 麻豆国产av国片精品| 国产不卡av网站在线观看| 欧美在线一区亚洲| 视频在线观看一区二区三区| 亚洲欧美色中文字幕在线| 成人黄色视频免费在线看| 一区二区av电影网| 丝袜人妻中文字幕| 亚洲国产av影院在线观看| 精品午夜福利视频在线观看一区 | 亚洲av成人一区二区三| 欧美日韩精品网址| 十八禁高潮呻吟视频| 欧美黄色片欧美黄色片| 免费女性裸体啪啪无遮挡网站| 青草久久国产| bbb黄色大片| 法律面前人人平等表现在哪些方面| 三级毛片av免费| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕人妻熟女乱码| 美女扒开内裤让男人捅视频| 亚洲精品av麻豆狂野| 久久国产精品影院| 亚洲成人免费av在线播放| 国产91精品成人一区二区三区 | 91精品国产国语对白视频| 欧美性长视频在线观看| 精品一区二区三区视频在线观看免费 | 免费在线观看影片大全网站| 久热这里只有精品99| 91精品三级在线观看| 精品国产乱码久久久久久男人| 中文欧美无线码| 国产亚洲欧美精品永久| 大片免费播放器 马上看| 精品少妇一区二区三区视频日本电影| 大型黄色视频在线免费观看| 日韩欧美一区视频在线观看| 人人妻人人澡人人爽人人夜夜| 日韩人妻精品一区2区三区| 久久久久久亚洲精品国产蜜桃av| 国产精品一区二区免费欧美| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久久免费高清国产稀缺| 久久亚洲精品不卡| 人人妻人人澡人人爽人人夜夜| 99riav亚洲国产免费| 久久精品国产99精品国产亚洲性色 | 久久免费观看电影| 精品久久蜜臀av无| 99国产精品99久久久久| 国产无遮挡羞羞视频在线观看| 日韩精品免费视频一区二区三区| 成人亚洲精品一区在线观看| 99精品久久久久人妻精品| 黄色丝袜av网址大全| 下体分泌物呈黄色| 亚洲国产毛片av蜜桃av| 国产精品二区激情视频| 亚洲精华国产精华精| 自拍欧美九色日韩亚洲蝌蚪91| 国精品久久久久久国模美| 国产精品1区2区在线观看. | 久久精品亚洲熟妇少妇任你| 精品国产亚洲在线| 在线观看一区二区三区激情| 99在线人妻在线中文字幕 | 无人区码免费观看不卡 | 一二三四社区在线视频社区8| 亚洲一码二码三码区别大吗| 日韩一卡2卡3卡4卡2021年| 黄色a级毛片大全视频| av免费在线观看网站| 嫩草影视91久久| 国产精品二区激情视频| 最近最新免费中文字幕在线| 日本vs欧美在线观看视频| 久久青草综合色| 国产99久久九九免费精品| 老司机深夜福利视频在线观看| 黄色 视频免费看| 国产91精品成人一区二区三区 | 精品一区二区三区av网在线观看 | 99国产极品粉嫩在线观看| 啦啦啦 在线观看视频| 欧美精品一区二区大全| 午夜激情久久久久久久| 午夜日韩欧美国产| 麻豆乱淫一区二区| 国产精品香港三级国产av潘金莲| 日本黄色日本黄色录像| 久久精品91无色码中文字幕| 日韩一卡2卡3卡4卡2021年| 欧美精品av麻豆av| av电影中文网址| 妹子高潮喷水视频| 精品人妻在线不人妻| 免费高清在线观看日韩| 久久性视频一级片| av天堂久久9| 欧美日韩精品网址| 国产成人系列免费观看| 精品人妻1区二区| 精品少妇黑人巨大在线播放| 后天国语完整版免费观看| 91大片在线观看| 建设人人有责人人尽责人人享有的| 国产xxxxx性猛交| 露出奶头的视频| 日本av免费视频播放| 国产aⅴ精品一区二区三区波| 黑人操中国人逼视频| 老熟妇仑乱视频hdxx| 久久av网站| av超薄肉色丝袜交足视频| 亚洲成a人片在线一区二区| 亚洲成人手机| 999精品在线视频| 久久久精品免费免费高清| 日韩视频一区二区在线观看| 极品人妻少妇av视频| 我的亚洲天堂| 成年版毛片免费区| 久久久国产欧美日韩av| 欧美老熟妇乱子伦牲交| 日韩人妻精品一区2区三区| 一级毛片电影观看| 成年版毛片免费区| 国产又爽黄色视频| 亚洲七黄色美女视频| 免费久久久久久久精品成人欧美视频| 中文字幕精品免费在线观看视频| 亚洲精品在线观看二区| 久久人妻熟女aⅴ| 夜夜夜夜夜久久久久| 99国产精品99久久久久| 老熟妇仑乱视频hdxx| 视频区欧美日本亚洲| 在线av久久热| 国产在视频线精品| 在线观看一区二区三区激情| 欧美精品人与动牲交sv欧美| 免费久久久久久久精品成人欧美视频| 在线 av 中文字幕| 一个人免费看片子| 久久人妻福利社区极品人妻图片| 性少妇av在线| 色老头精品视频在线观看| h视频一区二区三区| 男女下面插进去视频免费观看| www.精华液| 99国产精品一区二区三区| 精品亚洲成a人片在线观看| 91av网站免费观看| av网站在线播放免费| 久热爱精品视频在线9| 1024香蕉在线观看| 超色免费av| 9色porny在线观看| 日本黄色视频三级网站网址 | 人人妻人人爽人人添夜夜欢视频| 久久99一区二区三区| 婷婷丁香在线五月| 在线 av 中文字幕| 在线观看一区二区三区激情| 亚洲一码二码三码区别大吗| 久久久精品94久久精品| 国产亚洲av高清不卡| 久久中文看片网| 99热国产这里只有精品6| 王馨瑶露胸无遮挡在线观看| 精品人妻1区二区| 免费女性裸体啪啪无遮挡网站| av又黄又爽大尺度在线免费看| 美女国产高潮福利片在线看| 国产淫语在线视频| 最近最新免费中文字幕在线| 国产亚洲午夜精品一区二区久久| 又黄又粗又硬又大视频| 美女午夜性视频免费| 99国产精品一区二区蜜桃av | www.熟女人妻精品国产| 一边摸一边做爽爽视频免费| 18禁国产床啪视频网站| 十八禁人妻一区二区| 精品少妇久久久久久888优播| 国产一区二区三区视频了| 99re6热这里在线精品视频| 欧美日韩一级在线毛片| 国产1区2区3区精品| 婷婷成人精品国产| 国产欧美亚洲国产| 视频区图区小说| 女人爽到高潮嗷嗷叫在线视频| 欧美av亚洲av综合av国产av| 亚洲av日韩在线播放| 免费久久久久久久精品成人欧美视频| 一级a爱视频在线免费观看| 国产一卡二卡三卡精品| 丝袜人妻中文字幕| 黄色a级毛片大全视频| 99国产极品粉嫩在线观看| 丝袜美腿诱惑在线| 99香蕉大伊视频| 黑人操中国人逼视频| 少妇精品久久久久久久| 最近最新免费中文字幕在线| 国产aⅴ精品一区二区三区波| 999精品在线视频| 女性生殖器流出的白浆| 性少妇av在线| 国产在视频线精品| 久久精品熟女亚洲av麻豆精品| 免费看十八禁软件| 青青草视频在线视频观看| 在线亚洲精品国产二区图片欧美| 19禁男女啪啪无遮挡网站| 免费在线观看黄色视频的| 99九九在线精品视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产精品一区二区三区在线| 午夜久久久在线观看| 一边摸一边做爽爽视频免费| 国产一区二区三区综合在线观看| 午夜老司机福利片| 香蕉久久夜色| 久久亚洲精品不卡| 汤姆久久久久久久影院中文字幕| 国产99久久九九免费精品| av天堂在线播放| 亚洲精华国产精华精| 黄色a级毛片大全视频| 亚洲全国av大片| 少妇裸体淫交视频免费看高清 | 亚洲国产欧美一区二区综合| 国产精品免费大片| 精品国产亚洲在线| 成人亚洲精品一区在线观看| 中文字幕色久视频| 国产精品亚洲一级av第二区| 女性生殖器流出的白浆| 丰满人妻熟妇乱又伦精品不卡| 两性夫妻黄色片| 水蜜桃什么品种好| a级毛片在线看网站| 欧美国产精品va在线观看不卡| 啦啦啦 在线观看视频| 两个人看的免费小视频| 欧美黑人精品巨大| 正在播放国产对白刺激| 国产一卡二卡三卡精品| 丰满迷人的少妇在线观看| 国产av一区二区精品久久| 国产激情久久老熟女| 亚洲第一av免费看| 亚洲avbb在线观看| 在线观看免费视频网站a站| 精品午夜福利视频在线观看一区 | 国产精品美女特级片免费视频播放器 | 精品久久久久久久毛片微露脸| 窝窝影院91人妻| 亚洲精品美女久久av网站| 久久热在线av| 精品少妇黑人巨大在线播放| 窝窝影院91人妻| 捣出白浆h1v1| 丁香六月欧美| 免费高清在线观看日韩| av电影中文网址| 丝袜美腿诱惑在线| 在线十欧美十亚洲十日本专区| 国产伦人伦偷精品视频| 欧美性长视频在线观看| 亚洲欧美一区二区三区黑人| 五月天丁香电影| 在线看a的网站| 国产老妇伦熟女老妇高清| 黄频高清免费视频| 五月天丁香电影| 久久99一区二区三区| 热99国产精品久久久久久7| 日本a在线网址| 美国免费a级毛片| 香蕉丝袜av| 高清欧美精品videossex| 狠狠婷婷综合久久久久久88av| 国产成+人综合+亚洲专区| 丝袜美腿诱惑在线| 在线 av 中文字幕| 色精品久久人妻99蜜桃| 成人特级黄色片久久久久久久 | 欧美激情久久久久久爽电影 | 免费在线观看影片大全网站| 国产成人av教育| 老熟女久久久| 亚洲免费av在线视频| 极品少妇高潮喷水抽搐| 大码成人一级视频| 人妻 亚洲 视频| 久久久久精品国产欧美久久久| 国产av一区二区精品久久| 在线播放国产精品三级| 国产伦理片在线播放av一区| 高潮久久久久久久久久久不卡| 国产一区二区三区综合在线观看| 中文字幕高清在线视频| 91av网站免费观看| 欧美日韩av久久| 久久精品91无色码中文字幕| 精品一区二区三区视频在线观看免费 | 亚洲 国产 在线| 国产麻豆69| 亚洲少妇的诱惑av| 欧美一级毛片孕妇| 考比视频在线观看| 青青草视频在线视频观看| 欧美日本中文国产一区发布| netflix在线观看网站| 国内毛片毛片毛片毛片毛片| 免费日韩欧美在线观看| 亚洲一区二区三区欧美精品| 婷婷成人精品国产| 久久这里只有精品19| 新久久久久国产一级毛片| 一本—道久久a久久精品蜜桃钙片| 亚洲成人免费av在线播放| 91麻豆av在线| kizo精华| 国精品久久久久久国模美| 露出奶头的视频| 中文字幕精品免费在线观看视频| 在线观看免费日韩欧美大片| 麻豆成人av在线观看| 高清毛片免费观看视频网站 | 亚洲 欧美一区二区三区| 国产精品.久久久| 丝袜美足系列| 亚洲国产精品一区二区三区在线| 女同久久另类99精品国产91| 99精品久久久久人妻精品| 亚洲精品在线观看二区| 人妻久久中文字幕网| 久久精品国产亚洲av香蕉五月 | 欧美亚洲日本最大视频资源| 国产一区二区在线观看av| 欧美精品高潮呻吟av久久| 大片电影免费在线观看免费| 精品乱码久久久久久99久播| 美女福利国产在线| 欧美激情高清一区二区三区| 国产精品99久久99久久久不卡| 免费人妻精品一区二区三区视频| 成人国产一区最新在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 97人妻天天添夜夜摸| 男女下面插进去视频免费观看| 一级黄色大片毛片| 别揉我奶头~嗯~啊~动态视频| 久久精品国产a三级三级三级| 首页视频小说图片口味搜索| 另类亚洲欧美激情| 精品少妇久久久久久888优播| 亚洲中文av在线| 在线观看舔阴道视频| 天堂中文最新版在线下载| 国产精品免费视频内射| 一区在线观看完整版| 亚洲伊人色综图| 成人三级做爰电影| 亚洲成人国产一区在线观看| 国产成人免费无遮挡视频| 肉色欧美久久久久久久蜜桃| 久热爱精品视频在线9| 亚洲色图 男人天堂 中文字幕| 亚洲av成人不卡在线观看播放网| 精品久久蜜臀av无| a级片在线免费高清观看视频| 脱女人内裤的视频| 成在线人永久免费视频| 曰老女人黄片| 男人操女人黄网站| 丁香六月天网| 在线播放国产精品三级| 亚洲中文av在线| 夜夜骑夜夜射夜夜干| av网站免费在线观看视频| 亚洲精品在线美女| 国产麻豆69| 日韩 欧美 亚洲 中文字幕| 国产高清国产精品国产三级| 久久久国产精品麻豆| 欧美精品啪啪一区二区三区| 91国产中文字幕| 久久人人97超碰香蕉20202| 国产精品亚洲av一区麻豆| 国产精品成人在线| 国产深夜福利视频在线观看| 欧美中文综合在线视频| 日本黄色日本黄色录像| 老司机深夜福利视频在线观看| 久久精品91无色码中文字幕| 午夜精品国产一区二区电影| 可以免费在线观看a视频的电影网站| 一进一出好大好爽视频| 午夜日韩欧美国产| 欧美精品人与动牲交sv欧美| 每晚都被弄得嗷嗷叫到高潮| 久久精品国产99精品国产亚洲性色 | 精品国产一区二区三区久久久樱花| 曰老女人黄片| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人系列免费观看| 黑人欧美特级aaaaaa片| 黄色视频,在线免费观看| 777久久人妻少妇嫩草av网站| 69精品国产乱码久久久| 国产精品久久久av美女十八| 成人18禁高潮啪啪吃奶动态图| 亚洲av电影在线进入| 777久久人妻少妇嫩草av网站| 亚洲一卡2卡3卡4卡5卡精品中文| 免费黄频网站在线观看国产| 久久影院123| 日韩熟女老妇一区二区性免费视频| 欧美性长视频在线观看| tocl精华| 丁香欧美五月| 久久午夜综合久久蜜桃| 极品教师在线免费播放| 侵犯人妻中文字幕一二三四区| 操出白浆在线播放| 99re在线观看精品视频| 脱女人内裤的视频| 高清黄色对白视频在线免费看| 亚洲精品中文字幕在线视频| 老司机午夜福利在线观看视频 | 国产精品欧美亚洲77777| 美女高潮到喷水免费观看| 一边摸一边抽搐一进一出视频| 久久午夜亚洲精品久久| 搡老岳熟女国产| 精品国产乱子伦一区二区三区| 香蕉丝袜av| 久久久精品区二区三区| 国产区一区二久久| 1024香蕉在线观看| 国产在视频线精品| 国产av又大| 免费黄频网站在线观看国产| 久久久久久久久免费视频了| 精品免费久久久久久久清纯 | 欧美日本中文国产一区发布| 欧美激情久久久久久爽电影 | 欧美在线黄色| 国精品久久久久久国模美| 欧美在线一区亚洲| 亚洲专区中文字幕在线| √禁漫天堂资源中文www| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲成人免费av在线播放| 精品第一国产精品| 少妇裸体淫交视频免费看高清 | 国产成人免费无遮挡视频| 久久久久久久久久久久大奶| 国产深夜福利视频在线观看| 久久ye,这里只有精品| 99国产综合亚洲精品| 一区二区三区激情视频| 狂野欧美激情性xxxx| 国产在线视频一区二区| 亚洲色图av天堂| 日本一区二区免费在线视频| 另类亚洲欧美激情| 一本综合久久免费| 欧美日韩视频精品一区| 精品视频人人做人人爽| 色综合婷婷激情| 这个男人来自地球电影免费观看| 丁香六月天网| 一级毛片女人18水好多| 欧美精品人与动牲交sv欧美| 国产精品影院久久| 亚洲情色 制服丝袜| 国产精品亚洲一级av第二区| 亚洲成a人片在线一区二区| 黄片小视频在线播放| 欧美性长视频在线观看| 免费在线观看黄色视频的| 在线永久观看黄色视频| 国产在视频线精品| 午夜精品久久久久久毛片777| 亚洲国产看品久久| 国产免费视频播放在线视频| 99riav亚洲国产免费| 国产成人系列免费观看| 日日摸夜夜添夜夜添小说| 久久免费观看电影| 在线观看人妻少妇| 啦啦啦中文免费视频观看日本| av超薄肉色丝袜交足视频| 新久久久久国产一级毛片| 黄色怎么调成土黄色| 一级片免费观看大全| 国产精品影院久久| 国产成人av激情在线播放| 天天操日日干夜夜撸| 精品亚洲乱码少妇综合久久| 天堂8中文在线网| 啪啪无遮挡十八禁网站| 国产男靠女视频免费网站| 成人影院久久| 狠狠狠狠99中文字幕| 韩国精品一区二区三区| 国产在线精品亚洲第一网站| 欧美在线一区亚洲| 极品少妇高潮喷水抽搐| 久久青草综合色| 免费看十八禁软件| 在线观看一区二区三区激情| 真人做人爱边吃奶动态| 国产黄频视频在线观看| 在线观看免费视频网站a站| 天天躁日日躁夜夜躁夜夜| 久9热在线精品视频| 他把我摸到了高潮在线观看 | 桃红色精品国产亚洲av| 国产不卡一卡二| 欧美乱码精品一区二区三区|