• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Smart Deep Learning Based Human Behaviour Classification for Video Surveillance

    2022-11-11 10:48:22EsamAlQarallehFahadAldhabanHalahNasseifMalekAlksasbehandBassamAlqaralleh
    Computers Materials&Continua 2022年9期

    Esam A.AlQaralleh,Fahad Aldhaban,Halah Nasseif,Malek Z.Alksasbeh and Bassam A.Y.Alqaralleh,*

    1School of Engineering,Princess Sumaya University for Technology,Amman,11941,Jordan

    2MIS Department,College of Business Administration,University of Business and Technology,Jeddah,21448,Saudi Arabia

    3CIS Department,Faculty of Information Technology,Al Hussein bin Talal University,Ma’an,71111,Jordan

    Abstract: Real-time video surveillance system is commonly employed to aid security professionals in preventing crimes.The use of deep learning(DL)technologies has transformed real-time video surveillance into smart video surveillance systems that automate human behavior classification.The recognition of events in the surveillance videos is considered a hot research topic in the field of computer science and it is gaining significant attention.Human action recognition (HAR)is treated as a crucial issue in several applications areas and smart video surveillance to improve the security level.The advancements of the DL models help to accomplish improved recognition performance.In this view, this paper presents a smart deep-based human behavior classification (SDL-HBC)model for real-time video surveillance.The proposed SDL-HBC model majorly aims to employ an adaptive median filtering (AMF)based pre-processing to reduce the noise content.Also, the capsule network (CapsNet)model is utilized for the extraction of feature vectors and the hyperparameter tuning of the CapsNet model takes place utilizing the Adam optimizer.Finally, the differential evolution (DE)with stacked autoencoder(SAE)model is applied for the classification of human activities in the intelligent video surveillance system.The performance validation of the SDL-HBC technique takes place using two benchmark datasets such as the KTH dataset.The experimental outcomes reported the enhanced recognition performance of the SDL-HBC technique over the recent state of art approaches with maximum accuracy of 0.9922.

    Keywords:Human action recognition;video surveillance;intelligent systems;deep learning;security;image classification

    1 Introduction

    Human action recognition(HAR)and classification techniques have various applications that are helpful in day-to-day lives.Video surveillance is employed in smart supervision systems in banks,smart buildings,and parking lots [1].Communication between machines and human is a major challenge,i.e.,performed by many different methods namely hand gesture classification and speech recognition[2].The process of video frames acquired from security camera with the help of recognizing and controlling abnormal behavior creates an automated care monitoring scheme as a human action detector [3].Furthermore, the many elderly and sick people living alone and needing to be checked by constant surveillance triggers the need for an intelligent system that is beneficial and essential to monitor elder people.Various factors are essential in the efficacy of action detection systems like the background of the location, any abnormality condition, and detection time.The consequence of all the factors in the study of objects and the kind of behavior and actions identify the classification and recognition of the behavior [4].Especially, in partial behavior, just the topmost part of the body is employed for recognizing hand gestures.Analysis of Human behavior from a captured video needs a preprocessing phase involving foreground and background recognition, also tracking individuals in successive frames.

    Other important steps include feature extraction, appropriate model or classifier selection, and lastly the procedure of authentication, classification, and detection-based feature extraction.The initial phase for object behavior detection is recognizing the movement of the object in an image and its classification.The more commonly known method for the detection of moving objects is background subtraction [5].The simplest method of background subtraction can be accomplished by comparing all the frames of the video with a static background.As stated, afterward the preprocessing phase,the automated recognition systems will include two major phases:feature extraction and action classification[6].The most significant phases in the behavior analysis method are creating an appropriate feature vector and feature extraction.This process will create the primitive information for the classification.

    Accurate recognition of action is one of the difficult processes to alter in clutter backgrounds and viewpoint variations.Hence,we can emphasize,that one of the most popular methods for HAR employs engineered motion[7]and texture descriptor evaluated about Spatio-temporal interest point.Additionally,many approaches follow the traditional method of pattern recognition[8].This approach is depending on two major phases: learning classifier based on the attained feature and calculating difficult handcrafted features in the video frame.In real-time scenarios, it is uncommonly known that feature is significant to the task at hand because the selection of features is extremely problemdependent[9].

    This paper presents a smart deep learning-based human behavior classification (SDL-HBC)model for real-time video surveillance.The proposed SDL-HBC model majorly aims to employ an adaptive median filtering (AMF)based pre-processing to reduce the noise content.In addition, the capsule network(CapsNet)model utilized for the extraction of feature vectors and the hyperparameter tuning of the CapsNet technique takes place using the Adam optimizer.Finally, the differential evolution (DE)with stacked autoencoder (SAE)model is applied for the classification of human activities in the intelligent video surveillance system.The simulation result analysis of the SDL-HBC technique is carried out against two benchmark datasets namely KTH datasets.

    2 Literature Review

    Nikouei et al.[10] introduced a Single Shot Multi-Box Detector (SSD), lightweight Convolution Neural Networks (L-CNN), and depth-wise separable convolution.With narrowing down the classifier’s search space for emphasizing human objects in surveillance video frames,the presented LCNN method is capable of detecting pedestrians with reasonable computational workloads to an edge device.Nawaratne et al.[11]presented the incremental spatiotemporal learner(ISTL)for addressing limitations and challenges of anomaly localization and detection for real-time video surveillance.ISTL is an unsupervised DL method that employs active learning with fuzzy aggregation, to repetitively distinguish and update amongst new normality and anomalies which evolve.

    Bouachir et al.[12]designed a vision-based methodology for automatically identifying suicide by hanging.These smart video surveillance systems operate by depth stream given by the RGB-D camera,nevertheless of illumination condition.The presented approach is depending on the exploitation of the body joint position for modeling suicidal behaviors.The static and dynamic pose features are estimated for effectively modeling suicidal behaviors and capturing the body joint movement.Wan et al.[13] developed a smartphone inertial accelerometer-based framework for HAR.The data are pre-processed by denoising,segmentation,and normalization for extracting valuable feature vectors.Furthermore, a real-time human activity classification-based CNN method has been presented that employed a CNN to local feature extraction.

    Han et al.[14] presented an approach of data set remodeling by transporting parameters of ResNet-101 layers trained on the ImageNet data set for initializing learning models and adapting an augmented data variation method for overcoming the over-fitting problem of sample deficiency.To model structure improvements,a new deep 2-stream ConvNets was developed for action complexity learning.Ullah et al.[15]projected an improved and effective CNN-based method for processing data stream in real-time,attained from visual sensors of non-stationary surveillance environments.At first,the frame-level deep feature is extracted by a pre-trained CNN method.Then,an enhanced DAE is presented for learning temporal variations of the action from the surveillance stream.

    3 The Proposed Model

    In this study, a novel SDL-HBC technique has been derived for the recognition of human behavior in intelligent video surveillance systems.The proposed SDL-HBC technique aims to properly determine the occurrence of several activities in the surveillance videos.The SDL-HBC technique encompasses several stages of operations such as AMF based pre-processing,CapsNet based feature extraction,Adam optimizer-based hyperparameter tuning,SAE-based classification,and DE-based parameter tuning.

    3.1 AMF Based Pre-Processing

    Primarily,the AMF technique is used to pre-process the input image to eradicate the noise that exists in it [16].The AMF technique makes use of the median value of the windows for replacing the intermediate pixels treated by the window.If the intermediate pixels are(Pepper)or(salt),it gets substituted using the intermittent value of the window.The AMF follows the replacement process with the median value of the window [17].It generally operates in the following ways: The window gets arranged in ascending order.Then,the median value can be considered as the intermediate value next to the sorting process.Thus,the pixels can be substituted by the median value.

    3.2 Feature Extraction Using Optimal CapsNet Model

    At this stage,the preprocessed image is passed into the CapsNet model to derive the useful set of feature vectors.The CNN model can be utilized as an effective method for performing the 2D object recognition process.Because of the data routing process in the CNN model,the details,such as position and pose in the objects,are not considered.For resolving the issues of the CNN model,a new network model named CapsNet is derived.It is a deep network approach,which comprises a set of capsules.The capsule consists of a collection of neurons.The activation neuron indicates the feature of the elements that exist in the object.Every individual capsule is accountable to determine the individual element in the object and every capsule can integrate the capsules and compute the complete structure of the objects.The CapsNet comprises a multiple-layer network[18].Fig.1 showcases the framework of the CapsNet model.

    Figure 1:CapsNet structure

    The length of the outcomeujdenotes the possibility of the occurrence of the respective element,and the direction of the vectoruiencodes different characteristics of the respective element.The prediction vectorsignifies the belief that performs encoding of the relativity amongst thei-thcapsule in the low-level capsules andj-thcapsule in the high-level capsule by the use of a linear transformation matrixWij,as given below.

    The identified component occurrence and pose details can be used for predicting the entire existence and pose details.At the time of the training procedure,the network gets progressively learned in adjusting the transformation matrix of the capsule, paired via the respective relativity among the elements and the entire one in the objects.At the high-level capsule, thesjandvjdenotes input and output of capsulesj,correspondinglysjsignifies the total of the predicted vectorswith equivalent weightcijin low-level capsulesi.In Eq.(2),cijindicates the coupling coefficient and can be computed using an iterative dynamic routing approach,where ∑= 1 andcij≥0.Ifcij= 0,there is no data transmission among the capsulesiandj.Whencij=1,the details of capsuleican be sent to the highlevel capsulej.As the output length indicates a probability value,a non-linear squash function can be utilized for ensuring that the short vector can be reduced nearer to the value of 0 and the long vector can be compacted to the value of 1.The squash function can be defined using Eqs.(2)-(4):

    If the low,as well as high-level capsules,are reliable with the prediction process,the value ofcijis high and it gets reduced if they are unreliable[19].By modifying the routing coefficients,the dynamic routing model gets ensured that the low-level capsule transmits the predictive vector to the high-level capsule,which is dependable with the prediction,therefore the output of the sub-capsule is transmitted to the precise parent capsule.

    The Adam optimizer is used to optimally select the hyperparameter values of the CapsNet model.The Adam method is one of the widely employed techniques that alter the learning rate adoptively for all the parameters.This is an integration of distinct gradient optimization approaches.It is an exponentially decaying average of past squared gradient, i.e., RMSprop and Adadelta, as well as it takes the abovementioned gradients,i.e.,analogous to Momentum.

    whereasβ1andβ2represent the decay rates that are presented for following the default value.MtandGtis determined for estimating the mean of past gradient(initial moment)and the uncentered variation of past gradient(next moment),correspondingly.Since the decaying rate causes some bias problems,it is essential to perform the bias-correction task[20].

    Hence,the upgrade value of Adam can be determined by Eq.(8)

    The gradient part of △θtis described by

    Here,it is proven that each operation is depending on the past gradient of the present parameter that has no relation to the learning rate.Therefore,Adam has an effective performance through the learning rate method.

    3.3 Human Behavior Detection and Classification

    During the detection and classification process, the SAE model receives the feature vectors as input and allot proper class labels to it.In this work,the SAE was introduced by autoencoder(AE)and Logistic Regression(LR)layers[21].The AE is a building block of the SAE classification method.It is composed of a reconstruction or decoder stage(Layer 2 to 3)and an encoder stage(Layer 1 to 2).WhileWandWT(transpose of W)represents weight matrix ofbandb′mode are two different bias vectors ofscan be defined by nonlinearity functions such as sigmoid function;ydenotes a latent parameter of input layerx, andzis assumed as a prediction ofxgivenyhas a similar shape asx.Fig.2 illustrates the architecture of the SAE technique.

    Figure 2:Structure of SAE

    Various AE layer is stacked jointly in the unsupervised pretraining phase(Layer 1 to 4).The next representation′y′processed as AE is applied employed as input for upcoming AE layers.Such layers undertake training as AE by minimizing reconstructed errors that are estimated simultaneously[22].Then,reconstructed errors(loss functionL(x,z))are estimated in iteration.Here,it uses cross-entropy for measuring reconstruction error,in whichxkandzkrepresentskrhcomponent ofxandz,respectively.

    The reconstruction error is constrained under the GD application.The weight in Eqs.(11)and(12)must be upgraded as per the Eqs.(14)-(16),in whichLrepresents a learning rate.

    Once the layer is pre-trained,a process is supervised under the fine-tuning stage.

    3.4 Parameter Tuning Using DE Algorithm

    In order to tune the weight and bias values of the SAE model,the DE algorithm is utilized and thereby improves the recognition performance.It is regarded as a population-based search approach that is initially developed by Price and Storn[23].In the current work,a three-step adjusting method is proposed by the DE approach for solving an optimization issue.Indeed,the target of the presented technique is to enhance the model parameter of the PID-type FLC design.To perform this task,some amount of solution vectors are initialized randomly and iteratively upgraded by selection operator and genetic operator(crossover and mutation).Initially,the mutation operator is employed by a randomly selected solution(r1,r2andr3)vectors in DE population.Then,the variance among the two vectors(r2&r3)multiplied by a scaling factor (F)is appended to the initial vector(r1).Therefore, all the targeted solutionare transformed as to mutant solution vector.

    Next,the crossover operators are employed for calculating a trial vector.It can be performed by integrating the target solution vectors with the mutated vectors as follows

    Whereasj= 1, 2,...,D, rand (j)∈[0,1] denotes thejthparameter of a randomly generated value.CRindicates the crossover probabilities i.e.,random vector ranges from zero to one.randn(i)∈{1,2,...,D}characterizes an arbitrary number that ensuresget at one component fromor else no new parent vector is produced,therefore the population remains the same.Lastly,in a selective section if as well as only if the trial vectorproduces an effective fitness function value than,thenis fixed to,or else,the older vectoris maintained.

    The DE technique derives a fitness function to attain improved classification performance.It determines a positive integer to represent the better performance of the candidate solutions.In this study,the minimization of the classification error rate is considered as the fitness function,as given in Eq.(20).The optimal solution has a minimal error rate and the worse solution attains an increased error rate[24].

    4 Performance Validation

    The performance validation of the proposed model takes place using two benchmark datasets namely the KTH dataset.The former KTH dataset(available at https://www.csc.kth.se/cvap/actions/)is an open-access dataset, comprising six kinds of video actions and a resolution of 160*120.The videos are transformed into a set of 100 frames for every video.

    This section investigates the result analysis of the SDL-HBC model on the test KTH dataset.Fig.3 shows the confusion matrix of the SDL-HBC model on the applied KTH dataset.The figure reported that the SDL-HBC model has identified 99 instances under‘Boxing’class,99 instances under‘Handclapping’class, 97 instances under ‘Handwaving’class, 96 instances under ‘Jogging’class, 97 instances under‘Running’class,and 98 instances under‘Walking’class.

    Figure 3:Confusion matrix analysis of SDL-HBC technique on KTH dataset

    The performance validation of the SDL-HBC model on the test KTH dataset is offered in Tab.1 and Figs.4-6.The results demonstrate that the SDL-HBC model has attained effective recognition performance.For instance, under ‘Boxing’class, the SDL-HBC model has resulted tosensy,specy,precn,accuy,andFscoreof 0.9900,0.9940,0.9706,0.9933,and 0.9802.Moreover,under the‘Handwaving’class, the SDL-HBC model has accomplishedsensy,specy,precn,accuy, andFscoreof 0.9700, 0.9940,0.9700,0.9900,and 0.9700.Furthermore,under the‘Walking’class,the SDL-HBC model has gainedsensy,specy,precn,accuy,andFscoreof 0.9800,0.9980,0.9899,0.9950,and 0.9849.Moreover,the average result analysis of the SDL-HBC model can attain an improved averagesensy,specy,precn,accuy,andFscoreof 0.9767,0.9953,0.9768,0.9922,and 0.9767 respectively.

    Table 1: Result analysis of SDL-HBC technique on KTH dataset

    Figure 4:Sensy and Specy analysis of SDL-HBC technique on KTH dataset

    Figure 5:Precn and Fscore analysis of SDL-HBC technique on KTH dataset

    Figure 6:Accuy analysis of SDL-HBC technique on KTH dataset

    Fig.7 portrays the accuracy analysis of the SDL-HBC technique on the KTH dataset.The results demonstrate that the SDL-HBC approach has accomplished improved performance with increased training and validation accuracy.It is noticed that the SDL-HBC technique has gained improved validation accuracy over the training accuracy.

    Figure 7:Accuracy graph analysis of SDL-HBC technique on KTH dataset

    Fig.8 depicts the loss analysis of the SDL-HBC technique on the KTH dataset.The results establish that the SDL-HBC system has resulted in a proficient outcome with the reduced training and validation loss.It can be revealed that the SDL-HBC technique has offered reduced validation loss over the training loss.

    Figure 8:Loss graph analysis of SDL-HBC technique on KTH dataset

    Finally,a comparativeaccuyanalysis of the SDL-HBC model with recent approaches takes place in Fig.9 and Tab.2.The results show that the GMM+KF and GRNN techniques have attained loweraccuyvalues of 0.7110 and 0.8600 respectively.In line with, the SVM-3DCNN, CNN-CAE,DTR-DNN,and GMM+KF+GRNN techniques have resulted in moderately closeraccuyvalues of 0.9034,0.9249,0.9500,0.9560,and 0.9630 respectively.However,the presented SDL-HBC model has accomplished maximum recognition performance with theaccuyof 0.9922.

    Figure 9:Comparative analysis of SDL-HBC technique on KTH dataset

    Table 2: Comparative analysis of SDL-HBC technique in terms of accuracy on KTH dataset with existing approaches

    5 Conclusion

    In this study, a novel SDL-HBC technique has been derived for the recognition of human behavior in intelligent video surveillance systems.The proposed SDL-HBC technique aims to properly determine the occurrence of several activities in the surveillance videos.The SDL-HBC technique encompasses several stages of operations such as AMF based pre-processing,CapsNet based feature extraction,Adam optimizer-based hyperparameter tuning,SAE-based classification,and DE-based parameter tuning.The utilization of the Adam optimizer and DE algorithm results in improved classification performance.The simulation result analysis of the SDL-HBC technique is carried out against two benchmark datasets namely KTH and UCF Sports datasets.The experimental results reported the enhanced recognition performance of the SDL-HBC technique over the recent state of art approaches.Therefore,the SDL-HBC technique can be considered an effective tool for intelligent video surveillance systems.As a part of the future scope,the performance of the SDL-HBC technique can be boosted by the design of hybrid DL models.

    Funding Statement:This research was funded by the Deanship of Scientific Research at the University of Business and Technology,Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲成人一二三区av| 91aial.com中文字幕在线观看| 在线观看一区二区三区激情| 亚洲精品国产av蜜桃| 丝袜脚勾引网站| 午夜福利影视在线免费观看| 美女xxoo啪啪120秒动态图| 国产精品三级大全| 国产亚洲91精品色在线| 欧美日本视频| 97热精品久久久久久| 久久久久久伊人网av| 亚洲av日韩在线播放| 国产精品人妻久久久久久| 内射极品少妇av片p| 国产毛片在线视频| 网址你懂的国产日韩在线| 久久女婷五月综合色啪小说| 亚洲精品一二三| 亚洲精华国产精华液的使用体验| 欧美变态另类bdsm刘玥| 高清在线视频一区二区三区| 久久久色成人| 亚洲aⅴ乱码一区二区在线播放| 国产精品爽爽va在线观看网站| 亚洲精品久久久久久婷婷小说| 超碰97精品在线观看| 久久久久精品性色| 国产视频首页在线观看| 永久免费av网站大全| 精品一品国产午夜福利视频| 亚洲av综合色区一区| 日韩亚洲欧美综合| 美女福利国产在线 | 少妇人妻精品综合一区二区| 国产亚洲午夜精品一区二区久久| 国产熟女欧美一区二区| 夜夜看夜夜爽夜夜摸| 国产精品99久久久久久久久| 亚洲三级黄色毛片| 99久久人妻综合| 老熟女久久久| 蜜桃久久精品国产亚洲av| 欧美xxxx性猛交bbbb| 国产淫片久久久久久久久| 一区二区三区乱码不卡18| av福利片在线观看| 国产片特级美女逼逼视频| 少妇丰满av| 国产在线视频一区二区| 免费人成在线观看视频色| 高清不卡的av网站| 各种免费的搞黄视频| 亚洲一区二区三区欧美精品| 三级国产精品欧美在线观看| 寂寞人妻少妇视频99o| 午夜福利网站1000一区二区三区| 中文天堂在线官网| 男女免费视频国产| 国产女主播在线喷水免费视频网站| 亚洲av欧美aⅴ国产| 精品熟女少妇av免费看| 人体艺术视频欧美日本| 九九在线视频观看精品| 中文字幕精品免费在线观看视频 | 亚洲人成网站高清观看| 极品少妇高潮喷水抽搐| 嘟嘟电影网在线观看| 日韩亚洲欧美综合| 99久久综合免费| 国产精品成人在线| 国产亚洲av片在线观看秒播厂| 五月天丁香电影| 日本欧美国产在线视频| 免费av中文字幕在线| 黄片wwwwww| 国内少妇人妻偷人精品xxx网站| 成人一区二区视频在线观看| 少妇熟女欧美另类| 搡老乐熟女国产| 免费高清在线观看视频在线观看| 精品酒店卫生间| 亚洲人与动物交配视频| 色哟哟·www| 亚洲av.av天堂| 亚洲熟女精品中文字幕| 身体一侧抽搐| 少妇高潮的动态图| 国产一区二区三区综合在线观看 | 2018国产大陆天天弄谢| 看非洲黑人一级黄片| 国产黄色免费在线视频| 91aial.com中文字幕在线观看| 久久久午夜欧美精品| 日产精品乱码卡一卡2卡三| 天天躁夜夜躁狠狠久久av| 久久国产精品大桥未久av | 国产欧美日韩精品一区二区| 免费人成在线观看视频色| 国产午夜精品一二区理论片| 国产午夜精品一二区理论片| 黑丝袜美女国产一区| 成人高潮视频无遮挡免费网站| 日韩,欧美,国产一区二区三区| 黄色配什么色好看| 人体艺术视频欧美日本| 边亲边吃奶的免费视频| 精品国产三级普通话版| 国产国拍精品亚洲av在线观看| 高清不卡的av网站| 51国产日韩欧美| 国产91av在线免费观看| 久久精品久久久久久久性| 最近手机中文字幕大全| 最近中文字幕高清免费大全6| 精品午夜福利在线看| 色吧在线观看| 国产黄频视频在线观看| 亚洲欧美一区二区三区黑人 | 亚洲激情五月婷婷啪啪| 久久鲁丝午夜福利片| 青春草视频在线免费观看| 一级av片app| 婷婷色综合www| 午夜免费鲁丝| 久久人人爽人人爽人人片va| 久久久久精品久久久久真实原创| 欧美xxⅹ黑人| 亚洲最大成人中文| 日韩一区二区视频免费看| 老熟女久久久| 99热这里只有精品一区| 99热6这里只有精品| 亚洲欧美清纯卡通| 啦啦啦中文免费视频观看日本| 精品久久久久久久久av| 一区二区av电影网| 国产黄频视频在线观看| 在线看a的网站| 人体艺术视频欧美日本| 岛国毛片在线播放| 大又大粗又爽又黄少妇毛片口| 极品教师在线视频| 国产美女午夜福利| 插阴视频在线观看视频| 国精品久久久久久国模美| 国产精品爽爽va在线观看网站| 大码成人一级视频| 日日撸夜夜添| 麻豆国产97在线/欧美| 成人18禁高潮啪啪吃奶动态图 | 美女cb高潮喷水在线观看| 国产高清国产精品国产三级 | 特大巨黑吊av在线直播| 午夜精品国产一区二区电影| 丰满少妇做爰视频| 一级a做视频免费观看| 中文字幕亚洲精品专区| 国内精品宾馆在线| 国产精品爽爽va在线观看网站| 国产男人的电影天堂91| 日韩伦理黄色片| 中文欧美无线码| 亚洲美女黄色视频免费看| 精品久久久久久久久av| 欧美一区二区亚洲| 最后的刺客免费高清国语| 妹子高潮喷水视频| 99热全是精品| 日韩 亚洲 欧美在线| 亚洲精品日本国产第一区| 国产精品女同一区二区软件| 亚洲内射少妇av| 七月丁香在线播放| av又黄又爽大尺度在线免费看| 成人国产麻豆网| 少妇丰满av| 美女国产视频在线观看| 欧美日韩精品成人综合77777| 国产极品天堂在线| 午夜福利高清视频| 欧美日韩综合久久久久久| 国产欧美亚洲国产| 亚洲成色77777| 国产有黄有色有爽视频| 色网站视频免费| 欧美激情极品国产一区二区三区 | 久热久热在线精品观看| 国产精品一二三区在线看| 日本猛色少妇xxxxx猛交久久| 精品国产三级普通话版| 免费观看a级毛片全部| 不卡视频在线观看欧美| 精品亚洲乱码少妇综合久久| 在线免费观看不下载黄p国产| 亚洲人与动物交配视频| 女性被躁到高潮视频| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美日韩卡通动漫| 人人妻人人添人人爽欧美一区卜 | 一二三四中文在线观看免费高清| 91午夜精品亚洲一区二区三区| 少妇猛男粗大的猛烈进出视频| 一区二区三区免费毛片| 久久97久久精品| 黄色怎么调成土黄色| 黄色怎么调成土黄色| 伊人久久国产一区二区| 成年免费大片在线观看| 五月天丁香电影| 最后的刺客免费高清国语| 亚洲aⅴ乱码一区二区在线播放| 日韩 亚洲 欧美在线| 欧美日韩亚洲高清精品| 少妇人妻精品综合一区二区| 久久精品国产亚洲网站| 一级黄片播放器| 韩国av在线不卡| 麻豆乱淫一区二区| 国产无遮挡羞羞视频在线观看| 亚洲精品中文字幕在线视频 | 寂寞人妻少妇视频99o| 亚洲国产高清在线一区二区三| 国产极品天堂在线| 亚洲精品视频女| 日韩av在线免费看完整版不卡| 边亲边吃奶的免费视频| 男的添女的下面高潮视频| 亚洲精品乱码久久久久久按摩| 欧美亚洲 丝袜 人妻 在线| av免费观看日本| 国产精品av视频在线免费观看| 免费播放大片免费观看视频在线观看| 日韩不卡一区二区三区视频在线| 亚洲av.av天堂| 国产亚洲91精品色在线| 啦啦啦在线观看免费高清www| 少妇的逼好多水| 激情五月婷婷亚洲| 91在线精品国自产拍蜜月| 亚洲国产最新在线播放| 久久久色成人| 免费黄色在线免费观看| 亚洲精品第二区| 国产精品99久久99久久久不卡 | 男女边摸边吃奶| 自拍偷自拍亚洲精品老妇| 欧美bdsm另类| 久久人人爽人人爽人人片va| 国产精品爽爽va在线观看网站| 国产精品精品国产色婷婷| 人人妻人人添人人爽欧美一区卜 | 久久99热6这里只有精品| 嘟嘟电影网在线观看| 亚洲图色成人| 又黄又爽又刺激的免费视频.| 黄色欧美视频在线观看| 舔av片在线| 亚洲欧美日韩卡通动漫| 夜夜骑夜夜射夜夜干| 黄色视频在线播放观看不卡| 妹子高潮喷水视频| 国产深夜福利视频在线观看| 成人美女网站在线观看视频| 日日摸夜夜添夜夜添av毛片| 亚洲在久久综合| 人妻夜夜爽99麻豆av| 自拍偷自拍亚洲精品老妇| 草草在线视频免费看| 久久99热这里只有精品18| 18禁裸乳无遮挡动漫免费视频| 欧美国产精品一级二级三级 | 免费不卡的大黄色大毛片视频在线观看| 免费久久久久久久精品成人欧美视频 | 少妇丰满av| 99久久精品热视频| 啦啦啦在线观看免费高清www| 久久久久久久精品精品| 99久久综合免费| 麻豆成人午夜福利视频| 免费看av在线观看网站| 精品亚洲乱码少妇综合久久| 人妻 亚洲 视频| www.av在线官网国产| 亚洲电影在线观看av| 亚洲av日韩在线播放| 少妇人妻一区二区三区视频| 日韩三级伦理在线观看| 欧美一区二区亚洲| 插阴视频在线观看视频| 久久精品国产亚洲网站| 欧美高清性xxxxhd video| 99热这里只有是精品50| 大香蕉久久网| 国产高潮美女av| 一区在线观看完整版| 亚洲自偷自拍三级| 色视频在线一区二区三区| 美女cb高潮喷水在线观看| 美女高潮的动态| 久久久久久久亚洲中文字幕| 久久av网站| 亚洲国产高清在线一区二区三| 午夜日本视频在线| 亚洲综合色惰| 91久久精品国产一区二区三区| 国产乱来视频区| 在线观看一区二区三区激情| 日韩一区二区视频免费看| 国产白丝娇喘喷水9色精品| 男的添女的下面高潮视频| 亚洲欧美成人综合另类久久久| 欧美日韩视频高清一区二区三区二| 啦啦啦中文免费视频观看日本| 日韩亚洲欧美综合| 免费黄网站久久成人精品| 久久久欧美国产精品| 美女脱内裤让男人舔精品视频| 亚洲熟女精品中文字幕| 一本—道久久a久久精品蜜桃钙片| 99热这里只有精品一区| 亚洲国产毛片av蜜桃av| 十八禁网站网址无遮挡 | 日韩一区二区视频免费看| 国产成人精品福利久久| 寂寞人妻少妇视频99o| 亚洲熟女精品中文字幕| 一级a做视频免费观看| 日本一二三区视频观看| 国产精品久久久久久久久免| 亚洲丝袜综合中文字幕| 波野结衣二区三区在线| 人妻夜夜爽99麻豆av| 久久久久久伊人网av| 天堂8中文在线网| 国产 精品1| 丝袜喷水一区| 一个人看的www免费观看视频| 一区二区三区精品91| 高清av免费在线| 亚洲欧美清纯卡通| 亚洲国产成人一精品久久久| 国产在线一区二区三区精| 欧美激情国产日韩精品一区| 亚洲精品亚洲一区二区| 一级a做视频免费观看| 性色avwww在线观看| 蜜桃亚洲精品一区二区三区| 80岁老熟妇乱子伦牲交| 人体艺术视频欧美日本| 最新中文字幕久久久久| 在线观看国产h片| 久久久色成人| 高清在线视频一区二区三区| 十八禁网站网址无遮挡 | 亚洲av二区三区四区| 黄片无遮挡物在线观看| 有码 亚洲区| 毛片女人毛片| 亚洲精品国产av蜜桃| 国产成人一区二区在线| 在线观看av片永久免费下载| 久久久久视频综合| 国产免费一区二区三区四区乱码| 国产v大片淫在线免费观看| 尾随美女入室| 91午夜精品亚洲一区二区三区| 亚洲精品色激情综合| av国产久精品久网站免费入址| 国产无遮挡羞羞视频在线观看| 免费看不卡的av| 久久国产精品大桥未久av | 亚洲经典国产精华液单| 久久99蜜桃精品久久| 搡老乐熟女国产| 久久精品夜色国产| 日韩欧美一区视频在线观看 | 久久久久国产网址| 欧美日韩在线观看h| 一级二级三级毛片免费看| 少妇 在线观看| 日本黄色日本黄色录像| 自拍欧美九色日韩亚洲蝌蚪91 | 日本欧美国产在线视频| 日韩一区二区视频免费看| 日韩av不卡免费在线播放| 日本猛色少妇xxxxx猛交久久| 简卡轻食公司| 联通29元200g的流量卡| 午夜福利高清视频| 国产精品免费大片| 亚洲人与动物交配视频| 国产av一区二区精品久久 | 美女主播在线视频| 午夜免费鲁丝| 欧美日韩亚洲高清精品| 黄色日韩在线| 亚洲伊人久久精品综合| 亚洲综合精品二区| 亚洲av成人精品一区久久| 国产av码专区亚洲av| 国产欧美另类精品又又久久亚洲欧美| 热99国产精品久久久久久7| 国产色婷婷99| 1000部很黄的大片| 国国产精品蜜臀av免费| 水蜜桃什么品种好| 黄色欧美视频在线观看| 国产精品久久久久久久电影| 久久人人爽人人爽人人片va| 国产精品久久久久久精品电影小说 | av视频免费观看在线观看| 亚洲精品自拍成人| 久久久久人妻精品一区果冻| 久久精品国产亚洲网站| 亚洲国产日韩一区二区| 亚洲成人中文字幕在线播放| 一区二区三区四区激情视频| 免费黄网站久久成人精品| 99精国产麻豆久久婷婷| 中文精品一卡2卡3卡4更新| 国产欧美日韩一区二区三区在线 | 又大又黄又爽视频免费| 嫩草影院入口| 国产成人a区在线观看| 永久网站在线| 国产亚洲91精品色在线| 99热6这里只有精品| 99re6热这里在线精品视频| 少妇人妻 视频| 亚洲婷婷狠狠爱综合网| 精品亚洲成国产av| 男女啪啪激烈高潮av片| 在线观看国产h片| 国产精品伦人一区二区| 国产高清不卡午夜福利| 美女高潮的动态| 日韩视频在线欧美| 日韩欧美 国产精品| 激情五月婷婷亚洲| 麻豆精品久久久久久蜜桃| av视频免费观看在线观看| 久久99精品国语久久久| 嫩草影院新地址| 在线亚洲精品国产二区图片欧美 | 我要看日韩黄色一级片| 国产中年淑女户外野战色| 免费观看在线日韩| 一二三四中文在线观看免费高清| 亚洲三级黄色毛片| 亚洲欧美成人综合另类久久久| 男人狂女人下面高潮的视频| 日韩一本色道免费dvd| 一本一本综合久久| 亚洲色图av天堂| 日韩强制内射视频| 国产黄色免费在线视频| 色视频在线一区二区三区| 国产免费又黄又爽又色| 男女下面进入的视频免费午夜| 亚洲国产精品成人久久小说| 人妻制服诱惑在线中文字幕| 久久人人爽人人爽人人片va| 欧美日韩亚洲高清精品| 亚洲精品日韩在线中文字幕| 午夜福利视频精品| 中文字幕久久专区| 少妇丰满av| 99久国产av精品国产电影| 尾随美女入室| 亚洲国产欧美在线一区| 亚洲av综合色区一区| 国产精品久久久久久久电影| 青青草视频在线视频观看| 国产淫语在线视频| 99久久精品热视频| 韩国高清视频一区二区三区| 亚洲国产高清在线一区二区三| 在线观看美女被高潮喷水网站| 日本欧美视频一区| 搡女人真爽免费视频火全软件| 国产精品一区www在线观看| 久久女婷五月综合色啪小说| 舔av片在线| av线在线观看网站| 男女边摸边吃奶| 性色avwww在线观看| 十八禁网站网址无遮挡 | 精品国产乱码久久久久久小说| 少妇 在线观看| 国产av码专区亚洲av| 美女xxoo啪啪120秒动态图| 国产精品麻豆人妻色哟哟久久| 亚洲美女黄色视频免费看| 国产精品嫩草影院av在线观看| www.av在线官网国产| 国产精品欧美亚洲77777| 97在线人人人人妻| 一区二区三区精品91| av女优亚洲男人天堂| 精品酒店卫生间| 精品一区在线观看国产| 少妇精品久久久久久久| 99热国产这里只有精品6| 少妇 在线观看| 亚洲国产高清在线一区二区三| 91在线精品国自产拍蜜月| av专区在线播放| 亚洲国产精品专区欧美| 香蕉精品网在线| 午夜日本视频在线| 99久国产av精品国产电影| 成人亚洲精品一区在线观看 | 亚洲,一卡二卡三卡| 亚洲精品一二三| 亚洲国产欧美在线一区| 内地一区二区视频在线| 欧美日韩在线观看h| 在线免费观看不下载黄p国产| 中文天堂在线官网| 少妇猛男粗大的猛烈进出视频| 亚洲国产毛片av蜜桃av| 午夜福利在线在线| 日本一二三区视频观看| 日韩在线高清观看一区二区三区| 男女下面进入的视频免费午夜| 亚洲欧美一区二区三区国产| 久久鲁丝午夜福利片| 一边亲一边摸免费视频| 国产欧美日韩一区二区三区在线 | 国产高清国产精品国产三级 | 看非洲黑人一级黄片| 亚洲av免费高清在线观看| av福利片在线观看| 久久97久久精品| 久久鲁丝午夜福利片| 久久97久久精品| 欧美激情极品国产一区二区三区 | 精华霜和精华液先用哪个| 麻豆成人午夜福利视频| 99精国产麻豆久久婷婷| 啦啦啦视频在线资源免费观看| 人妻一区二区av| 狂野欧美激情性xxxx在线观看| 欧美一级a爱片免费观看看| 亚洲av.av天堂| 欧美成人午夜免费资源| 美女主播在线视频| 国产一级毛片在线| 亚洲精品,欧美精品| 99热6这里只有精品| 国产永久视频网站| 最近2019中文字幕mv第一页| 老司机影院毛片| 大片电影免费在线观看免费| 免费黄频网站在线观看国产| 日韩不卡一区二区三区视频在线| 一级av片app| 蜜臀久久99精品久久宅男| 久久久色成人| 在线天堂最新版资源| 亚洲精品国产av成人精品| 亚洲,欧美,日韩| 久久6这里有精品| 不卡视频在线观看欧美| 天堂8中文在线网| 精品少妇黑人巨大在线播放| 国产亚洲午夜精品一区二区久久| 老女人水多毛片| 久久人人爽人人爽人人片va| 久久国产精品男人的天堂亚洲 | 麻豆国产97在线/欧美| 亚洲av在线观看美女高潮| 亚洲熟女精品中文字幕| 亚洲精品456在线播放app| 国产午夜精品久久久久久一区二区三区| 乱系列少妇在线播放| 在线观看av片永久免费下载| 久久久久网色| 男女免费视频国产| 国产亚洲精品久久久com| 国产av码专区亚洲av| 最后的刺客免费高清国语| 免费av不卡在线播放| 日日摸夜夜添夜夜爱| 久久久久国产网址| 亚洲色图综合在线观看| 精品少妇黑人巨大在线播放| 欧美日韩视频高清一区二区三区二| 尾随美女入室| 99九九线精品视频在线观看视频| 亚洲欧美成人精品一区二区| 国产精品爽爽va在线观看网站| av视频免费观看在线观看| 色哟哟·www| 久久久精品免费免费高清| 97在线视频观看| 欧美变态另类bdsm刘玥| 狂野欧美激情性xxxx在线观看| 日韩在线高清观看一区二区三区| 国产精品爽爽va在线观看网站| 国产在线男女| 欧美国产精品一级二级三级 | 久久久久久久久久久丰满| 亚洲怡红院男人天堂| 直男gayav资源| 国产精品av视频在线免费观看| 亚洲av在线观看美女高潮| 日韩制服骚丝袜av| 新久久久久国产一级毛片| 美女国产视频在线观看| 国产日韩欧美亚洲二区| 亚洲美女视频黄频| 99久久人妻综合| 色吧在线观看|