• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Deep Learning Enabled Statistical Analysis Model for Traffic Prediction

    2022-11-11 10:48:16AshitKumarDuttaSrinivasanKumarBalajiWonIlLeeGyanendraPrasadJoshiandSungWonKim
    Computers Materials&Continua 2022年9期

    Ashit Kumar Dutta,S.Srinivasan,S.N.Kumar,T.S.Balaji,Won Il Lee,Gyanendra Prasad Joshi and Sung Won Kim

    1Department of Computer Science and Information Systems,College of Applied Sciences,AlMaarefa University,Ad Diriyah,Riyadh,13713,Kingdom of Saudi Arabia

    2Institute of Biomedical Engineering,Saveetha School of Engineering,Saveetha Institute of Medical and Technical Sciences,Saveetha University,Saveetha Nagar,Thandalam,Chennai,602105,India

    3Department of Electrical&Electronics Engineering,Amal Jyothi College of Engineering,Kanjirappally,Kerala,686518,India

    4Saveetha School of Engineering,Saveetha Institute of Medical and Technical Sciences,Saveetha University,Saveetha Nagar,Thandalam,Chennai,602105,India

    5Department of Electronics and Communication Engineering,College of Engineering and Technology,SRM Institute of Science and Technology,Vadapalani Campus,Chennai,600026,India

    6Department of Business Administration,Hanbat National National University,Daejeon,34158,Korea

    7Department of Computer Science and Engineering,Sejong University,Seoul,05006,Korea

    8Department of Information and Communication Engineering,Yeungnam University,Gyeongsan-si,Gyeongbuk-do,38541,Korea

    Abstract: Due to the advances of intelligent transportation system (ITSs),traffic forecasting has gained significant interest as robust traffic prediction acts as an important part in different ITSs namely traffic signal control,navigation,route mapping,etc.The traffic prediction model aims to predict the traffic conditions based on the past traffic data.For more accurate traffic prediction, this study proposes an optimal deep learning-enabled statistical analysis model.This study offers the design of optimal convolutional neural network with attention long short term memory(OCNN-ALSTM)model for traffic prediction.The proposed OCNN-ALSTM technique primarily preprocesses the traffic data by the use of min-max normalization technique.Besides,OCNN-ALSTM technique was executed for classifying and predicting the traffic data in real time cases.For enhancing the predictive outcomes of the OCNN-ALSTM technique,the bird swarm algorithm(BSA)is employed to it and thereby overall efficacy of the network gets improved.The design of BSA for optimal hyperparameter tuning of the CNN-ALSTM model shows the novelty of the work.The experimental validation of the OCNNALSTM technique is performed using benchmark datasets and the results are examined under several aspects.The simulation results reported the enhanced outcomes of the OCNN-ALSTM model over the recent methods under several dimensions.

    Keywords:Statistical analysis;predictive models;deep learning;traffic prediction;bird swarm algorithm

    1 Introduction

    With the advancement of intelligent transportation system (ITS), traffic prediction system has gained considerable interest as precise traffic prediction plays an important part in ITS, including route guidance system,traffic signal control system,and navigation system[1].In addition,with the increase of smart electric vehicles,the traffic prediction system of such an intelligent traffic system will become more important.The aim is to predict condition of the traffic(for example,speed and flow of traffic)of upcoming time-step assuming the historical traffic information[2].But it is difficult process because of the uncertainty and natural complexity of traffic patterns.In several loops,sensor nodes are implanted under the road,and they gather traffic information by identifying passing vehicles.Next,the traffic information of the network has been experimented with as traffic graph signal[3].At the same time,the node in the similar traffic flow is connected with one another,for example,the pattern of upstream node signal appears quickly in the downstream node signal.Furthermore,the constant node signal has trend and seasonality that implies the pattern of weekdays are analogous to one another even though distinct from the pattern of weekend and the trend of vehicle amount is increasing yearly.

    Also,Short-term traffic flow prediction assists traveler makes good path selections[4].In the last decade,several methods of traffic flow prediction have developed,and they are commonly categorized as hybrid,parametric,and non-parametric approaches.The parametric method includes multi-variate time series model, exponential smoothing, regression model, and cellular models are designed for handling the variability and uncertainty of traffic flow development.Amongst this method, the autoregressive integrated moving average (ARIMA)system [5] are able to provide explicit formula to demonstrate rules of promising predicted results and traffic flow.But this parametric method makes severe assumption on traffic movement and are lower to forecast the traffic steam with uneven fluctuation.

    Consequently,precise traffic flow prediction has received considerable interest from the authors worldwide [6], also several predictive models have been introduced for achieving higher predictive performance.Amongst others, machine learning (ML)-based method has the better representation since the efficiency of this ML-based algorithm is similarly consistent with people’s expectations[7].But over the last decade, authors only concentrated on enhancing predictive performance without paying equivalent consideration to reduce the deployment cost and the processing time of this presented system[8].Recently,deep learning(DL)method is making considerable achievement with an advanced efficiency in Artificial Intelligence(AI)[9].Usually,the Current deep neural network(DNN)consists of many consecutive layers to determine complex structure from higher-dimension data and additionally extracts hierarchical representation in feature learning.Consequently, the researcher in the ITS was established the significance of DL method and previously initiated for exploiting DNN for smart traffic prediction and sensing[10].The incorporation of ITS and DL method was justified effectively by that DL method could design intricate representation from largescale traffic data sets in layer-wise manner.Furthermore,the intermediate representation of spatial and temporal traffic is collectively learned using the DL algorithms.

    Gu et al.[11] introduced an improved Bayesian combination method using DL (IBCM-DL)for predicting traffic flows.Firstly, the presented architecture is developed on the basis of BCM architecture presented by Wang.Next,relation analysis is utilized for analyzing the significance among the present and past traffic flow intervals.The 3 sub-predictor includes the ARIMA, RBFNN, and GRUNN are combined with the IBCM architecture.Mounica et al.[12], proposed big data for analyzing practical traffic text data.The Spark and Kafka architecture are utilized in integration.Big data framework with Spark,Kafka using the capacity to process and prepare the data measure,have established the severe problem of managing and confining continuously flowing information.

    Kim et al.[13] presented a DNN system named Ship Traffic Extraction Network (STENet)to forecast the medium-and long-term traffics of the cautionary region.The presented method is trained by AIS sensor data.The STENet method is systematized into a hierarchical model where the output of the contextual and movement feature extraction models is fed and concatenated as to predictive method.Qiu et al.[14], presented an ML technique that collectively examined the spatio-temporal correlations.Especially,RNN framework is employed.Moreover,multitask learning model is adapted for exploring the differences and commonalities through cells in enhancing the predictive accuracy.

    This study offers the design of optimal convolutional neural network with attention long short term memory (OCNN-ALSTM)model for traffic prediction.The proposed OCNN-ALSTM technique primarily pre-processes the traffic data by the use of min-max normalization technique.Besides,OCNN-ALSTM technique was executed for classifying and predicting the traffic data in real time cases.For enhancing the predictive outcomes of the OCNN-ALSTM method, the birds’swarm algorithm (BSA)is employed to it, and thereby overall efficacy of the network gets improved.The experimental validation of the OCNN-ALSTM technique is performed using benchmark datasets.

    2 The Proposed Model

    In this study,a new OCNN-ALSTM technique has been developed for effective traffic prediction.The proposed OCNN-ALSTM technique incorporates pre-processing CNN-ALSTM based prediction and BSA based hyperparameter tuning.The OCNN-ALSTM model is applied to classify and predict the traffic data in real time cases and BSA is applied in order to enhance the predictive outcomes of the OCNN-ALSTM model.

    2.1 Data Pre-Processing

    The scaling defines to change data that are different scales to attain off biases due to the amount of outliers.The most generally utilized approach of feature scaling has Mini-Maxi normalized.In Mini-Maxi normalized variations the signal values of many ranges as to zero and one.The general formula of Mini-Maxi normalized was formulated as:

    At presentmandm′are novel and normalized values correspondingly.

    2.2 Design of CNN-ALSTM Based Prediction

    The CNN-ALSTM technique receives the pre-processed data as input to perform traffic prediction process.This presented method is a hybrid DL approach which extracts features from the raw information and implements foresting by means of LSTM-NN.The CNN layer is applied for extracting the valuable characteristics from the time sequence data that has the potential to enhance the predictive performance.The feature vector attained from the following layer of CNN was inputted into the LSTM for calculation.All the elements of feature vector have similarities to most thirty-two units in the LSTM layer.The attention model puts high weight on the feature quantity that is considerably associated with the present output.The projected value of the AC2 at the following moment is output.Current work shows larger prediction accuracy integrating CNN and LSTM for different applications[15].CNN assists LSTM in extracting the features of data.The attention model is a procedure of allotting weight.With the attention model,precise weightage value is allotted to the LSTM output to enhance the predictive ability.It can be attained as follows

    WhereasPrprepresent the prediction value of power andPrIac2denotes the prediction value ofAC2.

    The existence of LSTM efficiently solves the vanishing or explosion gradient problem.There are four significant components: cell status, output gate, input gate, and forget gate.The output, input,and forget gates are utilized for controlling the deletion,maintenance,and update of data in cell status.

    Here,Wf,Wj, andWorepresent the weight matrix of forgetting, input, and output gates,correspondingly; tanh represents the hyperbolic tangent activation function,bf,bjandboindicates the offset item of forget,input,and output gates,correspondingly;σindicates the sigmoid activation function.Fig.1 illustrates the framework of LSTM technique.

    Figure 1:LSTM structure

    The attention process method is a brain signal processing model anomalous to human visualization.The attention method was effectively applied and implemented to model training.The presented method employs the LSTM hidden layer output vectorH= {h1,h2,···,ht} as input of attention model,as well as discover the attention weightαiofhi,that is estimated by

    WhereasWhrepresent the weight matrix ofhjandbhdenotes the bias.

    2.3 BSA Based Hyperparameter Tuning

    For optimally modifying the hyperparameters of the CNN-ALSTM technique, the BSA is employed to it.Meng et al.[16], proposed a BSA using an intelligent bionic approach based on multisearch and multi-group models; it stimulates the bird vigilance, flight, and foraging behaviors and applies SI technique to resolve the optimization issue.The basic rules for bird swarm algorithm are given in the following:

    Rule 1:all the birds switch between foraging and vigilant behaviors,as well as keeps and forages vigilance is imitated as random decision.

    Rule 2:during foraging,all the birds recorded and updated their prior optimal experience and the swarm’s prior optimal experience with food patches.And it is utilized for food searching.Instantly share social data all over the groups.

    Rule 3:While keeping vigilance, all the birds try to move toward the center of the swarm.Such performance might be impacted by disturbance created by swarm competition.Bird with most stocks is highly possible to near swarm center when compared to birds with least stock.

    Rule 4:regularly bird flies to different locations.While flying to different places,birds frequently switch between shrubs and production.The bird with lease is a scrounger and the bird with more stocks is the producer.The birds with lowest and highest reserves were chosen arbitrarily for scroungers and producers.

    Rule 5:producer actively seeks food.Scrounger arbitrarily follows producer in search of food.

    Based on Rule 1, determine the time interval of all the bird’s flight behaviorFQ, a uniform arbitrary valueδ∈(0,1)and the likelihood of foraging behaviorP(P∈(0,1).

    Foraging behavior:When the iteration number has lesser when compared to FQ andδ≤P,then the bird would be the foraging behaviour[17].The mathematical expression of Rule 2 is given by:

    In whichCandSrepresent 2 positive numbers;the previous one is named cognitive accelerated coefficient,and the last one is named social accelerated coefficient.Now,gjindicates the prior optimal swarm location andpi,jrepresent the ith prior optimal location.Fig.2 demonstrates the flowchart of BSA.

    Vigilance behavior:When iteration number is lesser when compared to FQ andδ >P,the bird would be the vigilance performance.The mathematical expression of Rule 3 is given by:

    Figure 2:Flowchart of BSA

    Herea1anda2represent positive constants in[0,2],sumFit shows the amount of swarm optimum fitness values andpFitiindicates the optimal fitness value ofithbird.Now,ε, is employed to avoid zero-division error,which is the lowest constants from the computer.meanjsignifies thejthdimension of swarm average place.

    Flight behavior:When the iteration number is equal toFQ,the bird would be the flight behavior that is separated into the producer and scrounger behaviors.Rule 3 and 4 is mathematically expressed by:

    While FL(FL∈[0,2])indicates that scroungers follow the producers to looking for food.

    The BSA approach derives a FF for obtaining enhanced classification performance.It resolves the positive integer for representing an optimum efficiency of the candidate solution.During this case,the minimized classification error rate was regarded as FF is provided in Eq.(11).Optimum solutions have a lower error rate and worst solution gains an enhanced error rate.

    3 Results and Discussion

    The proposed OCNN-ALSTM technique is tested using two datasets, which not only comprise rush and non-rush hours,along with weekdays and weekends.A primary data set was highway of Los Angeles County(METR-LA).The secondary data set was gathered in main publicly accessible data base, e.g., Caltrans Performance Measurement System (PeMS).In 325 loop detectors from the Bay Area(PEMS-BAY)are chosen.

    Fig.3 demonstrates the MSE analysis of the OCNN-ALSTM technique with existing methods under different time intervals on METR-LA dataset.For instance,under 15 min duration,the results indicated that the ARIMA and FNN techniques have reached ineffective predictive outcomes with the maximum MSE of 64.16 and 62.88 respectively.Next, the STGCN, ST-UNet, GWaveNet, and ST-TrafficNet techniques have obtained moderately closer MSE of 33.64, 27.14, 28.52, and 25.30 respectively.However,the OCNN-ALSTM technique has outperformed the other methods with the least MSE of 9.61.

    Figure 3:MSE comparison of OCNN-ALSTM with baseline techniques on METR-LA dataset

    Fig.4 depicts the RMSE analysis of the OCNN-ALSTM approach with existing techniques under distinct time intervals on METR-LA dataset.The figure highlighted the higher outcomes of the OCNN-ALSTM approach.For instance, with 15 min, the results referred that the ARIMA and FNN methods have reached ineffective predictive outcomes with the maximal RMSE of 8.01 and 7.93 correspondingly.Next,the STGCN,ST-UNet,GWaveNet,and ST-TrafficNet approaches have obtained moderately closer RMSE of 5.80, 5.21, 5.34, and 5.03 correspondingly.But, the OCNNALSTM system has exhibited the other techniques with the least RMSE of 3.10.

    Fig.5 illustrates the MAPE E analysis of the OCNN-ALSTM technique with existing methods under distinct time intervals on METR-LA dataset.The figure highlighted the maximal outcomes of the OCNN-ALSTM model.For sample, with 15 min, the outcomes showed that the ARIMA and FNN approaches have achieved ineffective predictive outcomes with the maximum MAPE of 9.61 and 9.52 correspondingly.Followed by, the STGCN, ST-UNet, GWaveNet, and ST-TrafficNet methodologies have gained reasonably closer MAPE of 7.74,6.96,7.13,and 6.72 respectively.At last,the OCNN-ALSTM system has demonstrated the other methods with the least MAPE of 6.72.

    Figure 4:RMSE comparison of OCNN-ALSTM with baseline approaches on METR-LA dataset

    Figure 5:MAPE comparison of OCNN-ALSTM with baseline approaches on METR-LA dataset

    Fig.6 demonstrates the MSE analysis of the OCNN-ALSTM technique with existing methods under different time intervals on PEMS-BAY dataset.For instance,under 15 min duration,the results indicated that the ARIMA and FNN techniques have reached ineffective predictive outcomes with the maximum MSE of 11.83 and 12.89 respectively.Next,the STGCN,ST-UNet,GWaveNet,and STTrafficNet techniques have obtained moderately closer MSE of 8.64,6.92,7.13,and 7.24 respectively.However,the OCNN-ALSTM technique has outperformed the other methods with the least MSE of 4.41.

    Fig.7 showcases the RMSE analysis of the OCNN-ALSTM technique with recent algorithms under different time intervals on PEMS-BAY dataset.The figure highlighted the superior outcomes of the OCNN-ALSTM system.For sample,with 15 min,the outcomes indicated that the ARIMA and FNN methods have reached ineffective predictive outcomes with the maximal RMSE of 3.44 and 3.59 respectively.Next, the STGCN, ST-UNet, GWaveNet, and ST-TrafficNet techniques have reached moderately closer RMSE of 2.94, 2.63, 2.67, and 2.69 correspondingly.Lastly, the OCNN-ALSTM method has portrayed the other methodologies with a minimum RMSE of 2.10.

    Figure 6:MSE comparison of OCNN-ALSTM with baseline systems on PEMS-BAY dataset

    Figure 7:RMSE comparison of OCNN-ALSTM with baseline systems on PEMS-BAY dataset

    Fig.8 demonstrates the MAPE E analysis of the OCNN-ALSTM technique with existing methods under various time intervals on PEMS-BAY dataset.The figure highlighted the improved outcomes of the OCNN-ALSTM model.For instance,with 15 min,the outcomes represented that the ARIMA and FNN techniques have reached ineffective predictive outcomes with the maximal MAPE of 4.58 and 4.77 correspondingly.Afterward,the STGCN,ST-UNet,GWaveNet,and ST-TrafficNet approaches have obtained reasonably closer MAPE of 3.91,3.50,3.55,and 3.58 correspondingly.Eventually,the OCNN-ALSTM system has outperformed the other methods with a lower MAPE of 2.79.

    Figure 8:MAPE comparison of OCNN-ALSTM with baseline techniques on PEMS-BAY dataset

    Fig.9 demonstrates the predictive result analysis of the OCNN-ALSTM method on the test PEMS-BAY dataset.The results reported that the OCNN-ALSTM technique has accomplished effective prediction outcomes.

    Figure 9: (Continued)

    Figure 9:24 hrs Prediction on Proposed Model on PEMS-BAY dataset

    Finally, a computation time (CT)analysis of the OCNN-ALSTM with recent techniques takes place in Tab.1 [18,19].Fig.10 illustrates the CT analysis of the OCNN-ALSTM technique on the METR-LA dataset.The figure reported that the DCRNN and M1 techniques have reached ineffectual outcomes with a maximum CT of 60.67 and 39.20 min.In addition, the S2S, SA2S, and DARNN techniques have obtained moderately reduced CTs of 1.55,2.12,and 6.15 min respectively.However,the OCNN-ALSTM technique has accomplished least CT of 1.03 min.

    Fig.11 examines the CT analysis of the OCNN-ALSTM approach on the PEMS-BAY dataset.The figure described that the DCRNN and M1 techniques have reached ineffectual outcomes with the maximum CT of 57.48 and 37.17 min.Also, the S2S, SA2S, and DARNN approaches have reached moderately lower CTs of 1.42,2.42,and 5.12 min respectively.At last,the OCNN-ALSTM technique has accomplished minimum CT of 0.56 min.After examining the above mentioned tables and figures,it is apparent that the OCNN-ALSTM technique has resulted in effective outcomes over the other methods.

    Table 1: Computation time analysis of OCNN-ALSTM technique with existing methods

    Figure 10:CT analysis of OCNN-ALSTM technique on METR-LA dataset

    Figure 11:CT analysis of OCNN-ALSTM technique on PEMS-BAY dataset

    4 Conclusion

    In this study,a new OCNN-ALSTM approach has been established for effective traffic prediction.The proposed OCNN-ALSTM technique incorporates pre-processing CNN-ALSTM based prediction and BSA based hyperparameter tuning.The OCNN-ALSTM model was executed for classifying and predicting the traffic data in real time cases and BSA is applied for enhancing the predictive outcomes of the OCNN-ALSTM technique.The experimental validation of the OCNN-ALSTM technique is performed using benchmark datasets and the results are examined under several aspects.The simulation results reported the enhanced outcomes of the OCNN-ALSTM model over the recent methods under several dimensions.In future,the OCNN-ALSTM technique can be extended to the utilization of hybrid metaheuristics for learning rate scheduling process.With the increase of smart electric vehicles, the importance of intelligent transportation systems (ITS)will grow even more in the future.In this situation, the demand for improving the accuracy of the traffic prediction model will increase,and the increase in the predictive power of the OCNN-ALSTM model through the BSA considered in this paper will contribute greatly.

    Funding Statement:This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2021R1A6A1A03039493).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产精品一区二区三区四区久久| 亚洲av.av天堂| 免费高清视频大片| 一本久久中文字幕| 亚洲美女搞黄在线观看 | 久9热在线精品视频| 直男gayav资源| 国产亚洲精品av在线| 两个人的视频大全免费| 有码 亚洲区| 给我免费播放毛片高清在线观看| 久久国产精品人妻蜜桃| av福利片在线观看| 免费电影在线观看免费观看| 青草久久国产| 精品一区二区三区av网在线观看| 九九在线视频观看精品| 91av网一区二区| 国产欧美日韩精品亚洲av| 99riav亚洲国产免费| 极品教师在线视频| 色5月婷婷丁香| 男人舔奶头视频| 少妇的逼好多水| 久久久色成人| 天堂av国产一区二区熟女人妻| 永久网站在线| 久久精品影院6| 嫁个100分男人电影在线观看| 成年免费大片在线观看| 一个人看视频在线观看www免费| 日韩精品青青久久久久久| 久久精品影院6| 亚洲成av人片免费观看| 啦啦啦韩国在线观看视频| 999久久久精品免费观看国产| 国产精品,欧美在线| 最近最新免费中文字幕在线| 色综合欧美亚洲国产小说| 久久久久免费精品人妻一区二区| 深夜a级毛片| 一级毛片久久久久久久久女| 91麻豆av在线| 老熟妇乱子伦视频在线观看| 欧美午夜高清在线| 俺也久久电影网| 尤物成人国产欧美一区二区三区| 国产精品久久久久久久电影| 一二三四社区在线视频社区8| 亚洲五月婷婷丁香| 99精品在免费线老司机午夜| 午夜福利高清视频| 露出奶头的视频| 中文字幕精品亚洲无线码一区| 成人一区二区视频在线观看| 最好的美女福利视频网| 少妇裸体淫交视频免费看高清| 在线看三级毛片| netflix在线观看网站| 国产爱豆传媒在线观看| 国产精品精品国产色婷婷| 中文字幕精品亚洲无线码一区| 久久久久久久久中文| 嫩草影视91久久| 成人特级av手机在线观看| 三级毛片av免费| 午夜视频国产福利| 免费看a级黄色片| 俄罗斯特黄特色一大片| 色综合欧美亚洲国产小说| 亚洲国产精品合色在线| 免费av毛片视频| 97热精品久久久久久| 观看免费一级毛片| 一进一出抽搐gif免费好疼| 一二三四社区在线视频社区8| 午夜精品久久久久久毛片777| 日韩大尺度精品在线看网址| 国产一级毛片七仙女欲春2| 五月玫瑰六月丁香| 在线免费观看不下载黄p国产 | 久久热精品热| 最近视频中文字幕2019在线8| 狂野欧美白嫩少妇大欣赏| 赤兔流量卡办理| 亚洲精品亚洲一区二区| а√天堂www在线а√下载| 老司机福利观看| 国产精品1区2区在线观看.| 99久久精品热视频| 国产一区二区三区在线臀色熟女| 男人舔女人下体高潮全视频| 色5月婷婷丁香| 男人和女人高潮做爰伦理| 精品欧美国产一区二区三| 欧美色视频一区免费| 听说在线观看完整版免费高清| 12—13女人毛片做爰片一| 国产黄片美女视频| 97超级碰碰碰精品色视频在线观看| 国产中年淑女户外野战色| av女优亚洲男人天堂| 国产精品美女特级片免费视频播放器| 国产亚洲欧美98| 精品一区二区三区av网在线观看| 亚洲无线观看免费| 不卡一级毛片| 男人舔女人下体高潮全视频| 九色成人免费人妻av| 亚洲欧美日韩卡通动漫| 成人av在线播放网站| 极品教师在线视频| av专区在线播放| 看十八女毛片水多多多| 此物有八面人人有两片| 日韩欧美三级三区| 亚洲av电影在线进入| 免费在线观看亚洲国产| 99国产精品一区二区三区| 国产精品av视频在线免费观看| 日本一二三区视频观看| 亚洲国产日韩欧美精品在线观看| 国产精品一及| 国内精品久久久久久久电影| 欧美区成人在线视频| 一二三四社区在线视频社区8| 无人区码免费观看不卡| 国产精品1区2区在线观看.| 日韩欧美三级三区| 欧美3d第一页| 亚洲中文字幕日韩| 少妇裸体淫交视频免费看高清| 99热这里只有精品一区| 老熟妇仑乱视频hdxx| 噜噜噜噜噜久久久久久91| 国产成人欧美在线观看| 日本黄大片高清| 淫秽高清视频在线观看| 亚洲第一电影网av| 日韩免费av在线播放| 欧美性感艳星| 午夜久久久久精精品| 亚洲成人久久性| 听说在线观看完整版免费高清| 欧美极品一区二区三区四区| 动漫黄色视频在线观看| 超碰av人人做人人爽久久| 亚洲男人的天堂狠狠| 亚洲成人免费电影在线观看| 深爱激情五月婷婷| 国产在线精品亚洲第一网站| 一级a爱片免费观看的视频| 中亚洲国语对白在线视频| 国产成人a区在线观看| 又粗又爽又猛毛片免费看| 性色av乱码一区二区三区2| 别揉我奶头 嗯啊视频| 永久网站在线| 色播亚洲综合网| 真实男女啪啪啪动态图| 欧美又色又爽又黄视频| 日韩高清综合在线| 特级一级黄色大片| 少妇的逼好多水| 成年女人毛片免费观看观看9| 欧美最新免费一区二区三区 | 国产真实乱freesex| 麻豆一二三区av精品| 亚洲国产精品999在线| 18禁裸乳无遮挡免费网站照片| 看片在线看免费视频| 国产一区二区在线观看日韩| 精品熟女少妇八av免费久了| 国产乱人伦免费视频| 久久人人爽人人爽人人片va | 久久热精品热| 97热精品久久久久久| 成人精品一区二区免费| 男女做爰动态图高潮gif福利片| 一级作爱视频免费观看| 黄色一级大片看看| 亚洲av日韩精品久久久久久密| 精品午夜福利视频在线观看一区| 一进一出抽搐gif免费好疼| 日本a在线网址| 国产高清三级在线| 精华霜和精华液先用哪个| 桃红色精品国产亚洲av| 国产精品乱码一区二三区的特点| 久久久久久久久久黄片| 亚洲男人的天堂狠狠| 成人毛片a级毛片在线播放| 在线观看美女被高潮喷水网站 | 男人舔女人下体高潮全视频| 欧美色欧美亚洲另类二区| h日本视频在线播放| 国产一区二区在线av高清观看| 成年女人毛片免费观看观看9| 国产极品精品免费视频能看的| 听说在线观看完整版免费高清| 国产av一区在线观看免费| 久久热精品热| 国产亚洲av嫩草精品影院| 欧美日本视频| 亚洲熟妇中文字幕五十中出| 亚洲美女搞黄在线观看 | 日本黄大片高清| 一个人免费在线观看电影| 国产大屁股一区二区在线视频| 日韩欧美国产一区二区入口| 中国美女看黄片| 小蜜桃在线观看免费完整版高清| 97超视频在线观看视频| 特大巨黑吊av在线直播| 日本五十路高清| a在线观看视频网站| 欧美日本视频| 精品久久国产蜜桃| 日本三级黄在线观看| 日韩欧美国产一区二区入口| 麻豆国产av国片精品| 天天一区二区日本电影三级| 亚洲熟妇中文字幕五十中出| 日韩欧美国产在线观看| 亚洲欧美日韩无卡精品| 午夜激情欧美在线| 国产一区二区三区视频了| 51午夜福利影视在线观看| 精品久久久久久久久久免费视频| 久久婷婷人人爽人人干人人爱| 午夜激情福利司机影院| 麻豆久久精品国产亚洲av| 嫩草影院新地址| 日韩大尺度精品在线看网址| 国产不卡一卡二| 国产亚洲精品久久久com| 欧美乱色亚洲激情| 精品一区二区免费观看| 69av精品久久久久久| 久久6这里有精品| 此物有八面人人有两片| 国产蜜桃级精品一区二区三区| 欧美黑人巨大hd| 亚洲第一电影网av| 99视频精品全部免费 在线| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美日韩卡通动漫| 高清在线国产一区| 久久国产精品影院| 久久中文看片网| 麻豆国产av国片精品| 赤兔流量卡办理| 2021天堂中文幕一二区在线观| 美女xxoo啪啪120秒动态图 | 成人av一区二区三区在线看| 亚洲av免费在线观看| 中出人妻视频一区二区| 国产午夜精品久久久久久一区二区三区 | 精品久久久久久久久久久久久| 亚洲乱码一区二区免费版| 欧美色视频一区免费| 国产黄片美女视频| 久久6这里有精品| 色综合婷婷激情| 色吧在线观看| 午夜福利成人在线免费观看| 又粗又爽又猛毛片免费看| 午夜福利视频1000在线观看| 国产精品亚洲一级av第二区| 日本 欧美在线| 亚洲无线观看免费| 欧美日韩中文字幕国产精品一区二区三区| 黄色丝袜av网址大全| 精品人妻视频免费看| 能在线免费观看的黄片| 精品一区二区三区人妻视频| 亚洲五月婷婷丁香| 国产亚洲精品久久久久久毛片| 日本a在线网址| 午夜免费男女啪啪视频观看 | 婷婷六月久久综合丁香| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产精品999在线| 国产成人av教育| 成人特级黄色片久久久久久久| 狠狠狠狠99中文字幕| 18+在线观看网站| 亚洲自偷自拍三级| 国产综合懂色| 国产精品,欧美在线| 精品99又大又爽又粗少妇毛片 | 天美传媒精品一区二区| 中文字幕av在线有码专区| 亚洲av美国av| 真实男女啪啪啪动态图| 国产精品免费一区二区三区在线| 直男gayav资源| 欧美在线黄色| 色综合欧美亚洲国产小说| 亚洲真实伦在线观看| 精品一区二区三区视频在线| 亚洲专区国产一区二区| 69av精品久久久久久| 成人永久免费在线观看视频| av在线天堂中文字幕| 99精品在免费线老司机午夜| 亚洲熟妇熟女久久| 国产探花在线观看一区二区| 99在线人妻在线中文字幕| 观看免费一级毛片| 久久婷婷人人爽人人干人人爱| 91麻豆av在线| 3wmmmm亚洲av在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产不卡一卡二| 久久草成人影院| 欧美日本亚洲视频在线播放| 美女高潮的动态| 日韩欧美国产一区二区入口| 老司机午夜十八禁免费视频| 波多野结衣高清无吗| 久9热在线精品视频| 亚洲 欧美 日韩 在线 免费| a在线观看视频网站| 亚洲av二区三区四区| 国产高清有码在线观看视频| 少妇熟女aⅴ在线视频| 亚洲av一区综合| 色综合婷婷激情| 国产一区二区亚洲精品在线观看| 国产在线男女| 舔av片在线| 国产激情偷乱视频一区二区| 亚洲无线在线观看| 人人妻人人看人人澡| 女生性感内裤真人,穿戴方法视频| 国产精品一区二区免费欧美| 深夜精品福利| 国产探花在线观看一区二区| 色哟哟·www| 亚洲欧美日韩高清在线视频| 亚洲熟妇中文字幕五十中出| 欧美潮喷喷水| 女生性感内裤真人,穿戴方法视频| 亚洲三级黄色毛片| 亚洲熟妇熟女久久| 看片在线看免费视频| 国产成人福利小说| 亚洲中文日韩欧美视频| 极品教师在线免费播放| 欧美绝顶高潮抽搐喷水| 久久久久久久精品吃奶| 波野结衣二区三区在线| 成人午夜高清在线视频| 欧美不卡视频在线免费观看| 日韩av在线大香蕉| 在线a可以看的网站| 欧美xxxx黑人xx丫x性爽| 少妇高潮的动态图| 天天躁日日操中文字幕| 久久香蕉精品热| 性色avwww在线观看| 亚洲人成网站在线播放欧美日韩| 亚洲最大成人手机在线| 老熟妇仑乱视频hdxx| 国产真实乱freesex| 一进一出抽搐gif免费好疼| 一级作爱视频免费观看| 此物有八面人人有两片| 国产视频内射| 精华霜和精华液先用哪个| 如何舔出高潮| 黄色女人牲交| 国产成人a区在线观看| 国产精品一区二区三区四区久久| 国产伦精品一区二区三区四那| 国产国拍精品亚洲av在线观看| 欧美最黄视频在线播放免费| 淫秽高清视频在线观看| 熟妇人妻久久中文字幕3abv| 免费人成视频x8x8入口观看| 国产视频一区二区在线看| a在线观看视频网站| 亚洲国产高清在线一区二区三| a在线观看视频网站| 亚洲电影在线观看av| 亚洲av免费高清在线观看| 日本黄大片高清| 99精品久久久久人妻精品| 每晚都被弄得嗷嗷叫到高潮| 免费在线观看成人毛片| 美女大奶头视频| 如何舔出高潮| 国产精品久久久久久精品电影| 国产在视频线在精品| 精品乱码久久久久久99久播| 啦啦啦韩国在线观看视频| 国产一区二区亚洲精品在线观看| 搡老熟女国产l中国老女人| 国内毛片毛片毛片毛片毛片| 少妇高潮的动态图| 一本久久中文字幕| 久久久久久九九精品二区国产| 日韩有码中文字幕| 亚洲美女黄片视频| 亚洲美女搞黄在线观看 | 3wmmmm亚洲av在线观看| 精品人妻一区二区三区麻豆 | 亚洲第一欧美日韩一区二区三区| 此物有八面人人有两片| 国产淫片久久久久久久久 | 黄片小视频在线播放| 成人av在线播放网站| 真人做人爱边吃奶动态| avwww免费| 狂野欧美白嫩少妇大欣赏| 看十八女毛片水多多多| 舔av片在线| 免费在线观看日本一区| 亚洲片人在线观看| 成年人黄色毛片网站| 少妇高潮的动态图| 黄色视频,在线免费观看| 又黄又爽又刺激的免费视频.| eeuss影院久久| 18禁黄网站禁片午夜丰满| 国产午夜福利久久久久久| 亚洲国产精品成人综合色| 一个人看的www免费观看视频| 成人无遮挡网站| 亚洲第一区二区三区不卡| 日韩有码中文字幕| 少妇人妻一区二区三区视频| 日本在线视频免费播放| 男女床上黄色一级片免费看| 国产在线男女| 欧美成人性av电影在线观看| 亚洲人成网站在线播放欧美日韩| 熟女人妻精品中文字幕| 久久国产乱子免费精品| 直男gayav资源| 十八禁网站免费在线| 免费一级毛片在线播放高清视频| 极品教师在线免费播放| h日本视频在线播放| 久久性视频一级片| 婷婷精品国产亚洲av在线| 久久草成人影院| 精品一区二区免费观看| 窝窝影院91人妻| 欧美性感艳星| .国产精品久久| 真人一进一出gif抽搐免费| 日韩人妻高清精品专区| 精品日产1卡2卡| 精品一区二区免费观看| 亚洲三级黄色毛片| 欧美日本视频| 午夜福利免费观看在线| 757午夜福利合集在线观看| 日韩欧美精品免费久久 | 欧美黄色淫秽网站| 他把我摸到了高潮在线观看| 日日摸夜夜添夜夜添小说| 欧美性猛交╳xxx乱大交人| 成人高潮视频无遮挡免费网站| 亚洲欧美日韩卡通动漫| 亚洲一区二区三区色噜噜| 很黄的视频免费| 五月伊人婷婷丁香| 精品一区二区三区av网在线观看| 欧美性猛交╳xxx乱大交人| 亚洲色图av天堂| 国产精品嫩草影院av在线观看 | 他把我摸到了高潮在线观看| 国产激情偷乱视频一区二区| 成人午夜高清在线视频| 身体一侧抽搐| 久久精品国产99精品国产亚洲性色| 国产精品av视频在线免费观看| 日韩大尺度精品在线看网址| 超碰av人人做人人爽久久| 在线观看66精品国产| 最近在线观看免费完整版| 日本五十路高清| 久久精品国产亚洲av天美| 国产精品一区二区三区四区久久| 国产成+人综合+亚洲专区| 欧美成人a在线观看| 人妻夜夜爽99麻豆av| 国产视频内射| 久久精品国产清高在天天线| 精品久久久久久久人妻蜜臀av| 午夜亚洲福利在线播放| 久久香蕉精品热| 中文字幕精品亚洲无线码一区| 午夜福利欧美成人| 啦啦啦观看免费观看视频高清| 我要看日韩黄色一级片| 小说图片视频综合网站| 国内精品久久久久久久电影| 色综合亚洲欧美另类图片| 精品久久久久久久人妻蜜臀av| av视频在线观看入口| 亚洲中文字幕一区二区三区有码在线看| xxxwww97欧美| 男女做爰动态图高潮gif福利片| 欧美潮喷喷水| 91久久精品国产一区二区成人| 麻豆久久精品国产亚洲av| 一级av片app| 亚洲精品色激情综合| 国产精品不卡视频一区二区 | 又粗又爽又猛毛片免费看| 校园春色视频在线观看| 色哟哟·www| 99久久九九国产精品国产免费| 久9热在线精品视频| 亚洲精品日韩av片在线观看| 夜夜躁狠狠躁天天躁| 欧美性感艳星| 欧美三级亚洲精品| 国产精品亚洲av一区麻豆| 国产91精品成人一区二区三区| 9191精品国产免费久久| 国模一区二区三区四区视频| 日本五十路高清| 尤物成人国产欧美一区二区三区| or卡值多少钱| 久久久久国产精品人妻aⅴ院| 亚洲最大成人手机在线| 一级a爱片免费观看的视频| 午夜精品一区二区三区免费看| 一个人免费在线观看电影| 国产一级毛片七仙女欲春2| 一级av片app| 免费高清视频大片| 少妇高潮的动态图| 日韩 亚洲 欧美在线| 婷婷六月久久综合丁香| 免费av观看视频| 久久天躁狠狠躁夜夜2o2o| 大型黄色视频在线免费观看| 欧美高清性xxxxhd video| 久久久久久国产a免费观看| 国语自产精品视频在线第100页| 精品人妻熟女av久视频| 九九久久精品国产亚洲av麻豆| 国产伦精品一区二区三区四那| 天天躁日日操中文字幕| 国产精品影院久久| 国产大屁股一区二区在线视频| 偷拍熟女少妇极品色| 亚洲精品在线美女| 免费看日本二区| 少妇的逼好多水| 国产白丝娇喘喷水9色精品| 国产精品美女特级片免费视频播放器| 九九久久精品国产亚洲av麻豆| 99久久99久久久精品蜜桃| 成人无遮挡网站| 国产三级在线视频| 夜夜躁狠狠躁天天躁| 成人午夜高清在线视频| 大型黄色视频在线免费观看| av黄色大香蕉| 国产伦人伦偷精品视频| av在线蜜桃| 免费黄网站久久成人精品 | 激情在线观看视频在线高清| 狂野欧美白嫩少妇大欣赏| 国产欧美日韩一区二区三| 国产亚洲精品av在线| 久久九九热精品免费| 中文字幕人成人乱码亚洲影| 丁香六月欧美| 色精品久久人妻99蜜桃| 亚洲精品在线观看二区| 日本一本二区三区精品| 女人十人毛片免费观看3o分钟| 91午夜精品亚洲一区二区三区 | 国产午夜福利久久久久久| 精品午夜福利视频在线观看一区| 国产精品日韩av在线免费观看| 精品不卡国产一区二区三区| 又爽又黄无遮挡网站| 国产成人福利小说| 国产老妇女一区| 久久草成人影院| 国产三级黄色录像| 久久国产精品影院| 亚洲精品456在线播放app | 国产中年淑女户外野战色| 美女黄网站色视频| 黄色配什么色好看| 无人区码免费观看不卡| 97超视频在线观看视频| 成人国产综合亚洲| 欧美色欧美亚洲另类二区| 波多野结衣高清作品| 黄色日韩在线| 欧美黄色淫秽网站| 国产成人福利小说| 熟女电影av网| 亚洲av电影不卡..在线观看| 亚洲无线在线观看| 欧美日韩黄片免| 日本三级黄在线观看| 免费观看人在逋| 中文字幕av成人在线电影| 国产色爽女视频免费观看| 欧美在线一区亚洲| 日本与韩国留学比较| 怎么达到女性高潮| 最后的刺客免费高清国语|