• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Crop Yield Prediction Using Machine Learning Approaches on a Wide Spectrum

    2022-11-11 10:48:38VinsonJoshuaSelwinMichPriyadharsonRajuKannadasanArfatAhmadKhanWorawatLawanontFaizanAhmedKhanAteeqUrRehmanandMuhammadJunaidAli
    Computers Materials&Continua 2022年9期

    S.Vinson Joshua,A.Selwin Mich Priyadharson,Raju Kannadasan,Arfat Ahmad Khan,Worawat Lawanont,*,Faizan Ahmed Khan,Ateeq Ur Rehman and Muhammad Junaid Ali

    1Department of Electronics and Communication Engineering,Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology,Chennai,600062,India

    2Department of Electrical and Electronics Engineering,Sri Venkateswara College of Engineering,Sriperumbudur,602117,India

    3Suranaree University of Technology,Nakhon Ratchasima,30000,Thailand

    4University of Central Punjab,Lahore,54000,Pakistan

    5Government College University,Lahore,54000,Pakistan

    6Virtual University of Pakistan,Islamabad Campus,45550,Pakistan

    Abstract: The exponential growth of population in developing countries like India should focus on innovative technologies in the Agricultural process to meet the future crisis.One of the vital tasks is the crop yield prediction at its early stage; because it forms one of the most challenging tasks in precision agriculture as it demands a deep understanding of the growth pattern with the highly nonlinear parameters.Environmental parameters like rainfall,temperature, humidity, and management practices like fertilizers, pesticides,irrigation are very dynamic in approach and vary from field to field.In the proposed work,the data were collected from paddy fields of 28 districts in wide spectrum of Tamilnadu over a period of 18 years.The Statistical model Multi Linear Regression was used as a benchmark for crop yield prediction,which yielded an accuracy of 82%owing to its wide ranging input data.Therefore,machine learning models are developed to obtain improved accuracy,namely Back Propagation Neural Network (BPNN), Support Vector Machine, and General Regression Neural Networks with the given data set.Results show that GRNN has greater accuracy of 97% (R2 = 0.97)with a normalized mean square error(NMSE)of 0.03.Hence GRNN can be used for crop yield prediction in diversified geographical fields.

    Keywords:Machine learning;crop yield;prediction;computer simulation and modelling

    1 Introduction

    Agriculture is the firstborn among all occupations as it is the definitive source of living for all humans.India being an agrarian country,50%of the country’s workforce is involved in this occupation and contributes nearly 17%-18% of the GDP [1].This sector significantly impacts the country’s economy due to its contribution to exporting and the wide range of stakeholders involved.Moreover,food safety and security are paramount for a highly populated country like India.The United Nations has set up Zero hunger as one of its Sustainable Development goals to achieve a better and sustainable future[2].All the sweat expended in the farming is to receive a high yield at the determined period to satisfy all its stakeholders.

    Predicting the crop yield at the early stages will prepare the farmers to make sound decisions on the managerial and financial aspects to avoid last moment surprises and losses.Predicting the crop yield is a complex task due to its dependence on manifold factors in an interconnected facet.Fundamentally the yield of any crop depends on the soil features, environmental factors, applied nutrients, and field management [3].Here the crop yield is a dependent variable while the other components are independent and interdependent variables making the yield prediction a complex task.Among these inter-dependent variables,environmental factors are highly arbitrary and vital in deciding crop yield.

    Conventionally,the nutrients,pesticides,and irrigation are consistently applied irrespective of the environmental impacts and the other arbitral changes in the growing process that leads to a poor yield [4].To overcome this issue, we first need to understand better the relationship between the input parameters and their interdependency important to the yield.A mathematical model has to be developed to equate the relationship of the independent variables and their coefficients with the crop yield.Secondly, we need to get time to time accurate status updates of the field to understand the strength of each variable at various growth stages.Third, by making sound decisions to control irrigation,climate change factors and enhance the nutrition of soil that increase the crop quality while ultimately lowering the effects on the environment leading to a high yield[5].

    Formerly, researchers estimate the crop yield using statistical approaches, including the multivariate linear regression (MLR)technique.However, the prediction accuracy was not up to the expectation.Currently,machine learning(ML)approaches are growing as a powerful descriptive and predictive tool in handling complex research problems.Crop yield prediction is one of the challenging problems in precision agriculture,and many models have been proposed in the literature and validated so far.Crop yield prediction at its early stage is a difficult task.The Agricultural yield primarily depends on weather conditions (rain, temperature, etc.)and pesticides.Accurate information about crop yield history is essential for making decisions related to agricultural risk management and future predictions.Many studies have used statistical models such as regression, multivariate regression,and artificial neural networks for crop yield prediction with limited input parameters.The table below illustrates the exiting works relating to crop yield prediction using various methodologies and spectrums(Tab.1).

    Table 1: Literature review

    Table 1:Continued

    Table 1:Continued

    Further, Gu et al.[18] proposed a hybrid model using a back-propagation algorithm combined with a genetic algorithm for forecasting the corn yield for diverse irrigation systems and found the average error to be only 0.71%.Also, Kodimalar et al.[19] investigated a pool of machine learning techniques in the big data computing model and recommended SVM and ANN to be the most appropriate ML models for rice yield prediction.Furthermore, Maya Gopal et al.[7] found the Forward Feature Selection algorithm integrated with random forest algorithm to efficiently select the appropriate input parameters for accurate crop yield prediction.Moreover,Mohsen et al.[20]designed a few more ensemble models considering the complete and partial in-season weather knowledge with the blocked sequential procedure and achieved 9.5% RRMSE by the optimized weighted ensemble and the average ensemble models.Cai et al.[21]compared the regression-based methods with machine learning methods in their performance in Wheat yield prediction in Australia and concluded machine learning methods to have higher performance with R2as 0.75 at two months advance time before the wheat maturity time.Eventually, Ansarifar et al.[22] attempted to select the most tightfitting environmental and management parameters and to find the extent of interaction within them about the crop yield using the interaction regression model and achieved an RRMSE of less than 8%.

    The rest of this paper is organized as follows.In Section 2,the dataset and site descriptions are provided along with each input parameter and the target value.In Section 3, the theory behind the statistical model and the machine learning models are explained.In Section 4,the performance of each model is discussed in detail,and Section 5 concludes the paper.

    2 Data Collection and Site Descriptions

    Paddy is the main crop in Tamil Nadu produced in massive quantity in almost all the districts of this state,and so the rice production data were considered for this research.The data utilized in this paper includes 470 samples collected from the 28 districts of Tamil Nadu(Fig.1)during the Kharif season(June-Sep)for a period of 18 years from 1998 to 2015 over a field size of 1 hectare.Since Kharif is the primary season for rice production in Tamil Nadu,all the other parameter values are limited to this season only.

    Figure 1:Cropping zone for rice in different districts of Tamil Nadu

    Eight input parameters were considered for each of these 28 districts in the dataset viz.Rainfall(mm),Evapotranspiration(mm),Precipitation(mm),Maximum temperature(°C),Minimum temperature(°C),Fertilizers(Nitrogen,Phosphorus,Potash)(Kg)as mentioned in Tab.2.The crop yield in kg/ha is taken as the target variable.The mean values of all the parameters are also described.The data were collected from the agricultural department of Tamilnadu[23],Regional Meteorological Centre-Chennai [24], Tata-Cornell Institute for Agriculture and Nutrition (TCI)[25], and the statistical department of Tamilnadu[26].

    Table 2: Description of the parameters for the selected location

    Table 2:Continued

    3 Methodologies

    3.1 Statistical Analysis

    To estimate the yield, a multiple linear regression (MLR)was applied.MLR is a wellknownmethod used to derive the relationship between a dependent variable and one or more independent variables.The following equation describes the MLR[27]

    whereyis the predicted variable,xi(i=1,2,...,P)are the predictors,b0is called intercept(coordinate at origin),bi(i=1,2,...,P)is the coefficient on the ithpredictor,and e is the error associated with the predictor.

    3.2 Machine Learning Techniques

    3.2.1 Back Propagation Neural Network(BPNN)

    The neural network is a circuit of neurons,and the Backpropagation neural network comes under a supervised learning algorithm for training multilayer perceptron.In this model,eight neurons are in the input layer for eight input parameters.Further, random weights are initiated, and a bias value is added.At the hidden layer, three neurons are passed through the logistic regression activation function along with their weights and then reach the single neuron output layer.The BPNN tries to minimize the error function in weight space using the delta rule or gradient descent.The weights that minimize the error function to a global optimum are considered a solution to the learning problem[28].The architecture of the BPNN model and the input parameters are given in Fig.2 and Tab.3,respectively.The neurons execute summation of all weighted inputs and determine the sum for activation function(f):

    whereHndenotes a hidden layer(subscript n represent a neuron);Olterms a neuron output;Imis the input;wIm,nandwHn,lare the weights of synaptic.

    Figure 2:Architecture of BPNN

    Table 3: Input parameters of BPNN model

    Then the hyperbolic tangential sigmoid function can be derived as follows:

    The linear transfer function can be expressed using the below equation that can be applied to the output layer.

    The normalized equation needs to apply to force the data to be maintained between the defined ranges.

    whereYNrepresent normalized value;xminandxmaxare the minimum and maximum range of data;yminandymaxare-1 and 1,respectively.

    3.2.2 Support Vector Machine(SVM)

    Using Support Vector Machine aims to identify a hyperplane in an N-dimensional space to distinguish the data points.In Support Vector Regression,the margins are chosen to cover maximum data points leaving a few moments considered as slack variables.SVR is a very efficient algorithm because it is determined by the support vectors that cover the margin boundaries.Moreover, the SVR has a very efficient option to incorporate nonlinearity using the kernel trick.In our model,we used Radial basis function as the kernel function.The input parameters used for the model are derived in Tab.4.The data samples are fitted concerning function fitting problems of the SVM;{xi,yi},(i=1,2,...,n),xi∈Rnyi∈Rwith functionf (x) =w×(x+b).According to SVM theory,the fitting problem can be derived as follows[28]:

    Table 4: Input parameters and the features of SVM

    The ra nges ofai,are obtaine d through second optimization problems.Generally, a small portion ofai,should not be zero and named as a support vector.

    Max:

    where, C is a constant that represent a penalty factor and indicates the penalty degree for excessive error;(xixj)is a kernel function.The following are the different types of Kernel functions at present:

    1.Linear kernel:

    2.Polynomial kernel:

    3.Radial primary kernel function:

    4.Two layers neural kernel:

    3.2.3 General Regression Neural Network(GRNN)

    General Regression neural network is an improved technique of RBF neural network which is more suitable for regression problems, particularly for dynamic systems like yield prediction.The architecture of the model is illustrated in Fig.3.In this model,every data will represent a mean to a radial basis neuron.It has four layers:The input layer,hidden layer,summation layer,and the decision layer.GRNN is mathematically expressed as follows:

    Figure 3:Architecture of GRNN

    This summation layer feeds the numerator and denominator parts to the output layer.The regression of y on X can be derived as follows:

    where n represents the number of sample observations;p denotes a vector variable x;σterms the width of each sample.Then the scalar function D2can be derived as follows:

    The output layer consists of one neuron, which determines the output that yields the predicted output Y(x)to an unknown input vector x using the below formula:

    Euclidian distance fromXitoXandis an activation function.

    The activation function is the weight of the input data.At this point, the unknown spread parameter is constant(σ),and it can be adjusted by the training process to an optimum range where the error should be minimized.The training procedure is to determine the optimum ofσ,and it varies between 0.0001 and 1.Therefore, the best practice is to minimize the MSE, and all normalized 100 data sets are divided into training and testing datasets as per the thumb rule.The network’s training is carried out on 70%of data sets,and the remaining data sets were used to test and evaluate the network using as considered for the previous model.

    4 Results and Discussions

    4.1 Multi Linear Regression(MLR)

    MLR model was developed based on the input-independent variables like Rice area, Rice production,rainfall,ET,Precipitation,temperature and fertilizers,and the output-dependent variable,the crop yield.The following equation represented the estimated output based on MLR:

    yield=6152.37+0.157*Rainfall+2.011*ET-1.8*Precipitation-143.03*Maximum Temperature+97.62*Minimum Temperature+0.058*Nitrogen+0.136*Phosphate-0.024*Potash

    The paddy yield prediction of the MLR model is plotted between actual and predicted values in terms of kg/Ha(Fig.4).It is noted that there is an inaccurate characteristic found between the yields.Further,the regression statistics illustrated in Tab.5 show acceptable ranges i.e.,multiple R,R2,and adjusted R and standard deviation are 0.910624,0.8292236,0.825516 388.8849,respectively.

    Figure 4:MLR model

    Considering the non-significance values of observed results from the MLR model, it is essential to demonstrate the machine learning models to precisely predict crop yield.Therefore,the following sections attempt various machine learning approaches for crop yield prediction.

    Table 5: Implementation and outcomes of MLR method

    4.2 Machine Learning Models

    Further, for better visualization, different machine learning models such as back-propagation neural network(BPNN),Support Vector Machine(SVM),and General Regression Neural Network(GRNN)is demonstrated in a virtual platform that generates a graph between actual and predicted yield.The simulated plot for each model is given in Fig.5.

    From the observed images,it is perceived that the best fit of the three models shows better accuracy between actual and predicted yield.Among the three models,such as BPNN,SVM,and GRNN,the prediction curve best fits the actual yield precisely in the GRNN model.It can be ensured using the distributed dots in the plotted images.

    Also,to make the potential yield more practical,conciseness,and readable,the time-series analysis model experiments for all the considered machine learning approaches.These models of representation clearly distinguish the predicted yield and the actual yield and show the validated samples separate from the training samples.The simulated results of each model are illustrated in Fig.6.

    Figure 5:Actual vs.predicted crop yield

    Figure 6:Time series model(actual vs.predicted values)

    As shown in the above figures,the time-series results show the prediction accuracy between actual and predicted values.It is observed that all the models show good accuracy; however, a GRNN model illustrates a more precise prediction among other approaches.It can be further ensured using evaluation metrics as described in the following section.

    4.3 Evaluation Metrics for Machine Learning Models

    The effectiveness of the machine learning models was gauged by using the following seven evaluation metrics.The values obtained by each model in these metrics are shown in Tab.6.

    √The proportion of variance explained by model(R2):In a regression problem,R2denotes the amount of deviation of the dependent variables explained by the independent variable.

    It is considered that theR2value of MLR method as a benchmark,i.e.,0.82 and analyzed the same with the ML models and found theR2as 0.89,0.93,and 0.97 for BPNN,SVM,and GRNN models,respectively.GRNN has the potential to explain 97%of variance from the input parameters towards the yield,thereby offering higher prediction accuracy.

    √Coefficient of variation (CV): It is a valuable tool to compare the results of two models and say which has more variance in relevance to its mean.

    In this work, CVs are observed as 0.08, 0.07, and 0.05 for BPNN, SVM, and GRNN models,respectively.BPNN shows more variance among these ranges,and GRNN has the least variance.

    √N(yùn)ormalized mean square error(NMSE):This metric is considered a practical test for model performance, overviewing the entire data set of samples unbiased towards over or under prediction.

    The NMSE values of BPNN,SVM,and GRNN are found to be 0.11,0.07,and 0.03,respectively.It is noticed that the error rate is very minimum for the GRNN model.

    √Maximum Error of Estimation:It points out the accuracy of the prediction,and it is defined as 50% of the width of a confidence interval.It is also called the margin of error.SVM has the least error estimate of 560.65 as it takes only the margin values (support vectors)under consideration; whereas, GRNN has a maximum error of 1031.02 because of the Euclidean distance of every sample is considered for each estimate.

    √Root Mean Squared Error:It is the measure of how far the data points are spread around the best fit line.Statistically,it is the standard deviation of the residuals.

    The RMSE value for BPNN, SVM, and GRNN is evaluated to be 296.07, 234.65, and 161.47,respectively.This metric shows that the predictions of the GRNN model are very close to the best fit line with an RMSE of 161.47 taken from 470 fields spread over the state of Tamilnadu.

    √Mean Absolute Error:Absolute error measures the magnitude of difference between the actual yield and predicted yield.MAE is the mean of the absolute error.

    From the considered models,MAEs are found to be 215.34,132.82,and 82.74 for BPNN,SVM,and GRNN,respectively.The observed MAE of the GRNN model(82.74)represents a minimum error for the entire group of measured samples compared with other models.

    √Mean Absolute Percentage Error(MAPE):MAPE is calculated by applying the mean function on the MAE values.

    When MAPE value gets lower and further lower,it represents an arrival of a better fit line.Among the models,GRNN has a very low MAPE of 3.11,indicating a better fit compared with other models.

    Table 6: Results of machine learning models

    From the obtained results of the machine learning models through the seven metrics,the following observations were noted: BPNN takes comparatively less time for analysis, but the deviation of the prediction from actual yield was more, and hence it is less efficient.The SVM has relatively more accuracy than BPNN, but it takes more time to train and validate the model.The GRNN analyses have the highest performance in predicting the crop yield in a diverse environment with R2of 0.97.Further,the run time analysis is carried out for all models;it is the time taken for the model to arrive at a better fit line.It is observed that BPNN has a less time of 24 μs,whereas SVM and GRNN take 60 and 4 ms,respectively.

    5 Conclusions

    Crop yield prediction plays a significant role in the agricultural sector that can be performed using statistical and machine learning algorithms.In this work,statistical models namely MLR and machine learning models such as BPNN,SVM,and GRNN models,are demonstrated for wide-area spectrum considering the Indian state of Tamilnadu.Seven different evaluation metrics are derived from warranting the reliability of the observed results.Based on the attained results, the following conclusions are made:

    √Compared with the statistical model (MLR), ML models offered better accuracy between actual and predicted values,and the same was verified using time series analysis.

    √GRNN model had a more significant potential to explain 97% of variance from the input parameters towards the crop yield;offered higher prediction accuracy.

    √BPNN showed more variance(CV),i.e., 0.08, and GRNN has the smallest variance scale of about 0.05.

    √N(yùn)MSE and RMSE were found to be least for the GRNN model, i.e., 0.03 and 161.47,respectively:most minor scale among other ML approaches.

    √MAE and MAPE were observed best range for the GRNN model compared with other models,i.e.,82.74 and 3.11,respectively.

    √The only limitation of the GRNN model was the run time.BPNN took just 24 μs, whereas GRNN took about and 4 ms.

    Consolidating all the inferences,it can be concluded that the GRNN model is more suitable for crop yield prediction for a broad spectrum owing to its superior prediction accuracy.

    Funding Statement:This study was supported by Suranaree University of Technology,Thailand.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    99精品在免费线老司机午夜| 日本免费一区二区三区高清不卡 | 亚洲自拍偷在线| 精品久久久久久久久久免费视频 | 国产av一区二区精品久久| 在线十欧美十亚洲十日本专区| 脱女人内裤的视频| 久久久国产一区二区| 欧美成人性av电影在线观看| 久久天堂一区二区三区四区| 悠悠久久av| 看片在线看免费视频| 久9热在线精品视频| 淫秽高清视频在线观看| 国产精品久久久av美女十八| 欧美日韩瑟瑟在线播放| 国产精品久久电影中文字幕| 这个男人来自地球电影免费观看| 亚洲中文av在线| 日韩精品青青久久久久久| 国产成人免费无遮挡视频| 大码成人一级视频| 亚洲黑人精品在线| 午夜福利一区二区在线看| 欧美亚洲日本最大视频资源| 女人爽到高潮嗷嗷叫在线视频| 久久久国产一区二区| 久久香蕉激情| 一个人免费在线观看的高清视频| 身体一侧抽搐| 成人影院久久| 99re在线观看精品视频| 我的亚洲天堂| 久久天躁狠狠躁夜夜2o2o| 国产又色又爽无遮挡免费看| 757午夜福利合集在线观看| 99香蕉大伊视频| 精品国产乱码久久久久久男人| 999久久久国产精品视频| 亚洲色图综合在线观看| 中文字幕另类日韩欧美亚洲嫩草| 麻豆成人av在线观看| 大码成人一级视频| 午夜视频精品福利| av福利片在线| 91成年电影在线观看| 身体一侧抽搐| 国产99久久九九免费精品| 国产黄色免费在线视频| 涩涩av久久男人的天堂| 色综合婷婷激情| 成人黄色视频免费在线看| 国产精品久久久av美女十八| 无限看片的www在线观看| 两性夫妻黄色片| 啦啦啦 在线观看视频| 国产精品亚洲一级av第二区| 亚洲在线自拍视频| 亚洲激情在线av| 亚洲欧美激情在线| 两个人看的免费小视频| 国产av精品麻豆| 三上悠亚av全集在线观看| 日日爽夜夜爽网站| 欧美日韩乱码在线| 精品久久久久久,| 色播在线永久视频| 黄片大片在线免费观看| 村上凉子中文字幕在线| 一二三四在线观看免费中文在| 国产成人欧美在线观看| 久久久久久久精品吃奶| 无遮挡黄片免费观看| 日韩国内少妇激情av| 免费在线观看亚洲国产| 亚洲中文av在线| 精品久久久久久,| 少妇 在线观看| 狂野欧美激情性xxxx| 久久久精品欧美日韩精品| 国产欧美日韩一区二区三区在线| 人人澡人人妻人| 高清av免费在线| 欧美日韩亚洲综合一区二区三区_| 纯流量卡能插随身wifi吗| 制服人妻中文乱码| 满18在线观看网站| 成人三级黄色视频| 麻豆成人av在线观看| 最新美女视频免费是黄的| 午夜福利在线免费观看网站| 伊人久久大香线蕉亚洲五| 黄色毛片三级朝国网站| 国产精品成人在线| 午夜福利,免费看| 精品一区二区三区视频在线观看免费 | √禁漫天堂资源中文www| 视频在线观看一区二区三区| 日韩欧美三级三区| 一边摸一边抽搐一进一出视频| 日韩有码中文字幕| 亚洲人成77777在线视频| 成人三级黄色视频| 亚洲欧美一区二区三区久久| 国产成人av教育| 免费女性裸体啪啪无遮挡网站| 新久久久久国产一级毛片| 韩国av一区二区三区四区| 免费在线观看日本一区| 99riav亚洲国产免费| 99热只有精品国产| 自线自在国产av| 我的亚洲天堂| 午夜老司机福利片| 国产有黄有色有爽视频| av欧美777| 亚洲精品在线美女| 不卡av一区二区三区| 欧美中文综合在线视频| 日韩av在线大香蕉| 在线观看一区二区三区| 亚洲 欧美 日韩 在线 免费| 久久久久久久久免费视频了| 久99久视频精品免费| 免费在线观看完整版高清| 久久欧美精品欧美久久欧美| 一本综合久久免费| 中文字幕最新亚洲高清| 人人妻人人澡人人看| 国产精华一区二区三区| 亚洲国产精品sss在线观看 | 成人影院久久| 中文字幕另类日韩欧美亚洲嫩草| 久热这里只有精品99| 日韩中文字幕欧美一区二区| 日日夜夜操网爽| 亚洲成a人片在线一区二区| 满18在线观看网站| 中文字幕人妻丝袜一区二区| 午夜免费成人在线视频| 好看av亚洲va欧美ⅴa在| 校园春色视频在线观看| 国产黄色免费在线视频| 一个人免费在线观看的高清视频| 美女高潮喷水抽搐中文字幕| 91九色精品人成在线观看| 女人精品久久久久毛片| 日韩人妻精品一区2区三区| 天堂√8在线中文| 国产亚洲精品久久久久久毛片| 免费日韩欧美在线观看| 一本大道久久a久久精品| 亚洲男人的天堂狠狠| 男人的好看免费观看在线视频 | 久久国产精品男人的天堂亚洲| 中文字幕av电影在线播放| 视频区图区小说| 亚洲一码二码三码区别大吗| 丰满的人妻完整版| 国产色视频综合| 亚洲精品粉嫩美女一区| 亚洲国产毛片av蜜桃av| 精品国产亚洲在线| 淫妇啪啪啪对白视频| 色婷婷av一区二区三区视频| 免费观看人在逋| 国产成年人精品一区二区 | 黄色怎么调成土黄色| 国产精品偷伦视频观看了| 纯流量卡能插随身wifi吗| 国产精品久久久久成人av| 久久久国产一区二区| 女人被狂操c到高潮| 69av精品久久久久久| 欧美激情极品国产一区二区三区| 国产成人系列免费观看| 老司机深夜福利视频在线观看| 色婷婷av一区二区三区视频| 大香蕉久久成人网| 亚洲九九香蕉| 中文字幕人妻丝袜制服| 久久狼人影院| 亚洲精品一区av在线观看| 色婷婷久久久亚洲欧美| av天堂久久9| 50天的宝宝边吃奶边哭怎么回事| 成人18禁在线播放| 国产国语露脸激情在线看| 天天添夜夜摸| 另类亚洲欧美激情| 男女午夜视频在线观看| 国产视频一区二区在线看| 一二三四在线观看免费中文在| 高清欧美精品videossex| 国产精品成人在线| 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品一二三| 欧美日韩精品网址| 免费在线观看日本一区| 婷婷丁香在线五月| 99久久国产精品久久久| 电影成人av| 免费高清视频大片| 18禁国产床啪视频网站| 国产精品综合久久久久久久免费 | 亚洲av第一区精品v没综合| 一a级毛片在线观看| 嫩草影视91久久| 久热爱精品视频在线9| 国产高清videossex| 十分钟在线观看高清视频www| 真人一进一出gif抽搐免费| 老鸭窝网址在线观看| 免费女性裸体啪啪无遮挡网站| 亚洲av成人av| 人人妻人人爽人人添夜夜欢视频| 男女下面进入的视频免费午夜 | 夜夜夜夜夜久久久久| 欧美日韩一级在线毛片| 国产精品成人在线| 欧美日韩视频精品一区| 性色av乱码一区二区三区2| 国产精品免费一区二区三区在线| 久久狼人影院| 午夜a级毛片| 中文字幕精品免费在线观看视频| av网站在线播放免费| 校园春色视频在线观看| 国产成人欧美在线观看| 最近最新免费中文字幕在线| 精品免费久久久久久久清纯| 精品久久久久久久毛片微露脸| 国产精品久久久人人做人人爽| 国产精品香港三级国产av潘金莲| 亚洲熟女毛片儿| 国产视频一区二区在线看| 精品国产超薄肉色丝袜足j| 国产成人欧美| 欧美精品啪啪一区二区三区| 中文字幕av电影在线播放| а√天堂www在线а√下载| 人人妻人人爽人人添夜夜欢视频| 一进一出好大好爽视频| 日韩精品免费视频一区二区三区| 丁香欧美五月| 男女午夜视频在线观看| 国产av在哪里看| 动漫黄色视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 色综合婷婷激情| 热re99久久国产66热| 精品国产乱子伦一区二区三区| www.熟女人妻精品国产| 亚洲男人的天堂狠狠| 亚洲第一欧美日韩一区二区三区| 欧美日韩一级在线毛片| tocl精华| av片东京热男人的天堂| √禁漫天堂资源中文www| 99香蕉大伊视频| 久9热在线精品视频| cao死你这个sao货| 日本免费a在线| 亚洲中文av在线| 亚洲中文av在线| 国产一区二区三区综合在线观看| 国产精品国产av在线观看| 精品一区二区三卡| 999精品在线视频| 黄色 视频免费看| 老熟妇仑乱视频hdxx| a级毛片黄视频| 色婷婷久久久亚洲欧美| 欧美亚洲日本最大视频资源| 亚洲专区国产一区二区| 人妻久久中文字幕网| 日韩一卡2卡3卡4卡2021年| aaaaa片日本免费| 精品欧美一区二区三区在线| 欧美乱妇无乱码| 18禁裸乳无遮挡免费网站照片 | 这个男人来自地球电影免费观看| 久久中文看片网| 男人舔女人下体高潮全视频| 亚洲第一av免费看| 韩国精品一区二区三区| 国产深夜福利视频在线观看| 久久香蕉精品热| 激情视频va一区二区三区| a级毛片黄视频| 午夜91福利影院| 美女国产高潮福利片在线看| 久久青草综合色| 亚洲精品久久午夜乱码| 色婷婷av一区二区三区视频| 一级作爱视频免费观看| 久久精品亚洲av国产电影网| 精品一区二区三卡| 国产精品二区激情视频| 亚洲狠狠婷婷综合久久图片| 国产成人精品在线电影| 久久香蕉国产精品| 国产精品爽爽va在线观看网站 | 在线观看日韩欧美| 制服诱惑二区| av福利片在线| 国产成人一区二区三区免费视频网站| 国产成人影院久久av| 电影成人av| 99在线视频只有这里精品首页| 午夜精品在线福利| 日韩有码中文字幕| 日本wwww免费看| 欧美丝袜亚洲另类 | 在线观看日韩欧美| 成人黄色视频免费在线看| 制服诱惑二区| 首页视频小说图片口味搜索| 日本三级黄在线观看| 欧美中文日本在线观看视频| 午夜免费激情av| 亚洲五月婷婷丁香| e午夜精品久久久久久久| 中出人妻视频一区二区| 久久草成人影院| 成人三级做爰电影| 午夜福利影视在线免费观看| 夜夜夜夜夜久久久久| 亚洲欧美日韩高清在线视频| 久久香蕉精品热| 精品一区二区三卡| 欧美日韩乱码在线| 亚洲免费av在线视频| 国内久久婷婷六月综合欲色啪| 国产亚洲欧美精品永久| 免费av中文字幕在线| 国产精品久久电影中文字幕| 国产精品一区二区免费欧美| 男男h啪啪无遮挡| 亚洲专区字幕在线| 天堂影院成人在线观看| 我的亚洲天堂| 亚洲在线自拍视频| 亚洲专区字幕在线| 免费日韩欧美在线观看| 韩国av一区二区三区四区| 亚洲五月色婷婷综合| 一边摸一边做爽爽视频免费| 一区二区三区激情视频| 精品国产超薄肉色丝袜足j| 午夜精品国产一区二区电影| 亚洲欧美日韩无卡精品| 亚洲片人在线观看| 人人妻人人爽人人添夜夜欢视频| 国产午夜精品久久久久久| 女性生殖器流出的白浆| 亚洲七黄色美女视频| 男人的好看免费观看在线视频 | 香蕉丝袜av| 亚洲精品国产精品久久久不卡| 成人免费观看视频高清| 久久中文字幕一级| 国产成人精品无人区| 午夜老司机福利片| 可以免费在线观看a视频的电影网站| 日本三级黄在线观看| 成人影院久久| 亚洲午夜理论影院| 亚洲欧美精品综合一区二区三区| 男人舔女人的私密视频| 伊人久久大香线蕉亚洲五| 国产av在哪里看| 一进一出好大好爽视频| 99国产精品免费福利视频| 国产一区在线观看成人免费| 女人被躁到高潮嗷嗷叫费观| 久久精品91蜜桃| 又黄又粗又硬又大视频| 中文字幕精品免费在线观看视频| 午夜老司机福利片| 国产亚洲欧美98| 亚洲精品国产一区二区精华液| 午夜免费鲁丝| 韩国av一区二区三区四区| 午夜福利影视在线免费观看| 热re99久久精品国产66热6| 国产av在哪里看| 热re99久久国产66热| 亚洲 欧美 日韩 在线 免费| 日韩成人在线观看一区二区三区| 高清欧美精品videossex| 视频区图区小说| 欧美另类亚洲清纯唯美| 国产亚洲欧美98| 大香蕉久久成人网| 成人国语在线视频| 亚洲在线自拍视频| 欧美日韩瑟瑟在线播放| 亚洲av片天天在线观看| 美国免费a级毛片| 亚洲欧美激情在线| 亚洲伊人色综图| 亚洲欧美日韩无卡精品| 99久久久亚洲精品蜜臀av| 国产精品99久久99久久久不卡| 精品久久久精品久久久| 欧美日韩黄片免| 午夜免费观看网址| 村上凉子中文字幕在线| 午夜福利,免费看| 夜夜爽天天搞| 欧美色视频一区免费| av网站在线播放免费| 精品无人区乱码1区二区| 国产精品亚洲av一区麻豆| 国产高清videossex| 欧美日韩av久久| 日韩欧美国产一区二区入口| av在线播放免费不卡| 欧美激情极品国产一区二区三区| 国产一区二区三区综合在线观看| 亚洲av电影在线进入| 男人的好看免费观看在线视频 | 一进一出抽搐动态| 精品一区二区三区四区五区乱码| 免费日韩欧美在线观看| 一级黄色大片毛片| 久热爱精品视频在线9| 国产成人系列免费观看| 免费高清在线观看日韩| 午夜免费激情av| 精品欧美一区二区三区在线| 在线观看免费午夜福利视频| 9色porny在线观看| 欧美性长视频在线观看| 久久人人爽av亚洲精品天堂| 老司机亚洲免费影院| 亚洲五月色婷婷综合| 97碰自拍视频| 亚洲第一av免费看| 久久香蕉国产精品| 欧美激情高清一区二区三区| 色综合站精品国产| 久久久国产一区二区| 国产精品久久电影中文字幕| 欧美人与性动交α欧美软件| 国产精品久久久av美女十八| 久久久久九九精品影院| 国产av一区在线观看免费| 色婷婷久久久亚洲欧美| a级片在线免费高清观看视频| 啪啪无遮挡十八禁网站| 精品久久久久久久久久免费视频 | 欧美激情高清一区二区三区| 欧美日韩亚洲综合一区二区三区_| 国产麻豆69| 精品国产国语对白av| 国产精品国产av在线观看| 国产欧美日韩一区二区精品| 久久精品国产综合久久久| 新久久久久国产一级毛片| 亚洲人成77777在线视频| 色尼玛亚洲综合影院| 九色亚洲精品在线播放| 欧美老熟妇乱子伦牲交| 国产亚洲欧美98| 色婷婷久久久亚洲欧美| 99在线人妻在线中文字幕| 热99re8久久精品国产| 国产成人免费无遮挡视频| 国产精品久久久av美女十八| 中文字幕人妻丝袜制服| 国产aⅴ精品一区二区三区波| 久久香蕉精品热| 99精品欧美一区二区三区四区| 色婷婷av一区二区三区视频| 中文字幕精品免费在线观看视频| 91麻豆精品激情在线观看国产 | 中出人妻视频一区二区| 久久久久久免费高清国产稀缺| 国产一区二区三区综合在线观看| 亚洲免费av在线视频| 超碰成人久久| 亚洲第一av免费看| 如日韩欧美国产精品一区二区三区| 久久人人爽av亚洲精品天堂| 女人被躁到高潮嗷嗷叫费观| 久久精品国产亚洲av高清一级| 久久久久久亚洲精品国产蜜桃av| 精品少妇一区二区三区视频日本电影| 国产成人系列免费观看| 亚洲精品国产精品久久久不卡| 一进一出抽搐动态| 久久精品亚洲熟妇少妇任你| 在线观看一区二区三区| 亚洲av熟女| 国产精品 欧美亚洲| 97碰自拍视频| 十八禁人妻一区二区| 国产精品野战在线观看 | 性色av乱码一区二区三区2| 在线av久久热| 老熟妇仑乱视频hdxx| 视频区欧美日本亚洲| 久久人妻av系列| 欧美日韩亚洲高清精品| 色精品久久人妻99蜜桃| 我的亚洲天堂| 久久亚洲精品不卡| 一级作爱视频免费观看| 亚洲欧美激情在线| 亚洲av熟女| 亚洲av片天天在线观看| 中文字幕人妻丝袜一区二区| www.精华液| 美女大奶头视频| 18禁黄网站禁片午夜丰满| 老熟妇乱子伦视频在线观看| 亚洲性夜色夜夜综合| 欧美久久黑人一区二区| 国产深夜福利视频在线观看| 日韩视频一区二区在线观看| 一边摸一边抽搐一进一小说| 最近最新中文字幕大全电影3 | 亚洲国产精品合色在线| 国产成人系列免费观看| 99精品久久久久人妻精品| 不卡av一区二区三区| 国产精品日韩av在线免费观看 | 叶爱在线成人免费视频播放| 法律面前人人平等表现在哪些方面| 亚洲色图av天堂| 成年人免费黄色播放视频| 18禁黄网站禁片午夜丰满| 在线观看舔阴道视频| www.999成人在线观看| www国产在线视频色| 777久久人妻少妇嫩草av网站| 露出奶头的视频| 黄色丝袜av网址大全| 欧美在线黄色| 99热国产这里只有精品6| 亚洲一区二区三区不卡视频| 在线天堂中文资源库| 国产单亲对白刺激| 亚洲熟女毛片儿| 免费搜索国产男女视频| 亚洲精品av麻豆狂野| 国产精品免费一区二区三区在线| 成人黄色视频免费在线看| 黑人操中国人逼视频| 国产精品国产av在线观看| 欧美乱妇无乱码| 久久香蕉精品热| 免费高清在线观看日韩| 男女高潮啪啪啪动态图| 韩国精品一区二区三区| 18禁美女被吸乳视频| 天堂影院成人在线观看| 成人国产一区最新在线观看| 欧美乱妇无乱码| 久久久久久久久中文| 在线视频色国产色| 久久人妻熟女aⅴ| 亚洲情色 制服丝袜| 天堂俺去俺来也www色官网| 国产有黄有色有爽视频| 国产片内射在线| 自线自在国产av| 人成视频在线观看免费观看| 国产成人免费无遮挡视频| 深夜精品福利| 国产亚洲欧美精品永久| 国产成人欧美| 人成视频在线观看免费观看| 可以在线观看毛片的网站| 精品人妻1区二区| 成年人黄色毛片网站| 成人永久免费在线观看视频| 老汉色av国产亚洲站长工具| www国产在线视频色| 亚洲精品国产区一区二| 国产亚洲精品久久久久5区| 成人影院久久| 久久欧美精品欧美久久欧美| 99国产精品一区二区蜜桃av| 日韩免费高清中文字幕av| 88av欧美| 国产精品 国内视频| 91精品国产国语对白视频| 亚洲国产毛片av蜜桃av| 欧美人与性动交α欧美精品济南到| 亚洲av五月六月丁香网| 国产伦人伦偷精品视频| 人人澡人人妻人| 亚洲国产看品久久| 69精品国产乱码久久久| 欧美日韩瑟瑟在线播放| 51午夜福利影视在线观看| 国产99久久九九免费精品| 一区福利在线观看| 男人操女人黄网站| 久久国产精品影院| 久久天躁狠狠躁夜夜2o2o| 一级毛片高清免费大全| 久久精品国产亚洲av香蕉五月| 在线av久久热| 女人被躁到高潮嗷嗷叫费观| 久久午夜亚洲精品久久| 色老头精品视频在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲欧洲精品一区二区精品久久久| 男女做爰动态图高潮gif福利片 | 国产精品免费一区二区三区在线| 亚洲成国产人片在线观看|