• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental Analysis of Methods Used to Solve Linear Regression Models

    2022-11-11 10:48:48MuaadAbuFarajAbeerAlHyariandZiadAlqadi
    Computers Materials&Continua 2022年9期

    Mua’ad Abu-Faraj,Abeer Al-Hyari and Ziad Alqadi

    1Computer Information Systems Department,The University of Jordan,Aqaba,77110,Jordan

    2Electrical Engineering Department,Al-Balqa Applied University,As Salt,19117,Jordan

    3Computers and Networks Engineering Department,Amman,15008,Jordan

    Abstract: Predicting the value of one or more variables using the values of other variables is a very important process in the various engineering experiments that include large data that are difficult to obtain using different measurement processes.Regression is one of the most important types of supervised machine learning, in which labeled data is used to build a prediction model,regression can be classified into three different categories:linear, polynomial, and logistic.In this research paper, different methods will be implemented to solve the linear regression problem, where there is a linear relationship between the target and the predicted output.Various methods for linear regression will be analyzed using the calculated Mean Square Error (MSE)between the target values and the predicted outputs.A huge set of regression samples will be used to construct the training dataset with selected sizes.A detailed comparison will be performed between three methods, including least-square fit; Feed-Forward Artificial Neural Network (FFANN), and Cascade Feed-Forward Artificial Neural Network(CFFANN),and recommendations will be raised.The proposed method has been tested in this research on random data samples, and the results were compared with the results of the most common method, which is the linear multiple regression method.It should be noted here that the procedures for building and testing the neural network will remain constant even if another sample of data is used.

    Keywords:Linear regression;ANN;CFFANN;FFANN;MSE;training cycle;training set

    1 Introducti on

    In many engineering experiments,practical results are obtained that require finding the relationship between some of the inputs and outputs so that this relationship can be applied to find the output values depending on the input values without resorting to experiment and measurement provided that the output values are accurate and achievable at a very low error rate(very close to zero).The process of finding the relationship between the independent variables and the dependent ones (response)as shown in Fig.1 is called solving the linear regression model(or linear prediction process)[1-5].

    Figure 1:Linear regression(prediction)model[3]

    Methods other than linear regression are used to approximate the solution of an equation for some system, in [6] they used two different techniques to compare the analytical solutions for the Time-Fractional Fokker-Plank Equation (TFFPE); including the new iterative method and the fractional power series method(FPSM).The experimental result shows that there is a good match between the approximated and the exact solution.

    On the other hand,the relation between the target value and the predicting variables is non-linear in most cases.Therefore,more techniques that are sophisticated must be used in similar cases.In[7],the authors used the reduced differential transform method to solve the nonlinear fractional model of tumor immune.The obtained results show that the solutions generated for the nonlinear model are very accurate and simple.

    The quality of any selected method to solve the linear regression model can be measured by Mean Square Error (MSE)and/or Peak Signal to Noise Ratio (PSNR), these quality parameters can be calculated using Eqs.(1)and(2)[8-12]:

    S:experimental data

    R:calculated data

    The selected method is very accurate when the MSE value is very close to zero, or/and PSNR value is close to infinite[13-16].The process of solving a linear regression model can be implemented as shown in Fig.2 applying the following steps[17]:

    Collect the experimental data of measurements.

    Analyze the collected data and perform some filtering and normalization if needed.

    Select a set of data samples to be used as a training dataset.

    Select a method to solve the prediction problem.

    Check MSE or PSNR,if they are acceptable then save the model solution to be used later in the prediction process,otherwise,increase the training dataset size,or modify some model parameters and retrain the model again.

    The process of predicting the value of non-independent variables depending on a set of values of independent variables is a very important process due to its use in many applications and vital fields,including educational,medical,and industrial.The results of the prediction process are used to build future strategies and plans,and accordingly,the mathematical models used in the prediction process must provide very high accuracy to reduce as much as possible the error ratio between the calculated values and the expected values,and given the importance of the prediction process in decision-making,we will in this research paper by analyzing some mathematical models whose structure remains to some extent fixed even if the number of inputs and the number of outputs is changed.

    All that matters to us in the research paper is the accuracy of the results and obtaining accurately calculated values that are very close to the expected values, and accordingly, it was sufficient to use MSE and/or PSNR.

    2 Solving Regression Model

    The Linear regression model can be solved in a simple way using arithmetic calculations (least square fit method)[18,19],the solution of the model will find the regression coefficients as shown in Fig.2.

    Figure 2:Solving prediction model[14]

    Here, the process of linear regression solution using a simple example is being described; this example will be solved using MATLAB.If we consider the following regression problem shown in Fig.3:

    Figure 3:Linear regression example

    To calculate the regression coefficients,we must apply the following steps:

    1.Generate a regression matrix that includes the independent variables values,the elements of the first column of this matrix must equal to one as shown in Fig.4:

    Figure 4:Regression matrix

    2.Use the backslash operator in MATLAB to divide the regression matrix by the output matrix,for this example we will get the values of the following coefficients,as depicted in Fig.5:

    Figure 5:Coefficient values

    3.Use the regression coefficients to construct the output equation according to Eq.(3):

    4.Now we can apply Eq.(3)to predict the value of y for any given values of x1and x2.

    Fig.6 shows the experimental and predicted outputs for this example, the predicted values are very close to the true values for all the samples.It is expected since the dataset is very small and the least square fit works efficiently with such a dataset.However, this method usually gives high MSE values,especially,when the size of experimental data is big,this will be discussed later in Section 4.

    3 Artificial Neural Networks

    An Artificial neural network(ANN)is a powerful computational model that consists of a set of fully connected neurons organized in one or more layers[20-23].Each neuron is a computational cell that performs two main operations as shown in Fig.7.

    An activation function must be assigned for each layer and each neuron in this layer,the output of the neuron will be calculated depending on the assigned activation function,for linear activation function the neuron output will equal the summation,while for logsig and tansig activation functions the output of the neuron will be calculated as shown in Fig.8.

    Figure 6:Experimental and predicted outputs(example)

    Figure 7:Neuron operation[12]

    Figure 8:Neuron output calculation using logsig(Sigmoid)and tansig(TanH)activation functions

    ANN can be easily used in many applications including solving linear regression models by directly predicting the output values using the input variable values as an input for the ANN.ANN model can be treated as a black box,with selected inputs and the outputs to be predicted.A set of samples from the input data must be selected as training samples,these samples are used to train ANN,the results of training must give an acceptable value of MSE, so selecting the size of training samples and the number of training cycles will affect ANN performance.Each training cycle computes the neuron outputs starting from the ANN input layer,then the final calculated outputs are compared with target outputs by computing MSE between them,if the MSE value is acceptable then the computation will be stopped, otherwise, backpropagation calculations will be performed starting from the output to find the errors and make a necessary weight updating as shown in Figs.9 and 10.

    Figure 9:Neuron outputs calculation

    Figure 10:Error calculations and weights updating

    The process of using ANN as a prediction tool can be summarized in the following steps:

    Step 1:Data preparationfrom the collected data we must select several samples which include the independent variables values and the measured outputs(true labels to be predicted),these values must be organized in a matrix, one column for each sample value, the input data must be normalized to avoid error in the results of logsig or tansig calculations(see Fig.11).

    Step 2:ANN creation and designin this step we must create an ANN architecture by selecting the number of layers and the number of neurons in each layer, an activation function must be assigned to each layer.The goal(acceptable MSE)and the number of training cycles must be determined(see Fig.12).ANN must be initialized and trained using the inputs and the target labels to be predicted.

    After finishing each training cycle MSE will be computed and compared with the goal, if the error is acceptable,we can save the net to be used as a prediction tool,otherwise,we must increase the number of training cycles,or update ANN architecture and retrain it again.

    Figure 11:ANN presentation[16]

    Figure 12:ANN design and testing[16]

    Step 3:ANN testingA set of new samples is selected for testing purposes,the saved ANN model is run and loaded with the test samples.MSE is calculated between the true values for the test samples and the predicted labels by the ANN model.If the computed value of MSE is acceptable,then ANN can be used in the future to predict any values of the outputs given the necessary inputs, otherwise,ANN must be modified and retrained again.

    4 Implementation and Experimental Results

    5000 samples of two independent variables and one dependent variable were selected.The linear regression model was solved using MATLAB,the size of training samples dataset size was varied from 100 to 2000 samples.The regression coefficients were computed for each training set of samples,then the predicted outputs were calculated using the associated regression equations,the expected MSE for each case was calculated,Tab.1 lists the obtained experimental results,MSE values are almost stable regardless of the training set size.

    Now we will use the same samples to train and test ANN,and here two types of ANN architectures are selected,including Feed-Forward ANN(FFANN)and Cascade Feed-Forward ANN(CFFANN),the differences between these two types of ANN are shown in Fig.13[24-26].

    Table 1: Results of linear regression model solving

    Figure 13:CFFANN and FFANN architectures

    The optimal architecture of the selected ANN consists of one input layer with 2 neurons and 1 output layer with 1 neuron.CFFANN with the selected architecture was trained and tested; Tab.2 lists the obtained results(for each training set ANN was run five times and the best case was selected).

    Table 2: Results obtained by CFFANN with 2 neurons input layer and 1 neuron output layer

    Table 3:Results obtained by CFFANN expanded to 10 neurons input layer and 1 neuron output layer

    Table 4:Results obtained by CFFANN expanded to 2 neurons input layer,4 neurons hidden layer and 1 neuron output layer

    In the previous experiments, the selected number of training cycles was equal to 3000 cycles,FFANN with minimal architecture was trained and tested,and Tab.5 lists the obtained results,while Tab.6 shows the required training cycles to achieve the goal for CFFANN with different architectures.

    Table 5: Obtained results using FFANN with 2 neurons input layer and 1 neuron output layer

    Table 6: Required cycles for CFFANN to achieve the goal

    5 Results Analysis

    Solving the regression model using the least square fit method shows very poor results, the calculated MSE between the targets and the calculated outputs using regression coefficients was always high regardless of the training sample size,as depicted in Figs.14 and 15.

    Figure 14:Experimental and predicted outputs using least square fit method

    To overcome the disadvantages of the least square fit method,ANN is introduced as a prediction tool in two different flavors,which are FFANN and CFFANN.Using FFANN architecture increases the quality of the linear regression solving,but it requires many training cycles and training time(as listed in Tab.5),expanding the number of neurons in the input layer or adding an extra hidden layer does not improve the value of MSE(see Fig.16).

    Figure 15:Computed MSE using various training sets

    Figure 16:Calculated MSE using FFANN

    To improve the performance of the ANN model,it is better to use CFFANN.The main advantages of using CFFANN compared to FFANN are that it needs a smaller number of training cycles,and it can achieve the goal of minimal MSE value.Moreover,A small set of training samples can be used to train CFFANN;this ANN can be saved and easily used to predict the output using any given inputs,the output that is generated using CFFANN is much closer to the target with an MSE value closer to zero as shown in Fig.17.

    Figure 17:Calculated MSE using FFANN

    6 Conclusion

    Several methods were implemented to solve the linear regression model,the least square fit method was used to find the regression coefficients, and these coefficients then were used to construct the regression equation,which was used to calculate the predicted output.The least square method showed the poorest results even if the set of training samples size was increased.To overcome the disadvantages of the least square method, various models of ANN were proposed, which include: FFANN and CFFANN.The obtained experimental results showed that CFFANN with any architecture and with various sizes of the training set achieved the best performance by minimizing the number of training cycles required to achieve the minimum MSE value.Thus,the CFFANN model is highly recommended to solve the linear regression model.

    Recommendation:The proposed procedure will still be stable even if we use another sample of data,a simple modification of ANN architecture is required to match the number of inputs and the number of targets to be calculated.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    97精品久久久久久久久久精品| 人人妻人人爽人人添夜夜欢视频| 亚洲国产精品成人久久小说| 中国国产av一级| 成人国产麻豆网| 插逼视频在线观看| 亚洲丝袜综合中文字幕| 飞空精品影院首页| 午夜福利视频精品| 成年人免费黄色播放视频| 少妇人妻精品综合一区二区| 日本猛色少妇xxxxx猛交久久| 免费高清在线观看日韩| 中文字幕制服av| 久久久久久久精品精品| 日韩一本色道免费dvd| 巨乳人妻的诱惑在线观看| 国产精品一区www在线观看| 黑人猛操日本美女一级片| 在线观看免费日韩欧美大片| 国产在线视频一区二区| 新久久久久国产一级毛片| 国产片特级美女逼逼视频| 亚洲综合色惰| 春色校园在线视频观看| 欧美亚洲 丝袜 人妻 在线| 免费少妇av软件| 好男人视频免费观看在线| av一本久久久久| av免费在线看不卡| 一区二区三区精品91| av网站免费在线观看视频| 99国产综合亚洲精品| 精品人妻熟女毛片av久久网站| 国产精品久久久久久精品电影小说| 99热网站在线观看| 成人毛片a级毛片在线播放| h视频一区二区三区| 纯流量卡能插随身wifi吗| av国产久精品久网站免费入址| 一区二区三区精品91| 香蕉丝袜av| 色5月婷婷丁香| 亚洲丝袜综合中文字幕| 久久久国产欧美日韩av| 晚上一个人看的免费电影| 国产精品国产三级国产专区5o| 国产精品久久久久成人av| 美女xxoo啪啪120秒动态图| av又黄又爽大尺度在线免费看| av免费在线看不卡| 亚洲经典国产精华液单| 人人妻人人爽人人添夜夜欢视频| 深夜精品福利| 免费观看av网站的网址| 一级,二级,三级黄色视频| 日本黄色日本黄色录像| 日韩熟女老妇一区二区性免费视频| 女人久久www免费人成看片| 最近中文字幕2019免费版| 国产免费一级a男人的天堂| 国产永久视频网站| 精品视频人人做人人爽| 亚洲五月色婷婷综合| 一级a做视频免费观看| 国产免费现黄频在线看| 一级黄片播放器| 少妇人妻久久综合中文| 两性夫妻黄色片 | 在线观看免费高清a一片| 久久久国产一区二区| 日本黄大片高清| 成人免费观看视频高清| 人人妻人人爽人人添夜夜欢视频| 欧美变态另类bdsm刘玥| 赤兔流量卡办理| 亚洲国产成人一精品久久久| 亚洲国产精品一区三区| 国产黄色免费在线视频| 午夜免费男女啪啪视频观看| 亚洲精品日本国产第一区| 亚洲精品久久久久久婷婷小说| 少妇 在线观看| 国产精品.久久久| 国语对白做爰xxxⅹ性视频网站| 大话2 男鬼变身卡| 成人二区视频| 极品人妻少妇av视频| 国产xxxxx性猛交| 国产日韩一区二区三区精品不卡| 宅男免费午夜| 丝袜美足系列| 午夜福利在线观看免费完整高清在| 亚洲精品日本国产第一区| 街头女战士在线观看网站| 国产一区二区激情短视频 | 亚洲精华国产精华液的使用体验| 免费黄网站久久成人精品| 久久精品久久久久久久性| 成年人午夜在线观看视频| 岛国毛片在线播放| 国产福利在线免费观看视频| 亚洲国产精品999| 乱码一卡2卡4卡精品| 高清在线视频一区二区三区| 中文字幕免费在线视频6| 日韩 亚洲 欧美在线| 91精品伊人久久大香线蕉| 最近中文字幕高清免费大全6| 免费大片18禁| av天堂久久9| 伦理电影免费视频| 亚洲欧洲精品一区二区精品久久久 | 国产精品久久久久久久久免| 国产69精品久久久久777片| 在现免费观看毛片| 国产精品熟女久久久久浪| 日本午夜av视频| 永久网站在线| 亚洲第一av免费看| 午夜老司机福利剧场| 日韩中文字幕视频在线看片| 成人手机av| 欧美变态另类bdsm刘玥| 亚洲精品成人av观看孕妇| 啦啦啦视频在线资源免费观看| 国产精品国产三级国产av玫瑰| 国产精品秋霞免费鲁丝片| 国产成人91sexporn| 菩萨蛮人人尽说江南好唐韦庄| 日日撸夜夜添| 国产精品人妻久久久影院| 国产一区亚洲一区在线观看| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久久久久久久大奶| 亚洲欧美成人精品一区二区| 午夜免费鲁丝| 免费高清在线观看日韩| 久久精品夜色国产| 2018国产大陆天天弄谢| 黄色一级大片看看| 老司机亚洲免费影院| 菩萨蛮人人尽说江南好唐韦庄| 91午夜精品亚洲一区二区三区| 亚洲丝袜综合中文字幕| 精品久久久精品久久久| 人人妻人人爽人人添夜夜欢视频| 97在线人人人人妻| 国产成人欧美| 国产精品99久久99久久久不卡 | videossex国产| 麻豆精品久久久久久蜜桃| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 蜜臀久久99精品久久宅男| 色婷婷av一区二区三区视频| 一级a做视频免费观看| 亚洲精品av麻豆狂野| 日韩 亚洲 欧美在线| 女的被弄到高潮叫床怎么办| 午夜影院在线不卡| 90打野战视频偷拍视频| 中文天堂在线官网| 欧美人与性动交α欧美精品济南到 | 女人被躁到高潮嗷嗷叫费观| 久久久久久久国产电影| 亚洲性久久影院| 人成视频在线观看免费观看| 少妇的逼好多水| 久久久久人妻精品一区果冻| 人人妻人人添人人爽欧美一区卜| 91成人精品电影| 免费看不卡的av| 精品熟女少妇av免费看| 五月伊人婷婷丁香| 国产精品一区二区在线不卡| 黄色毛片三级朝国网站| 日韩欧美精品免费久久| 国内精品宾馆在线| 午夜精品国产一区二区电影| 夜夜爽夜夜爽视频| 人妻一区二区av| 欧美激情 高清一区二区三区| 午夜激情久久久久久久| 国产精品欧美亚洲77777| 精品国产国语对白av| 嫩草影院入口| 午夜福利在线观看免费完整高清在| 边亲边吃奶的免费视频| 搡女人真爽免费视频火全软件| 大片电影免费在线观看免费| 精品久久国产蜜桃| av卡一久久| 亚洲av免费高清在线观看| 丰满饥渴人妻一区二区三| 男女无遮挡免费网站观看| 人妻 亚洲 视频| 亚洲经典国产精华液单| 成人亚洲欧美一区二区av| 免费人妻精品一区二区三区视频| 国产一区二区在线观看日韩| 久久精品国产自在天天线| www.熟女人妻精品国产 | www日本在线高清视频| 蜜桃国产av成人99| 尾随美女入室| 五月开心婷婷网| 美女主播在线视频| 国产男人的电影天堂91| 久久青草综合色| 国产69精品久久久久777片| h视频一区二区三区| 99re6热这里在线精品视频| 纯流量卡能插随身wifi吗| 好男人视频免费观看在线| 99久国产av精品国产电影| 如何舔出高潮| 亚洲精品一区蜜桃| 国产日韩欧美在线精品| 久久久久久久久久成人| 免费av不卡在线播放| 亚洲精品aⅴ在线观看| 精品福利永久在线观看| 成人国语在线视频| 啦啦啦中文免费视频观看日本| 丝袜在线中文字幕| 男人添女人高潮全过程视频| 久久人人爽av亚洲精品天堂| 成人18禁高潮啪啪吃奶动态图| 久久精品久久精品一区二区三区| 五月天丁香电影| 国产深夜福利视频在线观看| 亚洲,欧美精品.| 九草在线视频观看| 男女下面插进去视频免费观看 | 免费av中文字幕在线| 欧美 亚洲 国产 日韩一| 亚洲国产欧美日韩在线播放| 久久精品aⅴ一区二区三区四区 | 全区人妻精品视频| 少妇高潮的动态图| 免费高清在线观看视频在线观看| av片东京热男人的天堂| 久久青草综合色| 最近的中文字幕免费完整| 午夜精品国产一区二区电影| 2021少妇久久久久久久久久久| 久久久久网色| 久久久精品区二区三区| 老女人水多毛片| 午夜福利影视在线免费观看| 青青草视频在线视频观看| 夜夜骑夜夜射夜夜干| av天堂久久9| 亚洲美女视频黄频| 精品久久蜜臀av无| 亚洲av男天堂| 日韩欧美一区视频在线观看| 色5月婷婷丁香| 91国产中文字幕| 日本猛色少妇xxxxx猛交久久| 人人澡人人妻人| 色视频在线一区二区三区| 国产精品久久久久久久久免| 久久久欧美国产精品| 夫妻性生交免费视频一级片| 精品国产一区二区三区久久久樱花| 亚洲天堂av无毛| 精品人妻偷拍中文字幕| 美女中出高潮动态图| 男女下面插进去视频免费观看 | av女优亚洲男人天堂| 黑人巨大精品欧美一区二区蜜桃 | 久久久久视频综合| 国产免费视频播放在线视频| 日韩欧美精品免费久久| 女人被躁到高潮嗷嗷叫费观| kizo精华| 黄色一级大片看看| 精品久久久精品久久久| 丝袜脚勾引网站| 赤兔流量卡办理| 亚洲精品,欧美精品| 中国国产av一级| 亚洲av综合色区一区| 亚洲av欧美aⅴ国产| 国产 一区精品| 国产成人a∨麻豆精品| 日本欧美视频一区| 日本与韩国留学比较| 国产成人精品婷婷| 亚洲综合精品二区| 久热久热在线精品观看| 国产精品女同一区二区软件| 亚洲高清免费不卡视频| 涩涩av久久男人的天堂| 亚洲国产精品一区二区三区在线| 人人妻人人澡人人看| 中文字幕av电影在线播放| 大香蕉97超碰在线| 另类精品久久| 国产精品一区二区在线不卡| 欧美日韩国产mv在线观看视频| 国产无遮挡羞羞视频在线观看| 日本91视频免费播放| 久久 成人 亚洲| av免费观看日本| 国产精品麻豆人妻色哟哟久久| 少妇被粗大的猛进出69影院 | 国产毛片在线视频| 亚洲第一区二区三区不卡| 丝袜人妻中文字幕| 国产成人91sexporn| 久久影院123| 一区二区三区乱码不卡18| 国产精品一二三区在线看| 国产日韩欧美在线精品| 性高湖久久久久久久久免费观看| 波多野结衣一区麻豆| www.熟女人妻精品国产 | a级毛片在线看网站| 色视频在线一区二区三区| 如何舔出高潮| 夫妻性生交免费视频一级片| av片东京热男人的天堂| 国产精品熟女久久久久浪| 考比视频在线观看| 波多野结衣一区麻豆| 精品国产国语对白av| 天天影视国产精品| 日本与韩国留学比较| 99久久综合免费| 亚洲国产精品国产精品| 成年人免费黄色播放视频| 欧美精品一区二区免费开放| 久久人人爽av亚洲精品天堂| 国产爽快片一区二区三区| 九草在线视频观看| 欧美bdsm另类| av国产久精品久网站免费入址| 精品一区二区三卡| 亚洲精品久久久久久婷婷小说| 日韩成人av中文字幕在线观看| 久久精品国产a三级三级三级| 永久免费av网站大全| xxxhd国产人妻xxx| 天天躁夜夜躁狠狠躁躁| 亚洲欧美精品自产自拍| 国产亚洲欧美精品永久| 久久人人爽人人片av| 亚洲精华国产精华液的使用体验| 2022亚洲国产成人精品| 中文字幕最新亚洲高清| 麻豆精品久久久久久蜜桃| 久久久欧美国产精品| 一级,二级,三级黄色视频| 国产成人精品婷婷| 久久午夜福利片| 精品亚洲成a人片在线观看| av.在线天堂| 啦啦啦在线观看免费高清www| 人妻人人澡人人爽人人| 免费黄频网站在线观看国产| 99国产综合亚洲精品| 免费在线观看黄色视频的| 美女xxoo啪啪120秒动态图| 男人爽女人下面视频在线观看| 国产高清三级在线| 成人亚洲精品一区在线观看| 国产熟女午夜一区二区三区| av天堂久久9| av不卡在线播放| 极品少妇高潮喷水抽搐| 国产男女超爽视频在线观看| 精品国产乱码久久久久久小说| 日韩不卡一区二区三区视频在线| 成年动漫av网址| 日本爱情动作片www.在线观看| 国产精品一二三区在线看| 免费黄频网站在线观看国产| 国产精品不卡视频一区二区| 中国美白少妇内射xxxbb| 亚洲激情五月婷婷啪啪| 亚洲国产av新网站| 中文字幕av电影在线播放| 在线 av 中文字幕| 丁香六月天网| 日韩一区二区视频免费看| 插逼视频在线观看| 捣出白浆h1v1| 亚洲欧美色中文字幕在线| 亚洲久久久国产精品| 免费观看av网站的网址| 午夜av观看不卡| 亚洲精品国产色婷婷电影| 美国免费a级毛片| 久久久精品区二区三区| 亚洲三级黄色毛片| 寂寞人妻少妇视频99o| 一区二区av电影网| 搡老乐熟女国产| 日日摸夜夜添夜夜爱| 中文字幕亚洲精品专区| 亚洲国产看品久久| 亚洲人成网站在线观看播放| 日本黄色日本黄色录像| 男人操女人黄网站| 夫妻午夜视频| 亚洲四区av| 久久婷婷青草| 国产成人一区二区在线| 亚洲精品美女久久av网站| 99精国产麻豆久久婷婷| 午夜日本视频在线| 男女午夜视频在线观看 | 亚洲av免费高清在线观看| 香蕉精品网在线| 欧美激情 高清一区二区三区| 成人黄色视频免费在线看| 亚洲欧洲日产国产| 久久97久久精品| 精品一区二区三区视频在线| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精华国产精华液的使用体验| 如何舔出高潮| 精品熟女少妇av免费看| 亚洲综合色网址| 欧美丝袜亚洲另类| 欧美日本中文国产一区发布| 免费播放大片免费观看视频在线观看| 日韩av免费高清视频| 欧美精品亚洲一区二区| 国产在线一区二区三区精| 午夜福利,免费看| av网站免费在线观看视频| 成人影院久久| 欧美成人午夜精品| 国产精品不卡视频一区二区| 午夜av观看不卡| 久久午夜综合久久蜜桃| 内地一区二区视频在线| 免费黄频网站在线观看国产| 免费看光身美女| 亚洲成国产人片在线观看| 中文字幕av电影在线播放| 久久人人97超碰香蕉20202| 高清黄色对白视频在线免费看| 亚洲国产av影院在线观看| 卡戴珊不雅视频在线播放| 午夜福利视频在线观看免费| 亚洲,欧美,日韩| 婷婷色麻豆天堂久久| av又黄又爽大尺度在线免费看| 丝袜脚勾引网站| tube8黄色片| 国产精品一区二区在线观看99| 免费不卡的大黄色大毛片视频在线观看| 午夜福利视频精品| 免费人成在线观看视频色| 熟女电影av网| 国产熟女午夜一区二区三区| 亚洲精品av麻豆狂野| 国产精品国产三级国产专区5o| 精品亚洲成国产av| 日本黄大片高清| 日韩av在线免费看完整版不卡| 亚洲天堂av无毛| 亚洲欧洲日产国产| 午夜福利视频精品| 黄色毛片三级朝国网站| 男人舔女人的私密视频| 精品99又大又爽又粗少妇毛片| 午夜福利,免费看| 一级黄片播放器| a 毛片基地| 亚洲少妇的诱惑av| 亚洲在久久综合| 只有这里有精品99| 一级毛片电影观看| 亚洲四区av| 内地一区二区视频在线| 永久网站在线| 国产精品一区二区在线不卡| av在线老鸭窝| 人人妻人人澡人人爽人人夜夜| 国产国语露脸激情在线看| 中文乱码字字幕精品一区二区三区| 亚洲精品久久成人aⅴ小说| 制服丝袜香蕉在线| 最近最新中文字幕免费大全7| 亚洲综合精品二区| 国产精品人妻久久久久久| 国产永久视频网站| 亚洲内射少妇av| 国产综合精华液| 日日啪夜夜爽| 国产熟女欧美一区二区| 免费久久久久久久精品成人欧美视频 | 亚洲国产av新网站| 日日爽夜夜爽网站| 在现免费观看毛片| 91成人精品电影| 香蕉丝袜av| 国产成人精品婷婷| 亚洲av综合色区一区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久国内精品自在自线图片| av在线app专区| 久久99一区二区三区| 看十八女毛片水多多多| 欧美最新免费一区二区三区| 中国三级夫妇交换| 免费黄网站久久成人精品| 国产成人精品无人区| 午夜激情久久久久久久| 涩涩av久久男人的天堂| 欧美精品人与动牲交sv欧美| 啦啦啦视频在线资源免费观看| 久久国产精品男人的天堂亚洲 | 欧美日韩精品成人综合77777| 丰满饥渴人妻一区二区三| 人体艺术视频欧美日本| 亚洲美女视频黄频| 中文字幕精品免费在线观看视频 | 久久99一区二区三区| 一区二区三区精品91| 一级毛片电影观看| 午夜免费男女啪啪视频观看| 女人精品久久久久毛片| av线在线观看网站| 母亲3免费完整高清在线观看 | 国产xxxxx性猛交| 免费观看av网站的网址| 免费久久久久久久精品成人欧美视频 | 超色免费av| 久久国内精品自在自线图片| 在线观看一区二区三区激情| av播播在线观看一区| 欧美日韩视频高清一区二区三区二| 国产欧美日韩一区二区三区在线| a级毛片在线看网站| 男女高潮啪啪啪动态图| 新久久久久国产一级毛片| 午夜福利在线观看免费完整高清在| 亚洲精品久久午夜乱码| 青春草国产在线视频| 亚洲,欧美,日韩| 亚洲欧美成人综合另类久久久| 嫩草影院入口| 久久精品国产a三级三级三级| 免费高清在线观看视频在线观看| 9色porny在线观看| 高清毛片免费看| 色94色欧美一区二区| av又黄又爽大尺度在线免费看| av国产久精品久网站免费入址| 国产成人一区二区在线| 免费在线观看黄色视频的| 久久ye,这里只有精品| 久久久久久久亚洲中文字幕| 日韩一本色道免费dvd| 成人18禁高潮啪啪吃奶动态图| av在线老鸭窝| 亚洲精品乱码久久久久久按摩| 伦理电影免费视频| 巨乳人妻的诱惑在线观看| 2022亚洲国产成人精品| 欧美性感艳星| 亚洲三级黄色毛片| 亚洲色图 男人天堂 中文字幕 | 熟女电影av网| 一二三四中文在线观看免费高清| 日日啪夜夜爽| 在线看a的网站| 中文字幕精品免费在线观看视频 | 22中文网久久字幕| 日韩 亚洲 欧美在线| 老司机影院毛片| 自拍欧美九色日韩亚洲蝌蚪91| 秋霞在线观看毛片| 国产成人精品在线电影| 九色成人免费人妻av| 一区二区日韩欧美中文字幕 | 久久国产精品大桥未久av| 亚洲精品av麻豆狂野| 精品人妻一区二区三区麻豆| 中文天堂在线官网| 欧美国产精品va在线观看不卡| 欧美激情 高清一区二区三区| 搡老乐熟女国产| 欧美成人午夜免费资源| 国产黄频视频在线观看| 一本大道久久a久久精品| 深夜精品福利| 久久99热这里只频精品6学生| 亚洲少妇的诱惑av| 亚洲av福利一区| 999精品在线视频| 免费观看a级毛片全部| 一区二区三区乱码不卡18| 精品国产一区二区三区久久久樱花| 天堂8中文在线网| 日韩,欧美,国产一区二区三区| 色哟哟·www| 少妇熟女欧美另类| 一级,二级,三级黄色视频| 午夜福利视频精品| 大陆偷拍与自拍| 亚洲一级一片aⅴ在线观看| 日韩欧美一区视频在线观看| 成人漫画全彩无遮挡| 久久精品国产鲁丝片午夜精品| 免费播放大片免费观看视频在线观看| 9热在线视频观看99| 亚洲精品乱码久久久久久按摩| 99久久综合免费|