• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Adaptive Real-Time Third Order Sliding Mode Control for Nonlinear Systems

    2022-11-11 10:48:30AhmedElmogyAmanySarhanandWaelElawady
    Computers Materials&Continua 2022年9期

    Ahmed M.Elmogy,Amany Sarhan and Wael M.Elawady

    1Computer Engineering Department,Prince Sattam Bin Abdelaziz University,Alkharj,24567,KSA

    2Department of Computers and Control Engineering,Tanta University,Tanta,13457,Egypt

    Abstract: As most real world systems are significantly nonlinear in nature,developing robust controllers have attracted many researchers for decades.Robust controllers are the controllers that are able to cope with the inherent uncertainties of the nonlinear systems.Many control methods have been developed for this purpose.Sliding mode control (SMC)is one of the most commonly used methods in developing robust controllers.This paper presents a higher order SMC(HOSMC)approach to mitigate the chattering problem of the traditional SMC techniques.The developed approach combines a third order SMC with an adaptive PID (proportional, integral, derivative)sliding surface to overcome the drawbacks of using PID controller alone.Moreover,the presented approach is capable of adaptively tuning the controller parameters online to best fit the real time applications.The Lyapunov theory is used to validate the stability of the presented approach and its feasibility is tested through a comparison with other conventional SMC approaches.

    Keywords:SMC;uncertain nonlinear systems;PID;lyapunov theory

    1 Introduction

    Nonlinear control covers a wide range of systems that exist in many real world applications.These applications include robot control[1],satellite control[2],and spacecraft control[3].These nonlinear systems are often modeled by nonlinear differential equations.Several rigorous techniques have been developed to handle these systems.Examples of these techniques are feedback linearization control(FLC)[4],back-stepping control(BSC)[5],intelligent control(e.g.,neural networks,and fuzzy logic)[6,7], adaptive control [6,7], and SMC [1,8].Each technique can be applied to certain systems and characteristics.Thus,there is no general solution for all types of nonlinear control systems.

    Generally, feedback linearization is the one of the most attractive techniques used to tackle nonlinear systems as it is based on transforming nonlinear systems into simpler forms.However,this technique does not provide efficient solutions for significant nonlinear systems which have high nonlinearities and uncertainties.Backstepping control (BSC)is also one of the most popular techniques used to control higher order systems.Nevertheless, the main disadvantage of BSC is the requirement of exact system model which cannot be guaranteed for nonlinear systems with inherent uncertainties.Thus,adaptive control is combined with BSC to mitigate the requirement of exact model.On the other hand,SMC shows great capabilities of dealing with nonlinearity and uncertainties[9-11].The more the degree of nonlinearity and uncertainty,the more need to design robust controllers for control systems.

    Tackling uncertain nonlinear systems is very challenging especially for real time control systems[12].Uncertainties occur mainly due to un-modeled high frequency dynamics,and neglected nonlinearities[13].These uncertainties usually affect the system performance,and stability[14].Accordingly,many researchers have been working towards developing robust controllers that are able to mitigate these uncertainties[15-17].Among many developed solutions,SMC is one of the most popular and effective solutions that can cope with significant uncertainties, and parameters’variations [9-11].Moreover,SMC technique shows a strong capability to compensate for external perturbations.

    As SMC techniques are very efficient in dealing with significant uncertainties,and nonlinearities,they have been widely used for decades especially for nonlinear control applications [18,19].The first order SMC is the simplest structure used in the literature to cope with uncertainties and external disturbances[20].Although,the conventional(first order)SMC presents a good solution for uncertainties compensation in the control system design process, it is suitable only for systems with output of degree of one.Furthermore,it suffers from the chattering problem which sometimes degrades the system performance,and affects the system stability.Thus,many attempts have been seen to replace the conventional SMC with higher order SMC(HOSMC)techniques that are suitable for higher order systems and able to attenuate the chattering occurred with conventional SMC.Super-twisting SMC(STSMC)is one popular extension of the conventional SMC [21].The STSMC is a second order structure of SMC that is able to reduce the oscillations that occurs around the sliding surface during the switching control phase of the SMC.The main power of STSMC is that it does not require the implementation of the derivative of the sliding variable which is the main challenge of other HOSMC techniques[22-24].Nevertheless,STSMC design process requires the accurate setting of many control gains as it affects the performance and stability of the control system.This is a very challenging process.Accordingly,many STSMC techniques have been developed to tackle this challenge such as adaptive STSMC[25],adaptive dual layer STSMC[26],and integral STSMC[27].

    Ensuing in the same path,this paper presents a new HOSMC approach that is able to overcome the chattering problem occurred in the conventional SMC.The developed approach uses a third order SMC combined with an adaptive PID sliding surface.This combined approach overcomes the drawbacks of using PID controller alone.Furthermore, the presented approach is capable of adaptively tuning the controller parameters online which is perfectly fit with real time applications.By the combination of adaptive control with the SMC,the developed approach allows of the relaxation of the boundness condition of uncertainty level.The proposed approach shows a better performance than other SMC approaches in terms of chattering attenuation, and tracking error.The stability of the developed control approach is validated through Lyapunov theory.The main contributions of this work can be summarized as follows:

    [1] Presenting a real time third order SMC approach for nonlinear systems able to mitigate the chattering problem associated with other conventional SMC approaches.The proposed approach is capable of achieving excellent performance even with the existence of all types of uncertainties and disturbances.The proposed approach is capable of estimating uncertainties and thus no worries about the upper bound problem associated with working with uncertainties.

    [2] An adaptive PID tuning algorithm is presented to reach the optimal estimation of PID controller parameters which are adaptively changing during the online control process.

    [3] A quadratic Lyapunov function is suggested and used to validate the proposed approach stability considering the estimated uncertainties.The developed control law guarantees that the system will reach the sliding surface in a finite time.

    The rest of this paper is organized as follows.Section 2 presents the proposed adaptive third order SMC approach.Some simulations are introduced in Section 3.Conclusions and some future directions are drawn in Section 4.

    2 The Proposed Approach

    The proposed Adaptive Real Time PID-based Third Order SMC(APID-TOSMC)is vindicated in this section.

    A controlled system can be modeled as[19,28]:

    wherer(t)is the control input of the system,is the system state variables,andx(t) is the measured response of the system.F(z(t),t) andG(z(t),t) are uncertain nonlinear functions.The unknown uncertainties are represented byγ(t) with an upper bound given byB≤|γ(t)|.The dynamical model of the controlled system(Eq.(1))is modified to include uncertainties as follows:

    whereFn(z(t),t) andGn(z(t),t) are the nominal values ofF(z(t),t) andG(z(t),t), respectively.The parameter variations(uncertainties)are represented byΔF(z(t),t)andΔG(z(t),t).

    The lumped uncertainty is defined as:

    The switching surface for the APID-TOSMC can be demarcated as:

    The addressed problem in this paper is to design an adaptive online Tuned PID-based APIDTOSMC for nonlinear systems such that the system responsex(t)strongly follows a reference desired signalxd(t).

    The control effort of APID-TOSMC is designed as:

    wherereq(t)andrs(t)are the equivalent and reaching control efforts respectively.

    The third derivative ofs(t)can be deduced from Eq.(4):

    The equivalent control effortis calculated by setting(t)=0,and(μ(t)=0):

    To prove the system stability,a Lyapunov function is chosen as:

    wherek1,k2are constants(design parameters).

    The derivative of Lyapunov function(t)is:

    Using Eqs.(8)and(12)becomes:

    The switching control effortrs(t)can be chosen as:

    where the switching control gaink3is a design parameter andεis a very small positive number.

    Substituting from Eq.(16)into Eq.(15)and eliminating similar terms yields:

    The switching gaink3must be set asfor global stability.The schematic diagram of the adopted APID-TOSMC controller is shown in Fig.1.

    3 Simulations and Discussions

    With the aim to assess the performance of (APID-TOSMC)approach, some simulations are done using Matlab software considering the stabilization of the inverted pendulum system.Different types of uncertainties are considered.Two problems are assessed;setpoint control and path following control.

    3.1 Setpoint Control

    The developed APID-TOSMC approach in this paper is analyzed in comparison with the second order SMC approach in [28] and the adaptive third order SMC (ATOSMC)approach in [29].The simulation parameters and conditions are set exactly as in[28]and the algorithm in[29]is implemented with same parameters and conditions.The desired angular position is set as:θd= 0 with initial conditionsIn order to examine the robustness of the controller,two cases of uncertainties are considered: the external perturbationsand the abrupt perturbations (a 1000Nforce is abruptly applied at the pole att= 2.5 sec).The proposed APID-TOSMC parameters are set as:β2= 0.005,k3= 50,k1= 1,β1= 0.008,γp= 1.1,γi= 0.06,γd= 0.036 andk2= 1.The angular position(θ) of the proposed APID-TOSMC approach compared with the approaches in[28,29]is shown in Fig.2.Furthermore,Fig.3 shows the angular position error of the three approaches.

    Figure 1:Schematic diagram of the adopted APID-TOSMC controller

    Figure 2:Angular position(θ)response

    Figs.2 and 3 illustrate that the APID-TOSMC controller can achieve favorable and satisfied trajectory tracking control performance.Additionally,the proposed APID-TOSMC control methodology is able to perfectly control the inverted pendulum.The results show the developed controller is very robust even in the existence of external perturbations and uncertainties compared to other approaches.

    Figure 3:Angular position error response

    Figs.4-6 show the adaptive PID sliding surface values for the set point tracking control of APIDTOSMC controller.

    Figure 4:The adaptive value of the proportional parameter of APID-TOSMC for set point control

    To more evaluate the developed approach, three parameters are used; integral absolute error(IAE),integral time absolute error(ITAE),and integral of squared error.Tab.1 shows the obtained results of our approach is excellent compared with the approach proposed in [28] and has a better performance than the approach in[29].

    Also, Fig.7 shows a comparison between the control signal of the presented APID-TOSMC approach and the approach proposed in [28,29].As shown, the control signal for our proposed approach has less chattering than the other approaches.

    Figure 5:The adaptive value of the integrator parameter of APID-TOSMC for set point control

    Figure 6:The adaptive value of the differentiator parameter of APID-TOSMC for set point control

    Table 1: Performance comparison for set point control problem

    3.2 Path Following Control

    The second case of control to consider in this section is the trajectory tracking control of the inverted pendulum.Again,the simulation parameters and conditions are set exactly as in[28]and the algorithm in[29]is implemented with same parameters and conditions.The external perturbation is set to:ρ(t) =(0.2 sin(0.25t)) with initial conditionsY0= [,0] [27].The proposed APID-TOSMC parameters are set as:β2= 0.005,β2= 0.005,k3= 50,k1= 1,β1= 0.008,γp= 1.1,γi= 0.06,γd= 0.036 andk2= 1.To test the robustness of the presented APID-TOSMC approach, a 1000 N force is abruptly applied at the pole att= 5 sec.The control and error responses are illustrated in Figs.8 and 9 respectively.

    Figure 7:The total control signal for set point control

    Figure 8:Angular position(θ)

    Figure 9:Angular position error

    Figs.10-12 show how the PID sliding surface values are adaptively changing over time.

    Figure 10: The adaptive value of the proportional parameter of APID-TOSMC for path following control

    Figure 11:The adaptive value of the integrator parameter of APID-TOSMC for path following control

    Figure 12: The adaptive value of the differentiator parameter of APID-TOSMC for path following control

    Fig.13 demonstrates the control signals of the APID-SOSMC and APID-TOSMC approaches.

    Figure 13:The control signal for path following control

    It has been shown in this section that the developed controller(APID-TOSMC)attained better path following response than the controllers in[28,29].It is also obvious that the proposed controller reduces the chattering and thus yields favorable path following response.

    Performance comparison for path following control problem is shown in Tab.2.As shown, the proposed controller achieves better performance compared with the controllers proposed in[28,29]in the case of path following control.

    Table 2: Performance comparison for path following control problem

    4 Conclusions

    An adaptive PID-based higher order SMC approach for nonlinear systems is presented in this paper.The proposed approach integrates a third order SMC with PID controller with a view of combining their advantages and overcoming their drawbacks.The proposed approach is adaptively tuning the PID parameters in the real time to be used properly for any real time applications.By combining the adaptive control with the SMC,the developed approach allows for the relaxation of the boundness condition of uncertainty level in conventional SMC.The robustness and efficiency of the developed approach is validated mathematically and through simulations.The developed approach achieves lower chattering and error that other conventional SMC approaches.Future work may consider working toward finding a generalized SMC approach to able to vary the order of the SMC to any value as needed.

    Acknowledgement:The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the Project Number(IF-PSAU-2021/01/17796).

    Funding Statement:This work is funded by the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia through the project number(IF-PSAU-2021/01/17796).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲午夜精品一区,二区,三区| 国产成人免费观看mmmm| 欧美精品高潮呻吟av久久| 曰老女人黄片| 日日摸夜夜添夜夜添小说| 十分钟在线观看高清视频www| 久9热在线精品视频| 一级,二级,三级黄色视频| 久久中文字幕人妻熟女| 日韩 欧美 亚洲 中文字幕| 亚洲三区欧美一区| 在线 av 中文字幕| 中文字幕高清在线视频| 最新在线观看一区二区三区| 这个男人来自地球电影免费观看| 女人久久www免费人成看片| av线在线观看网站| 国产亚洲av高清不卡| 成人永久免费在线观看视频 | 中文字幕最新亚洲高清| 精品午夜福利视频在线观看一区 | 亚洲国产欧美在线一区| 免费在线观看黄色视频的| 一夜夜www| 国产在线免费精品| 国产不卡av网站在线观看| 日韩制服丝袜自拍偷拍| 日韩中文字幕欧美一区二区| av不卡在线播放| 久久久久精品国产欧美久久久| 国产欧美日韩一区二区三| 丝袜美足系列| 18禁裸乳无遮挡动漫免费视频| 午夜激情av网站| 男女下面插进去视频免费观看| 欧美久久黑人一区二区| 久久中文字幕一级| 三上悠亚av全集在线观看| 国产片内射在线| 久久久精品国产亚洲av高清涩受| 啪啪无遮挡十八禁网站| 大陆偷拍与自拍| 精品乱码久久久久久99久播| av欧美777| 国产亚洲精品第一综合不卡| 后天国语完整版免费观看| 国产精品成人在线| 美女主播在线视频| 菩萨蛮人人尽说江南好唐韦庄| 国产精品九九99| 日韩成人在线观看一区二区三区| 久久久国产欧美日韩av| 午夜福利一区二区在线看| 欧美激情 高清一区二区三区| 日韩精品免费视频一区二区三区| 99精品欧美一区二区三区四区| 精品久久久久久久毛片微露脸| 亚洲av日韩在线播放| 欧美成狂野欧美在线观看| 日本wwww免费看| 可以免费在线观看a视频的电影网站| 成人18禁在线播放| 国产极品粉嫩免费观看在线| 亚洲成人免费av在线播放| 精品卡一卡二卡四卡免费| 最新美女视频免费是黄的| 久久ye,这里只有精品| 操美女的视频在线观看| 亚洲熟女精品中文字幕| 纵有疾风起免费观看全集完整版| 亚洲九九香蕉| 人人妻人人澡人人爽人人夜夜| kizo精华| 国产淫语在线视频| 国产xxxxx性猛交| 自拍欧美九色日韩亚洲蝌蚪91| 这个男人来自地球电影免费观看| 一区二区三区精品91| 国产精品美女特级片免费视频播放器 | 天天躁日日躁夜夜躁夜夜| 亚洲情色 制服丝袜| 精品第一国产精品| 国产单亲对白刺激| 一本一本久久a久久精品综合妖精| 欧美精品高潮呻吟av久久| 女人高潮潮喷娇喘18禁视频| 乱人伦中国视频| 久久精品国产a三级三级三级| 久久久久久人人人人人| 国产成人欧美| 18禁观看日本| 亚洲专区中文字幕在线| 欧美+亚洲+日韩+国产| 天堂俺去俺来也www色官网| 在线观看66精品国产| 免费日韩欧美在线观看| 午夜福利影视在线免费观看| 成人18禁高潮啪啪吃奶动态图| 成人国语在线视频| 亚洲熟女精品中文字幕| 国产精品偷伦视频观看了| 国产亚洲精品久久久久5区| 午夜福利乱码中文字幕| 十八禁高潮呻吟视频| 婷婷成人精品国产| 久久国产精品影院| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品av麻豆狂野| 欧美另类亚洲清纯唯美| 无人区码免费观看不卡 | 国产精品成人在线| 最近最新免费中文字幕在线| 夜夜爽天天搞| 久久精品国产亚洲av高清一级| 国产成人系列免费观看| 亚洲美女黄片视频| 亚洲成人免费av在线播放| 极品少妇高潮喷水抽搐| 国产日韩欧美亚洲二区| 一个人免费看片子| 久久狼人影院| av在线播放免费不卡| 在线永久观看黄色视频| 亚洲国产看品久久| 久久婷婷成人综合色麻豆| 国产精品一区二区精品视频观看| 国产无遮挡羞羞视频在线观看| 91字幕亚洲| 两人在一起打扑克的视频| 国产亚洲欧美精品永久| 欧美另类亚洲清纯唯美| 电影成人av| 菩萨蛮人人尽说江南好唐韦庄| 9色porny在线观看| 亚洲精品一二三| 国内毛片毛片毛片毛片毛片| 免费观看a级毛片全部| 免费av中文字幕在线| 无限看片的www在线观看| 亚洲 国产 在线| 老汉色av国产亚洲站长工具| 亚洲av欧美aⅴ国产| 久久久久国产一级毛片高清牌| 亚洲精品av麻豆狂野| 丝袜美足系列| 757午夜福利合集在线观看| 飞空精品影院首页| 国产xxxxx性猛交| 99精国产麻豆久久婷婷| 亚洲天堂av无毛| 国产精品久久电影中文字幕 | 制服诱惑二区| 亚洲国产av影院在线观看| 搡老乐熟女国产| 五月天丁香电影| 十八禁高潮呻吟视频| 亚洲精品美女久久av网站| 汤姆久久久久久久影院中文字幕| 国产成人免费观看mmmm| 国产成人免费无遮挡视频| 欧美人与性动交α欧美软件| 国产视频一区二区在线看| 十八禁高潮呻吟视频| 欧美黄色片欧美黄色片| 久久亚洲真实| 两性夫妻黄色片| 亚洲免费av在线视频| 免费av中文字幕在线| 在线观看舔阴道视频| 欧美性长视频在线观看| 亚洲成人免费电影在线观看| 亚洲成人免费av在线播放| 蜜桃在线观看..| 精品国产一区二区三区久久久樱花| 电影成人av| 久久 成人 亚洲| 丰满少妇做爰视频| 亚洲三区欧美一区| 人人妻,人人澡人人爽秒播| 日本欧美视频一区| 精品一品国产午夜福利视频| 在线天堂中文资源库| 色精品久久人妻99蜜桃| 日韩一卡2卡3卡4卡2021年| 91麻豆av在线| av国产精品久久久久影院| 国产精品一区二区精品视频观看| 乱人伦中国视频| 国产欧美日韩一区二区三| 国内毛片毛片毛片毛片毛片| 国产色视频综合| 99久久精品国产亚洲精品| 国产一区二区 视频在线| 国产成+人综合+亚洲专区| 国产精品亚洲一级av第二区| 涩涩av久久男人的天堂| 一本一本久久a久久精品综合妖精| 女人久久www免费人成看片| 最新的欧美精品一区二区| 日本撒尿小便嘘嘘汇集6| 91麻豆av在线| av国产精品久久久久影院| 精品福利观看| 亚洲成人免费av在线播放| 日韩欧美一区二区三区在线观看 | 国产激情久久老熟女| 国产激情久久老熟女| 午夜福利视频精品| 亚洲成人免费电影在线观看| 老熟妇仑乱视频hdxx| 久久久欧美国产精品| 韩国精品一区二区三区| 日韩视频在线欧美| 欧美黑人精品巨大| 国产成人精品在线电影| 欧美日韩成人在线一区二区| 精品国产乱码久久久久久小说| 亚洲欧洲精品一区二区精品久久久| 成人精品一区二区免费| 日本黄色视频三级网站网址 | 搡老岳熟女国产| 视频区欧美日本亚洲| 国产麻豆69| 日日摸夜夜添夜夜添小说| 国产欧美日韩一区二区三区在线| 欧美午夜高清在线| 91国产中文字幕| 正在播放国产对白刺激| 在线观看舔阴道视频| 乱人伦中国视频| 女性生殖器流出的白浆| 一区在线观看完整版| 一级毛片电影观看| 国产av国产精品国产| e午夜精品久久久久久久| 久久热在线av| 亚洲午夜精品一区,二区,三区| 久久国产精品男人的天堂亚洲| 精品免费久久久久久久清纯 | 在线观看免费视频网站a站| 久久人妻熟女aⅴ| 首页视频小说图片口味搜索| 亚洲成人手机| 亚洲国产成人一精品久久久| 黑丝袜美女国产一区| 中文字幕人妻熟女乱码| 欧美乱码精品一区二区三区| 国产精品久久久av美女十八| 满18在线观看网站| 国产男女内射视频| 国产日韩欧美视频二区| 99在线人妻在线中文字幕 | 两性夫妻黄色片| 国产99久久九九免费精品| 亚洲中文字幕日韩| 日韩 欧美 亚洲 中文字幕| 亚洲黑人精品在线| 成人18禁高潮啪啪吃奶动态图| 久久婷婷成人综合色麻豆| 美女高潮到喷水免费观看| 男人操女人黄网站| 午夜福利视频精品| 欧美+亚洲+日韩+国产| 美女高潮到喷水免费观看| 丝袜人妻中文字幕| 伦理电影免费视频| 亚洲av成人一区二区三| 每晚都被弄得嗷嗷叫到高潮| 国产精品久久久av美女十八| 久久久久久久精品吃奶| 精品久久蜜臀av无| 无限看片的www在线观看| 搡老岳熟女国产| 天堂中文最新版在线下载| 99riav亚洲国产免费| 亚洲七黄色美女视频| 可以免费在线观看a视频的电影网站| 99国产精品99久久久久| 亚洲情色 制服丝袜| 99久久99久久久精品蜜桃| 亚洲成人免费av在线播放| 免费女性裸体啪啪无遮挡网站| 久久久久久亚洲精品国产蜜桃av| 精品久久久精品久久久| av天堂在线播放| 狠狠婷婷综合久久久久久88av| 欧美日韩亚洲国产一区二区在线观看 | 丝瓜视频免费看黄片| 亚洲欧美一区二区三区黑人| 一级毛片电影观看| 国产精品免费视频内射| 18禁国产床啪视频网站| 男女免费视频国产| 国产亚洲午夜精品一区二区久久| 欧美乱码精品一区二区三区| 在线永久观看黄色视频| 欧美精品一区二区免费开放| 高潮久久久久久久久久久不卡| 每晚都被弄得嗷嗷叫到高潮| 亚洲人成77777在线视频| 狂野欧美激情性xxxx| www日本在线高清视频| 久久中文看片网| 男女下面插进去视频免费观看| 国产区一区二久久| 亚洲av成人一区二区三| 国产精品麻豆人妻色哟哟久久| 黑丝袜美女国产一区| 操美女的视频在线观看| 美女福利国产在线| 热re99久久精品国产66热6| 99国产精品免费福利视频| 久久久国产成人免费| 久久久久久久久免费视频了| 亚洲成人免费电影在线观看| 国产精品免费一区二区三区在线 | 91九色精品人成在线观看| 悠悠久久av| 老司机影院毛片| 成人国产av品久久久| 国产真人三级小视频在线观看| 一夜夜www| 国产一区二区在线观看av| 一本综合久久免费| 天天躁狠狠躁夜夜躁狠狠躁| 日本a在线网址| 国产片内射在线| 变态另类成人亚洲欧美熟女 | 精品乱码久久久久久99久播| 久久午夜亚洲精品久久| 人人妻人人添人人爽欧美一区卜| 国产精品久久久久久精品古装| 日韩熟女老妇一区二区性免费视频| 午夜老司机福利片| 又黄又粗又硬又大视频| 精品一区二区三卡| 欧美亚洲 丝袜 人妻 在线| 91精品国产国语对白视频| 国产一区有黄有色的免费视频| 久久免费观看电影| 啦啦啦中文免费视频观看日本| 好男人电影高清在线观看| 国产一区二区三区综合在线观看| 亚洲av欧美aⅴ国产| 正在播放国产对白刺激| 在线亚洲精品国产二区图片欧美| 久久中文字幕人妻熟女| 国产97色在线日韩免费| 激情在线观看视频在线高清 | 日本欧美视频一区| 久久精品成人免费网站| 黑人欧美特级aaaaaa片| 两个人看的免费小视频| 手机成人av网站| 国产精品久久久人人做人人爽| 国产精品成人在线| 黑人欧美特级aaaaaa片| 在线观看免费视频日本深夜| 亚洲av美国av| 两性夫妻黄色片| 国产精品电影一区二区三区 | 午夜免费成人在线视频| 久久精品成人免费网站| 大片免费播放器 马上看| 国产无遮挡羞羞视频在线观看| 欧美激情高清一区二区三区| 精品第一国产精品| 精品亚洲乱码少妇综合久久| 交换朋友夫妻互换小说| 91老司机精品| 丝瓜视频免费看黄片| 欧美精品一区二区大全| 十分钟在线观看高清视频www| 欧美成人午夜精品| 成人免费观看视频高清| 亚洲色图 男人天堂 中文字幕| av国产精品久久久久影院| 欧美日韩av久久| 一区二区日韩欧美中文字幕| 欧美日韩视频精品一区| av国产精品久久久久影院| 天天躁狠狠躁夜夜躁狠狠躁| 国产一区二区三区在线臀色熟女 | 18禁裸乳无遮挡动漫免费视频| 国产精品久久久久久精品电影小说| 宅男免费午夜| 69精品国产乱码久久久| 日日夜夜操网爽| 在线av久久热| 国产av国产精品国产| 日韩 欧美 亚洲 中文字幕| 久久天躁狠狠躁夜夜2o2o| 国产成人免费无遮挡视频| 国产精品麻豆人妻色哟哟久久| 视频区欧美日本亚洲| 法律面前人人平等表现在哪些方面| 成人av一区二区三区在线看| 日韩欧美免费精品| 一本—道久久a久久精品蜜桃钙片| 天堂俺去俺来也www色官网| 狠狠狠狠99中文字幕| 亚洲成人手机| 人妻一区二区av| 美女扒开内裤让男人捅视频| 老熟女久久久| 欧美精品一区二区免费开放| 女性被躁到高潮视频| 亚洲精品国产精品久久久不卡| 自拍欧美九色日韩亚洲蝌蚪91| 下体分泌物呈黄色| 久久久水蜜桃国产精品网| 久久午夜综合久久蜜桃| 午夜免费成人在线视频| 久久亚洲真实| 一区二区三区乱码不卡18| 亚洲熟妇熟女久久| 在线播放国产精品三级| 人人妻,人人澡人人爽秒播| 免费女性裸体啪啪无遮挡网站| 日日夜夜操网爽| 久久久欧美国产精品| av片东京热男人的天堂| 日本黄色视频三级网站网址 | 久久中文看片网| 久久香蕉激情| 老司机深夜福利视频在线观看| 老汉色av国产亚洲站长工具| 久久久国产一区二区| 纯流量卡能插随身wifi吗| 久久人妻福利社区极品人妻图片| 国产精品久久电影中文字幕 | 亚洲国产成人一精品久久久| 成年人免费黄色播放视频| 精品午夜福利视频在线观看一区 | 欧美激情极品国产一区二区三区| 国产激情久久老熟女| 亚洲欧洲精品一区二区精品久久久| 狠狠狠狠99中文字幕| 色尼玛亚洲综合影院| 精品一区二区三区视频在线观看免费 | 久久久久视频综合| 黑人欧美特级aaaaaa片| 黄色 视频免费看| av超薄肉色丝袜交足视频| 成人永久免费在线观看视频 | 亚洲avbb在线观看| 男人舔女人的私密视频| 国产福利在线免费观看视频| 免费一级毛片在线播放高清视频 | 国产精品影院久久| 久久精品亚洲av国产电影网| 国产老妇伦熟女老妇高清| 女性生殖器流出的白浆| 精品亚洲成a人片在线观看| 男女之事视频高清在线观看| 啦啦啦在线免费观看视频4| 国产日韩欧美在线精品| 精品一区二区三区四区五区乱码| 精品久久久精品久久久| 一进一出好大好爽视频| 国产单亲对白刺激| 国产精品久久久久久精品电影小说| 免费看a级黄色片| 精品熟女少妇八av免费久了| 咕卡用的链子| 免费在线观看影片大全网站| 久久久欧美国产精品| 超色免费av| netflix在线观看网站| 国产精品二区激情视频| 在线av久久热| 久久精品国产a三级三级三级| 最新的欧美精品一区二区| 女人爽到高潮嗷嗷叫在线视频| 美女午夜性视频免费| 国产一区二区在线观看av| 999精品在线视频| 亚洲熟女精品中文字幕| 香蕉久久夜色| 少妇被粗大的猛进出69影院| 日本一区二区免费在线视频| 一级黄色大片毛片| 人人妻人人澡人人爽人人夜夜| 久久人人爽av亚洲精品天堂| 久久久久久久国产电影| 免费高清在线观看日韩| 国产男女内射视频| 久久久久久久国产电影| 久久精品亚洲av国产电影网| www日本在线高清视频| 久久国产精品大桥未久av| 人人妻人人添人人爽欧美一区卜| 午夜福利一区二区在线看| 免费av中文字幕在线| 国产真人三级小视频在线观看| 99热网站在线观看| 欧美亚洲日本最大视频资源| 欧美乱妇无乱码| 国产视频一区二区在线看| 一级片免费观看大全| 啦啦啦中文免费视频观看日本| 国产一区二区 视频在线| 五月天丁香电影| 国产在线免费精品| 多毛熟女@视频| 日韩欧美国产一区二区入口| 欧美精品一区二区免费开放| 色婷婷久久久亚洲欧美| 女性生殖器流出的白浆| 天堂8中文在线网| 国产在线一区二区三区精| 在线观看一区二区三区激情| 日韩一卡2卡3卡4卡2021年| 91字幕亚洲| 制服诱惑二区| 变态另类成人亚洲欧美熟女 | 纵有疾风起免费观看全集完整版| 美女扒开内裤让男人捅视频| 久久精品国产a三级三级三级| 视频区欧美日本亚洲| 久久午夜综合久久蜜桃| 人妻 亚洲 视频| 一区二区av电影网| 中文亚洲av片在线观看爽 | 日韩欧美一区二区三区在线观看 | 久久亚洲精品不卡| 国产一区二区在线观看av| 一二三四在线观看免费中文在| 99国产综合亚洲精品| 国产免费视频播放在线视频| 午夜福利,免费看| 免费av中文字幕在线| 日韩欧美一区视频在线观看| 欧美另类亚洲清纯唯美| 日韩 欧美 亚洲 中文字幕| 少妇的丰满在线观看| 国产成人欧美| 久久九九热精品免费| 中文字幕最新亚洲高清| netflix在线观看网站| 蜜桃在线观看..| 欧美另类亚洲清纯唯美| 亚洲欧美色中文字幕在线| 日韩大片免费观看网站| 97在线人人人人妻| 亚洲av电影在线进入| 欧美日韩福利视频一区二区| 国产亚洲av高清不卡| 国产黄色免费在线视频| 亚洲欧美精品综合一区二区三区| 18禁美女被吸乳视频| 50天的宝宝边吃奶边哭怎么回事| 国产精品国产av在线观看| 一本—道久久a久久精品蜜桃钙片| 人人妻,人人澡人人爽秒播| 丁香欧美五月| 久久精品亚洲av国产电影网| 欧美日韩av久久| 狠狠婷婷综合久久久久久88av| 精品少妇内射三级| 国产三级黄色录像| 啦啦啦中文免费视频观看日本| 天堂动漫精品| 我的亚洲天堂| 亚洲av美国av| 黄色怎么调成土黄色| 深夜精品福利| 精品国产乱子伦一区二区三区| 国产欧美日韩精品亚洲av| 亚洲 欧美一区二区三区| 一进一出好大好爽视频| 久久久久精品国产欧美久久久| 国产成人欧美| 大型av网站在线播放| av不卡在线播放| 日韩欧美一区二区三区在线观看 | 日韩制服丝袜自拍偷拍| 精品久久久久久电影网| 男女午夜视频在线观看| 色婷婷av一区二区三区视频| 国产精品影院久久| 一本色道久久久久久精品综合| 97在线人人人人妻| 亚洲人成伊人成综合网2020| 国产深夜福利视频在线观看| 亚洲人成伊人成综合网2020| 色在线成人网| 亚洲国产欧美在线一区| 成年动漫av网址| 男女高潮啪啪啪动态图| 一进一出好大好爽视频| 人人澡人人妻人| 国产一区二区三区综合在线观看| 黄片播放在线免费| www.999成人在线观看| 天堂8中文在线网| 十八禁网站免费在线| 久久影院123| 国产不卡一卡二| 国产激情久久老熟女| kizo精华| 人人澡人人妻人| 亚洲精品粉嫩美女一区| 精品卡一卡二卡四卡免费| 黄频高清免费视频| 手机成人av网站| 国产黄色免费在线视频| 国产视频一区二区在线看| 久久性视频一级片| 欧美亚洲日本最大视频资源| 亚洲天堂av无毛| 999久久久国产精品视频| av片东京热男人的天堂| 99久久人妻综合| 免费女性裸体啪啪无遮挡网站|