• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy Aware Secure Cyber-Physical Systems with Clustered Wireless Sensor Networks

    2022-11-11 10:48:02MasoudAlajmiMohamedNourSiwarBenHajHassineMimounaAbdullahAlkhonainiManarAhmedHamzaIshfaqYaseenAbuSarwarZamaniandMohammedRizwanullah
    Computers Materials&Continua 2022年9期

    Masoud Alajmi,Mohamed K.Nour,Siwar Ben Haj Hassine,Mimouna Abdullah Alkhonaini,Manar Ahmed Hamza,Ishfaq Yaseen,Abu Sarwar Zamani and Mohammed Rizwanullah

    1Department of Computer Engineering,College of Computers and Information Technology,Taif University,Taif,21944,Saudi Arabia

    2Department of Computer Science,College of Computing and Information System,Umm Al-Qura University,Saudi Arabia

    3Department of Computer Science,College of Science&Art at Mahayil,King Khalid University,Abha,62529,Saudi Arabia

    4Department of Computer Science,College of Computer and Information Sciences,Prince Sultan University,Saudi Arabia

    5Department of Computer and Self Development,Preparatory Year Deanship,Prince Sattam bin Abdulaziz University,AlKharj,Saudi Arabia

    Abstract: Recently,cyber physical system(CPS)has gained significant attention which mainly depends upon an effective collaboration with computation and physical components.The greatly interrelated and united characteristics of CPS resulting in the development of cyber physical energy systems(CPES).At the same time, the rising ubiquity of wireless sensor networks(WSN)in several application areas makes it a vital part of the design of CPES.Since security and energy efficiency are the major challenging issues in CPES,this study offers an energy aware secure cyber physical systems with clustered wireless sensor networks using metaheuristic algorithms(EASCPSMA).The presented EASCPS-MA technique intends to attain lower energy utilization via clustering and security using intrusion detection.The EASCPSMA technique encompasses two main stages namely improved fruit fly optimization algorithm (IFFOA)based clustering and optimal deep stacked autoencoder(OSAE)based intrusion detection.Besides,the optimal selection of stacked autoencoder(SAE)parameters takes place using root mean square propagation (RMSProp)model.The extensive performance validation of the EASCPS-MA technique takes place and the results are inspected under varying aspects.The simulation results reported the improved effectiveness of the EASCPS-MA technique over other recent approaches interms of several measures.

    Keywords: Intrusion detection system; metaheuristics; stacked autoencoder;deep learning;cyber physical energy systems;clustering;wsn

    1 Introduction

    Advances in technologies have been shifting computation to a wide-ranging of devices,involving phones, toys, and home appliances.Besides improving their computational abilities, advancements are also enabling this device to communicate with one another for achieving common or individual objectives which they are unable to attain individually [1].These abilities are bringing novel development and research opportunity to a wide-ranging of application fields, like intelligent road safety, smart grid, and healthcare [2].Also, they are bringing additional problems regarding the control of the physical environments and computational abilities have become an essential component.The idea of Cyber Physical System (CPS)has developed as a potential tool in which the operation of the engineered and physical schemes is integrated, monitored, controlled, and coordinated with the help of communication and computing core [3,4].In this technique, embedded devices, sensors,and actuators are networked for controlling, sensing, and monitoring the physical environment.The growing pervasiveness of wireless sensor networks (WSN)in various applications makes this technology a significant element of CPS design[3].WSN is mainly deployed as interfaces where situ data are gathered from or about the physical environments and then transmitted to the interfaces and cyber environment where novel parameters or instructions are injected from the cyber environments to the physical world.

    Previously, various clustering protocol focuses on the multihop inter-clustering [5] among the base station(BS)and the cluster heads(CH)for increased durability of the network,but only a few considered the intra-cluster transmission (among their CH and devices).The structure of clustering process is shown in Fig.1.Existing intra-clustering systems [6].Usually consider direct connections among their CHs and Cluster Members(CMs),hence, a considerable amount of clusters is created.In a largescale network,the distance among their CHs and nodes mayn’t be comparatively short for transmission.Thus,direct transmission becomes obstructive,and k-hop intra-clustering transmission must be used for ensuring the network scalability.Even though information and communication technology(ICT)is progressed highly in CPS,but still cyber-security is considering a major problem in various fields.The most complex vulnerability in CPS is intrusion hazard.Over the last few years,they paid close attention to the development of CPS security [7].Intrusion detection system (IDS)is the most significant application to maximize the security of CPS.Usually,The IDS method is employed to efficiently avoid attacks.In 1980,Anderson proposed the concept of IDS,which is followed by a great amount of researchers on IDS.Generally,IDS methods are classified into 2 main categories:anomaly and misuse predictions.At first,feature of familiar attacks is employed for misuse predictions.Now,the audited data is associated with the dataset and stated as an intrusion.Though misuse detector generates the minimal false positive(FP)rate,this detector has huge drawbacks.For instance,using this detector, maximizing and developing a wide-ranging dataset represents a challenging task, and familiar attacks are predicted[8-10].

    Otoum et al.[11] developed a relative analysis of Artificial Intelligence (AI)-driven IDS for wirelessly connected sensor which tracks critical application.Particularly proposed a thorough review of the usage of machine learning(ML),deep learning(DL),and reinforcement learning(RL)solutions to recognize intrusion behaviors in the gathered traffics.Liu et al.[12] examine a hierarchically distributed IDS which searches for achieving the all-around security protection of CPS as per the system architecture and attack kinds.This could implement a joint recursive prediction of measurement noise covariance matrices, dynamic system state, and time-varying process by the variation Bayes approximation architecture.

    Figure 1:Overview of clustering process in CPS

    In [13], a heterogeneous clustering based secured routing system is presented which offers trust based secured network for detecting black hole and wormhole attacks created by malicious node existence in wireless Adhoc network.The experimental results show that the presented method identifies the malicious node efficiently in wireless Adhoc network.Alqahtani et al.[14] developed a hierarchical DL scheme based on big data for additionally boosting the efficacy of IDS-based ML method.It employs content-functional and behavioral functionality to capture content details and network traffic.All the DL models in the presented architecture aim at learning the certain data distribution in an individual cluster.Quincozes et al.[15] investigate how Feature Selection might enhance IDS precision.Especially, presented and adopted Greedy Randomized Adaptive Search Procedure(GRASP)metaheuristics model for improving the classification accuracy in CPS perception layers.Singh et al.[16]focused on faster prevention and detection of intrusion with an ML method based Gaussian Process Regression (GPR)technique.Also developed three models based feature scaling for precise estimation of k-barrier coverage possibility.

    This paper presents energy aware secure cyber physical systems with clustered wireless sensor networks using metaheuristic algorithm(EASCPS-MA).The presented EASCPS-MA technique plans to reach lower energy utilization via clustering and security using intrusion detection.The EASCPSMA technique encompasses two main stages namely improved fruit fly optimization algorithm(IFFOA)based clustering and optimal deep stacked autoencoder(OSAE)based intrusion detection.Besides,the optimal selection of stacked autoencoder(SAE)parameters takes place using root mean square propagation (RMSProp)model.The extensive performance validation of the EASCPS-MA technique takes place and the results are inspected under varying aspects.

    The rest of the paper is organized as follows.Section 2 introduces the proposed model and Section 3 validates the performance of the proposed model.Lastly,Section 4 draws the conclusion.

    2 The Proposed Model

    In this study, an effective EASCPS-MA technique has been presented to reach lower energy utilization via clustering and security using intrusion detection in CPES environment.The EASCPSMA technique encompasses two main stages namely IFFOA based clustering and SAE based intrusion detection.Besides,the optimal selection of SAE parameters takes place using RMSProp model.The detailed processes involved in two stages are offered in the succeeding sections.

    2.1 Process Involved in IFFOA Based Clustering Technique

    Basic FOA is stimulated by the foraging behavior of fruit flies(FFs).The foraging performance of FFs are divided as to visual and olfactory search stage.During the olfactory foraging,FF places and search food source nearby the population,after evaluating the smell concentration(SC)respective for all feasible food source.During the visual foraging step,an optimum food source with higher odor concentration value is revealed,afterwards the FF group flies near it[17].Based on the food search features of FF swarm,the FOA is separated as to many stages as follows:

    Initialization the parameters of FOA like the maximal iteration number the population size, a primary FF swarm place(X-axis,Y-axis),and the arbitrary flight distance range.

    To provide an arbitrary place(Xi,Yi)and distance to food search of individual FF,whereisignifies the population size.

    Primarily,compute the distance of food place to origin(D).Afterward,calculate the SC judgment value(S)that is the reciprocal of distance of the food place to the origins.

    Exchange the SC judgment value(S)with SC judgment function(is also named as FF)for finding the SC(Smell)of individual place of FF.

    Define the FF with higher SC and the equivalent place amongst the FF swarm.

    Maintain the maximum SC value and co-ordinatesxandy.Afterward,the FF swarm flies nearby the place with higher SC value.

    The circulation stops if the SC is no longer higher than the preceding iterative SC or once the iterative number obtains the higher iterative number.

    Rather than creating novel solution by altering each decision variable of the population locations such as the original FOA,IFFOA creates novel solution by arbitrarily electing indexes to improve the search.

    where,λsignifies the searching radius of FF in all the iterations,λmaxrepresent the maximal searching radius,andλmindenotes the minimal searching radius.Iter denotes the existing number of iterations,and Max-Iterindicates the maximal number of iterations.

    d∈{1,2,...,n}shows an index arbitrarily chosen from uniformly distributed decision variable,nimplies the dimensions of the solutions,rand()means an arbitrary value in[0,1],and the position ofxi,jis upgraded using Eq.(2).Δjsignifies the value of the optimum solution in thejthparameter.The proposed IFFOA based clustering method focuses on dividingnsensors as to optimal or existing number of clustersCopt.In the clustering, the neighboring nodes have been chosen for CH using Euclidean distance that generate user which minimal transmission range outcomes from decreased energy consumption as illustrated in Fig.2.However,it can be difficult to identify the distance from mobile conditions.To solve the issue,the distance for adjacent Node is determined by MEEDG-CSN technique.For creating and selecting CH,the IFFOA based clustering method consider this problem as maximization problem and derive as FF contain degree(DEG),residual energy(RDE),and average distance to neighbors(ADTN).The fitnessfunction(FF)was defined by:

    Figure 2:Overall pipeline of EASCPS-MA technique

    Whereasα+β+γ= 1.Mostly,the RDE of sensor node(SN)(x)in the transmission ofkbit data to get SN(y)i.e.,located at distanced,as follows

    In whichErepresent the present energy level of SN andETdenotes the energy spent on data transmission.

    WhileEedetermines the energy of electron andEaindicates the amplified energy,ERimplies the energy consumed on data reception as follows

    Furthermore, the AADTN indicates the average value of distance of the neighboring SN from their 1-hop transmission range.

    At a time t,the DEG denotes the SN degree represents the number of neighboring nodes present to SN as:

    2.2 Process Involved in OSAE Based Intrusion Detection Technique

    At this stage,the OSAE model can be applied for the detection and classification of intrusions.The SAE employed in this work was proposed by several Logistic Regression(LR)and autoencoder(AE)layers[18].The AE is a basic unit of SAE classification model.It is made up of decode or reconstruction phase(Layer 2 to Layer 3)and encoder phase(Layer 1 to Layer 2).This procedure is shown as(1)and(2),whereasWandWT(transpose of W)represent weight matrix ofbandb′mode are 2 dissimilar bias vectors of this modesis determined as non-linearity function like sigmoid function employed;yindicates a latent parameter implication of input layerx,andzis considered as a prediction ofxgivenyhas same shape asx.

    Several AE layer is jointly stacked in unsupervised pretraining stage (Layer 1 to 4).The second depiction′y′processed by AE was employed as input to forthcoming AE layer.The layer undertakes training as AE by decreasing reconstruction error, which is calculated concurrently [15].Next,reconstructing error (loss functionL(x,z))is evaluated in huge iteration.Now, it employs crossentropy to measure reconstructing errors,as shown below,whereasxkandzkrepresentkrhelement ofxandz,respectively.

    The reconstructing error is constrained under the application of gradient descent (GD).The weights should be upgraded according to the Eqs.(23)-(25)whereasLdenotes a learning rate.

    When the layer is pre-trained,a model is supervised under finetuning phase.From supervised finetuning phase,an LR layer was added in an output layer of unsupervised pretrained stage.In the study,probability with input vectorx(Layer 4)derives under the classi,in whichydetermines a forecasted class of input vectorx,·Wandbillustrates a weight matrix and a bias vector, respectively,WjandWjindicates theirhandjthrow of matrixW,respectively;bjandbjillustratesithandjthpart of vector,bindividually, and softmax is a non-linearity function employed in the study.A class with maximal probability is assumed as prediction labelypredof input vectorx,as follows.

    For optimal parameter tuning of the SAE model,the RMSProp model can be utilized to increase the detection rate.is an optimization method developed in [19].To additionally enhance the loss function in the upgrade of the problems of excessive swing and accelerate the convergence function,RMSProp method utilized the differential squared weighted average for the gradient of bias b and weight W.The sum of squares of past gradient is small owing to gentler direction, which results in small learning drop.

    whereassdwandsdbrepresent the gradient and gradient momentum gathered using the loss function in the preceding iteration t - 1 andβvector represent an exponential of gradient.To prevent the denominator becomes 0,εis going to be a smaller number.RMSProp assists in eliminating the direction of the larger swing and utilized for correcting the swing thus the swing in all the dimensions are small.At the same time, it makes the network function converge fast.RMSProp is same as momentum in that it removes the wobble in gradient descent, includes minibatch gradient descent,and permits to utilization of a high learning rate a to accelerate learning model.

    Algorithm 1:Fruit fly optimization algorithm Initialize parameters NP,T,randValue;Arbitrarily initialize population location(X -axis,Yaxis);Xi =Xaxis+rand_Value;Yi =Yaxis+rand_Value;Dist=images/BZ_1248_443_677_481_723.png+Y2 Si = 1 X2i i;Dist;Smelli =fitn(Si);[best_Smell,best_Index]=min m(Smell);smell_Best=best_Smell;Xi =Xaxis+rand_Value;Yi =Yaxis+rand_Value;while t <T Xi =Xaxis+rand_Value;Yi =Yaxis+rand_Value;Dist=images/BZ_1248_592_1263_630_1309.png+Y2 Si = 1 X2i i;Dist;Smelli =fitn(Si);[best_Smell,best_Index]=min(Smell);If[best_Smell,best_index]=min(Smell);smell_Best=best_Smell X =X(best_Index);Y =Y(best_Index);End if t=t+1;End while

    3 Experimental Validation

    This section investigates the performance analysis of the EASCPS-MA technique with recent methods [19,20] in terms of different measures.Tab.1 and Fig.3 offer the average number of CHs (ANCH)analysis of the EASCPS-MA technique with other methods under dissimilar nodes.The results show that the EASCPS-MA technique has offered lower ANCH under all nodes.For instance,on 200 nodes,the EASCPS-MA technique has provided a minimum ANCH of 56 whereas the multihop low energy adaptive clustering hierarchy (MH_LEACH), Mezghani, and Distributed Clustering based 2-Hop Connectivity (DC2HC)techniques have attained maximum ANCH of 149,78,and 72 respectively.Also,on 1000 nodes,the EASCPS-MA technique has gained a reduced ANCH of 76 whereas the MH_LEACH,Mezghani,and D2MHC techniques have obtained increased ANCH of 235,110,and 98 respectively.

    Tab.2 and Fig.4 depict the average energy consumed (ACM)analysis of the EASCPS-MA technique with existing techniques under dissimilar nodes.The experimental values defined that the EASCPS-MA technique has resulted in decreased ACM under all nodes.For instance, on 200 nodes, the EASCPS-MA technique has attained a lower ACM of 4.92J whereas the MH_LEACH,Mezghani,and D2MHC techniques have provided higher ACM of 8.03J,16.39J,and 9.20J respectively.In addition,on 1000 nodes,the EASCPS-MA technique has resulted to least ACM of 18.91J whereas the MH_LEACH,Mezghani,and D2MHC techniques have reached to raised ACM of 51.16J,49.22J,and 35.23J respectively.

    Table 1: ANCH analysis of EASCPS-MA technique

    Figure 3:Comparative ANCH analysis of EASCPS-MA technique

    Table 2: AEC analysis of EASCPS-MA technique

    Figure 4:Comparative AEC analysis of EASCPS-MA technique

    The first node death (FNDH)and last node death (LNDH)analysis of the EASCPS-MA technique is inspected in Tab.3.Fig.5 examines the FNDH analysis of the EASCPS-MA technique under distinct nodes and the experimental results reported that the EASCPS-MA technique has gained improved lifetime.For instance, with 200 nodes, the EASCPS-MA technique has reached improved FNDH of 1476 rounds whereas the MH_LEACH,Mezghani,and D2MHC techniques have attained reduced FNDH of 1476,1709,and 1969 rounds respectively.Moreover,on 1000 nodes,the EASCPS-MA technique has provided maximum FNDH of 2922 rounds whereas the MH_LEACH,Mezghani, and D2MHC techniques have accomplished minimum FNDH of 1697, 2565, and 2723 rounds respectively.

    Table 3: FNDH and LNDH analysis of EASCPS-MA technique

    Figure 5:Comparative FNDH analysis of EASCPS-MA technique

    Fig.6 observes the LNDH analysis of the EASCPS-MA technique under distinctive nodes and the simulation outcomes revealed that the EASCPS-MA technique has extended to enhanced lifetime.For instance,with 200 nodes,the EASCPS-MA technique has demonstrated better LNDH of 29925 rounds whereas the MH_LEACH,Mezghani,and D2MHC techniques have attained reduced LNDH of 23901, 23270, and 29504 rounds respectively.Furthermore, on 1000 nodes, the EASCPS-MA technique has provided superior LNDH of 21379 rounds whereas the MH_LEACH,Mezghani,and D2MHC techniques have depicted inferior LNDH of 15496,11363,and 16827 rounds respectively.

    Figure 6:Comparative LNDH analysis of EASCPS-MA technique

    An overall IDS results of the EASCPS-MA technique on the detection of several attacks are provided in Tab.4 and Fig.7.The results denoted that the EASCPS-MA technique has identified the DoS attacks with thecn,recl,Fmeas,andaccuyof 97.25%,98.75%,98.39%,and 98.56%.Eventually,the EASCPS-MA technique has detected the root to local(R2l)attacks with thecn,recl,Fmeas,andaccuyof 98.785%,98.82%,99.44%,and 99.12%.Meanwhile,the EASCPS-MA technique has identified the User to Root(U2R)attacks with thecn,recl,Fmeas,andaccuyof 98.20%,99.14%,98.77%,and 99.15%.

    Table 4: Intrusion detection analysis of EASCPS-MA technique

    Figure 7:Overall intrusion detection analysis of EASCPS-MA technique

    Finally, an overall comparison study of the intrusion results offered by the EASCPS-MA technique with recent methods in Tab.5 and Fig.8.The results show that the decision tree(DT)model has gained least outcome with the minimal values of thecn,recl,Fmeas, andaccuy.At the same time,the improved deep belief network(IDBN),random forest(RF),and support vector machine(SVM)models have shown moderately closer values ofcn,recl,Fmeas,andaccuy.

    Table 5: Comparative intrusion detection analysis of EASCPS-MA technique

    Figure 8:Comparison study of intrusion detection results of EASCPS-MA technique

    Likewise, the PT-DSAE model has accomplished considerable outcomes with thecn,recl,Fmeas,andaccuyof 97.95%,92.16%,90.89%,and 96.18%respectively.However,the EASCPS-MA technique has outperformed the other methods with thecn,recl,Fmeas,andaccuyof 98.45%,99.15%,99.16%,and 99.09%respectively.By observing the analysis of the detailed results,it is confirmed that the EASCPSMA technique can accomplish improved clustering and intrusion detection performance compared to recent methods interms of several measures.

    4 Conclusion

    In this study, an effective EASCPS-MA technique has been presented to reach lower energy utilization via clustering and security using intrusion detection in CPES environment.The EASCPSMA technique encompasses two main stages namely IFFOA based clustering and OSAE based intrusion detection.Besides, the optimal selection of SAE parameters takes place using RMSProp model.The extensive performance validation of the EASCPS-MA technique takes place and the results are inspected under varying aspects.The simulation results reported the improved effectiveness of the EASCPS-MA technique over other recent approaches interms of several measures.Therefore,the EASCPS-MA technique can be used as an effective tool for accomplishing energy efficiency and security.In future,the EASCPS-MA technique can be extended to the design of hybrid DL model to enhance security.

    Funding Statement:This study was funded by the Deanship of Scientific Research, Taif University Researchers Supporting project number(TURSP-2020/195),Taif University,Taif,Saudi Arabia.The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number (RGP 2/25/43).The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR02).The authors would like to acknowledge the support of Prince Sultan University for paying the Article Processing Charges(APC)of this publication.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    韩国高清视频一区二区三区| 秋霞伦理黄片| 最近中文字幕高清免费大全6| 精华霜和精华液先用哪个| 日本免费在线观看一区| 国产黄片美女视频| 欧美激情极品国产一区二区三区 | 人人妻人人澡人人看| 一个人看视频在线观看www免费| 精品亚洲乱码少妇综合久久| 熟妇人妻不卡中文字幕| 国产黄色视频一区二区在线观看| 亚洲av免费高清在线观看| 欧美少妇被猛烈插入视频| 国产男女内射视频| 99热网站在线观看| 国产一区二区在线观看av| 女人精品久久久久毛片| 最黄视频免费看| 精品一品国产午夜福利视频| 乱码一卡2卡4卡精品| 啦啦啦在线观看免费高清www| 亚洲国产精品一区二区三区在线| 欧美成人午夜免费资源| 免费观看无遮挡的男女| 人人妻人人澡人人看| av天堂中文字幕网| 亚洲av在线观看美女高潮| 99九九在线精品视频 | 久久午夜福利片| 草草在线视频免费看| 又黄又爽又刺激的免费视频.| 最近的中文字幕免费完整| 国产av一区二区精品久久| 久久久久久久亚洲中文字幕| 91久久精品国产一区二区成人| 亚洲熟女精品中文字幕| 免费av不卡在线播放| 国产日韩欧美视频二区| 色哟哟·www| 亚洲激情五月婷婷啪啪| 国产精品不卡视频一区二区| 极品教师在线视频| 国产免费视频播放在线视频| 午夜av观看不卡| 亚洲中文av在线| 男人和女人高潮做爰伦理| 久久久国产一区二区| 亚洲精品日韩av片在线观看| 亚洲经典国产精华液单| h视频一区二区三区| 日本91视频免费播放| 国产无遮挡羞羞视频在线观看| 国产成人a∨麻豆精品| 女人精品久久久久毛片| 夫妻性生交免费视频一级片| 新久久久久国产一级毛片| 亚洲高清免费不卡视频| 午夜影院在线不卡| 欧美精品亚洲一区二区| 9色porny在线观看| 国内揄拍国产精品人妻在线| 久久鲁丝午夜福利片| 国产亚洲av片在线观看秒播厂| 亚洲四区av| 国产精品一区二区在线不卡| 日本av免费视频播放| 日韩在线高清观看一区二区三区| 国产精品久久久久久久久免| 9色porny在线观看| 看非洲黑人一级黄片| 欧美日本中文国产一区发布| 免费黄网站久久成人精品| 男男h啪啪无遮挡| 亚州av有码| 人妻夜夜爽99麻豆av| 国产又色又爽无遮挡免| 国产69精品久久久久777片| 一级毛片久久久久久久久女| 26uuu在线亚洲综合色| 最近中文字幕2019免费版| 美女中出高潮动态图| 免费黄色在线免费观看| 国产精品三级大全| 国产 一区精品| 久久久久久久久久久免费av| 老熟女久久久| 国产成人a∨麻豆精品| 色婷婷av一区二区三区视频| 高清黄色对白视频在线免费看 | 国产精品99久久久久久久久| 亚洲人成网站在线观看播放| 中文字幕亚洲精品专区| 午夜老司机福利剧场| 国产亚洲午夜精品一区二区久久| 国产精品福利在线免费观看| 男女免费视频国产| 午夜福利,免费看| 久久精品国产a三级三级三级| 久久久久网色| 久久国内精品自在自线图片| 最近中文字幕高清免费大全6| 交换朋友夫妻互换小说| 国产成人精品无人区| 91午夜精品亚洲一区二区三区| 日本黄大片高清| 男女免费视频国产| 日日啪夜夜撸| 亚洲av欧美aⅴ国产| 国产精品不卡视频一区二区| 日本91视频免费播放| 曰老女人黄片| 最近2019中文字幕mv第一页| 亚洲国产精品国产精品| 日韩电影二区| 国产精品一区二区在线观看99| 日韩伦理黄色片| 亚洲av福利一区| 日产精品乱码卡一卡2卡三| 中国美白少妇内射xxxbb| 亚洲久久久国产精品| 国产一区二区三区综合在线观看 | 男女啪啪激烈高潮av片| 成人黄色视频免费在线看| 最近最新中文字幕免费大全7| 色吧在线观看| 国产视频首页在线观看| 91久久精品国产一区二区成人| 日韩免费高清中文字幕av| 99热6这里只有精品| 国产黄色视频一区二区在线观看| 三上悠亚av全集在线观看 | 亚洲精品自拍成人| 日韩av在线免费看完整版不卡| 色网站视频免费| 欧美最新免费一区二区三区| 亚洲伊人久久精品综合| 国产探花极品一区二区| av福利片在线观看| www.av在线官网国产| 永久免费av网站大全| 欧美精品人与动牲交sv欧美| 3wmmmm亚洲av在线观看| 精品国产一区二区久久| 777米奇影视久久| 亚洲av福利一区| 亚洲av电影在线观看一区二区三区| 成人黄色视频免费在线看| 亚洲av欧美aⅴ国产| 国产永久视频网站| 国产伦理片在线播放av一区| 亚洲久久久国产精品| 国产精品99久久久久久久久| 一个人看视频在线观看www免费| 日本黄大片高清| 日韩中字成人| 丰满乱子伦码专区| 99久久综合免费| 99热这里只有是精品在线观看| 纯流量卡能插随身wifi吗| 免费人成在线观看视频色| 十八禁网站网址无遮挡 | 99热网站在线观看| 久久97久久精品| 超碰97精品在线观看| 久久久久久久大尺度免费视频| 欧美精品高潮呻吟av久久| 在线播放无遮挡| 国产欧美亚洲国产| 国产成人精品久久久久久| 在线观看免费日韩欧美大片 | 有码 亚洲区| 免费观看的影片在线观看| 日本欧美国产在线视频| 欧美 亚洲 国产 日韩一| 熟妇人妻不卡中文字幕| 日韩在线高清观看一区二区三区| 男女啪啪激烈高潮av片| 伦理电影免费视频| 韩国av在线不卡| 欧美变态另类bdsm刘玥| 久久久久久久久久久久大奶| 爱豆传媒免费全集在线观看| 国产亚洲最大av| 国产精品嫩草影院av在线观看| 亚洲国产精品国产精品| 九九在线视频观看精品| 久久久久视频综合| 精品少妇内射三级| 亚洲国产精品成人久久小说| 日韩一区二区三区影片| 国产一区有黄有色的免费视频| 91成人精品电影| 五月天丁香电影| 国内精品宾馆在线| 亚洲国产色片| 久久久久久人妻| 国产又色又爽无遮挡免| 国产成人精品无人区| 黑丝袜美女国产一区| 免费观看av网站的网址| 欧美三级亚洲精品| 天堂中文最新版在线下载| av天堂中文字幕网| 99精国产麻豆久久婷婷| 久久国产精品大桥未久av | 少妇人妻久久综合中文| 国产成人91sexporn| 一级毛片 在线播放| 国产精品欧美亚洲77777| 国产黄片视频在线免费观看| 狂野欧美激情性bbbbbb| 蜜桃久久精品国产亚洲av| 18+在线观看网站| 色94色欧美一区二区| 午夜日本视频在线| 亚洲怡红院男人天堂| 搡老乐熟女国产| 91精品国产国语对白视频| 国产 精品1| 亚洲国产毛片av蜜桃av| 大又大粗又爽又黄少妇毛片口| 国产毛片在线视频| 全区人妻精品视频| 亚洲真实伦在线观看| 亚洲精品色激情综合| 国产日韩一区二区三区精品不卡 | 在线观看av片永久免费下载| 美女国产视频在线观看| 在线观看美女被高潮喷水网站| 老司机亚洲免费影院| 三上悠亚av全集在线观看 | 成人亚洲欧美一区二区av| 亚洲欧美精品自产自拍| 国产永久视频网站| 成人黄色视频免费在线看| 一本—道久久a久久精品蜜桃钙片| 天堂8中文在线网| 女性被躁到高潮视频| 伊人久久国产一区二区| 日日摸夜夜添夜夜添av毛片| 九九在线视频观看精品| 亚洲国产毛片av蜜桃av| 免费观看在线日韩| 久久精品国产自在天天线| 日韩强制内射视频| 最后的刺客免费高清国语| 一区二区三区四区激情视频| 午夜91福利影院| 免费看av在线观看网站| av专区在线播放| 亚洲欧美日韩东京热| 两个人的视频大全免费| 国产黄频视频在线观看| 最近最新中文字幕免费大全7| 有码 亚洲区| 中文字幕精品免费在线观看视频 | 亚洲欧美精品自产自拍| 哪个播放器可以免费观看大片| 亚洲国产欧美在线一区| 嫩草影院新地址| 国产精品久久久久成人av| 秋霞在线观看毛片| 欧美精品高潮呻吟av久久| 国产黄片美女视频| 婷婷色麻豆天堂久久| 亚洲国产精品专区欧美| 丰满人妻一区二区三区视频av| av一本久久久久| 婷婷色综合www| 一级av片app| 国产精品一区www在线观看| 免费看av在线观看网站| 久久久欧美国产精品| 亚洲真实伦在线观看| 97超视频在线观看视频| 老司机影院成人| 在线观看免费视频网站a站| 国产永久视频网站| 亚洲一级一片aⅴ在线观看| 色婷婷久久久亚洲欧美| 亚洲av免费高清在线观看| 国产精品久久久久成人av| 亚洲不卡免费看| 久久精品国产亚洲av涩爱| 黄色日韩在线| 精品久久久久久久久亚洲| 有码 亚洲区| 国内精品宾馆在线| 99热这里只有是精品50| 久久久a久久爽久久v久久| 日韩,欧美,国产一区二区三区| 日韩,欧美,国产一区二区三区| 黑丝袜美女国产一区| 91午夜精品亚洲一区二区三区| 精品久久久久久电影网| 卡戴珊不雅视频在线播放| 久久人人爽人人片av| 精品一区二区三卡| 精品国产一区二区三区久久久樱花| 精品久久久久久久久亚洲| 免费大片18禁| 欧美精品亚洲一区二区| 久久狼人影院| 成人亚洲欧美一区二区av| 九九在线视频观看精品| 亚洲一区二区三区欧美精品| 有码 亚洲区| 熟女人妻精品中文字幕| 18禁动态无遮挡网站| 久久久欧美国产精品| 亚洲第一区二区三区不卡| 国内揄拍国产精品人妻在线| 日韩中文字幕视频在线看片| 视频中文字幕在线观看| 天堂俺去俺来也www色官网| 99久久精品一区二区三区| 国产精品一区二区在线观看99| 日本色播在线视频| 99九九线精品视频在线观看视频| 九草在线视频观看| 男人舔奶头视频| 黄色毛片三级朝国网站 | 成人免费观看视频高清| 婷婷色综合大香蕉| 好男人视频免费观看在线| 99热这里只有是精品在线观看| 午夜福利,免费看| 这个男人来自地球电影免费观看 | 日韩av在线免费看完整版不卡| 丰满乱子伦码专区| 国产一级毛片在线| 国产精品一区二区三区四区免费观看| 欧美bdsm另类| 大片免费播放器 马上看| 欧美97在线视频| 交换朋友夫妻互换小说| 精品少妇久久久久久888优播| 少妇精品久久久久久久| 国产永久视频网站| 一区二区三区四区激情视频| 欧美精品高潮呻吟av久久| 美女大奶头黄色视频| 一级a做视频免费观看| 国产亚洲一区二区精品| 赤兔流量卡办理| 国产午夜精品久久久久久一区二区三区| 天堂8中文在线网| 国产色爽女视频免费观看| 日日啪夜夜撸| 搡老乐熟女国产| 99热全是精品| 亚洲久久久国产精品| 十分钟在线观看高清视频www | 在线观看人妻少妇| 在线观看免费视频网站a站| 国产一区二区三区综合在线观看 | 国产精品久久久久久精品电影小说| 国产日韩欧美在线精品| 国产真实伦视频高清在线观看| 国产男女内射视频| 一级二级三级毛片免费看| 婷婷色综合www| 韩国高清视频一区二区三区| 在线免费观看不下载黄p国产| 久久综合国产亚洲精品| 久久综合国产亚洲精品| 国产成人a∨麻豆精品| 国产精品女同一区二区软件| 亚洲欧美清纯卡通| 亚洲精品国产av蜜桃| 少妇的逼水好多| 国产永久视频网站| 国产男人的电影天堂91| 卡戴珊不雅视频在线播放| 狂野欧美白嫩少妇大欣赏| 国产av一区二区精品久久| 欧美区成人在线视频| 欧美精品一区二区免费开放| 中文精品一卡2卡3卡4更新| √禁漫天堂资源中文www| 亚洲婷婷狠狠爱综合网| 中文字幕精品免费在线观看视频 | 在线观看人妻少妇| 日本黄色片子视频| 久久人人爽人人片av| 亚洲精品国产av蜜桃| 观看免费一级毛片| 久久久欧美国产精品| 新久久久久国产一级毛片| 久久狼人影院| 女性生殖器流出的白浆| 中文欧美无线码| 中国三级夫妇交换| 久久久国产一区二区| 国产男女内射视频| 午夜免费鲁丝| 欧美日韩国产mv在线观看视频| 十分钟在线观看高清视频www | 搡女人真爽免费视频火全软件| 日韩中字成人| 免费不卡的大黄色大毛片视频在线观看| 国产精品无大码| 国产真实伦视频高清在线观看| 边亲边吃奶的免费视频| 黑丝袜美女国产一区| 欧美精品一区二区大全| 欧美精品人与动牲交sv欧美| 日韩中文字幕视频在线看片| 人人澡人人妻人| 最近2019中文字幕mv第一页| 不卡视频在线观看欧美| 男女啪啪激烈高潮av片| 少妇人妻一区二区三区视频| 搡老乐熟女国产| 水蜜桃什么品种好| 一本一本综合久久| 亚洲欧美中文字幕日韩二区| 青春草国产在线视频| 纯流量卡能插随身wifi吗| 狂野欧美激情性bbbbbb| 伦理电影免费视频| 久久6这里有精品| 最近的中文字幕免费完整| 大片免费播放器 马上看| 99九九线精品视频在线观看视频| 少妇人妻久久综合中文| 精品久久久久久久久av| 精品一区二区免费观看| 国产高清国产精品国产三级| 春色校园在线视频观看| av女优亚洲男人天堂| 久久久a久久爽久久v久久| 精品视频人人做人人爽| 三级经典国产精品| 成人毛片a级毛片在线播放| 天堂中文最新版在线下载| 国产精品国产三级专区第一集| 七月丁香在线播放| 久久人人爽av亚洲精品天堂| 免费观看无遮挡的男女| 婷婷色综合www| 建设人人有责人人尽责人人享有的| 国产欧美日韩一区二区三区在线 | 久久久久国产精品人妻一区二区| 久久久a久久爽久久v久久| 人妻制服诱惑在线中文字幕| 国产真实伦视频高清在线观看| 国精品久久久久久国模美| 中文在线观看免费www的网站| 欧美日韩一区二区视频在线观看视频在线| av不卡在线播放| 亚洲中文av在线| 久久久久人妻精品一区果冻| 久久婷婷青草| 一本—道久久a久久精品蜜桃钙片| 97在线人人人人妻| 日本色播在线视频| 99热6这里只有精品| 久久热精品热| av国产精品久久久久影院| 高清毛片免费看| 精品熟女少妇av免费看| 国产精品国产三级国产av玫瑰| 一本大道久久a久久精品| 欧美成人午夜免费资源| 黄色一级大片看看| 国产一区二区三区av在线| 一区二区三区乱码不卡18| 久久狼人影院| 婷婷色综合大香蕉| 男人爽女人下面视频在线观看| 人人妻人人爽人人添夜夜欢视频 | 国产熟女午夜一区二区三区 | 18禁裸乳无遮挡动漫免费视频| 久久午夜福利片| 夜夜爽夜夜爽视频| 日韩一本色道免费dvd| 成人影院久久| 91精品国产九色| 欧美三级亚洲精品| 丰满乱子伦码专区| 久久精品久久久久久久性| 国产精品不卡视频一区二区| 搡女人真爽免费视频火全软件| 免费观看无遮挡的男女| 精品亚洲乱码少妇综合久久| 制服丝袜香蕉在线| 国产成人精品婷婷| 国产乱来视频区| av有码第一页| 日韩中文字幕视频在线看片| 国产免费一区二区三区四区乱码| 国产淫语在线视频| 久久99蜜桃精品久久| 亚洲婷婷狠狠爱综合网| 国产又色又爽无遮挡免| 色婷婷av一区二区三区视频| 在线免费观看不下载黄p国产| 人妻制服诱惑在线中文字幕| 欧美日韩在线观看h| 一区二区三区免费毛片| 男人添女人高潮全过程视频| 街头女战士在线观看网站| 亚洲,一卡二卡三卡| 中文字幕人妻熟人妻熟丝袜美| 高清黄色对白视频在线免费看 | 午夜影院在线不卡| 久久国产精品大桥未久av | 新久久久久国产一级毛片| 91午夜精品亚洲一区二区三区| 男男h啪啪无遮挡| 少妇被粗大的猛进出69影院 | 日韩伦理黄色片| av不卡在线播放| 尾随美女入室| 亚洲国产av新网站| 狂野欧美激情性bbbbbb| 黄色日韩在线| 我要看日韩黄色一级片| 亚洲av成人精品一区久久| 一区二区av电影网| 国产深夜福利视频在线观看| 又大又黄又爽视频免费| 在线亚洲精品国产二区图片欧美 | av福利片在线| 建设人人有责人人尽责人人享有的| av播播在线观看一区| 下体分泌物呈黄色| 91午夜精品亚洲一区二区三区| 乱系列少妇在线播放| 免费观看在线日韩| 美女内射精品一级片tv| 欧美日本中文国产一区发布| 国精品久久久久久国模美| 欧美老熟妇乱子伦牲交| 男女边吃奶边做爰视频| 久久狼人影院| 精品午夜福利在线看| 精品人妻一区二区三区麻豆| 最新的欧美精品一区二区| 国产 精品1| 午夜福利网站1000一区二区三区| 国产淫片久久久久久久久| 91午夜精品亚洲一区二区三区| 国产中年淑女户外野战色| 2022亚洲国产成人精品| 日本黄色片子视频| 欧美精品一区二区免费开放| 麻豆乱淫一区二区| 2022亚洲国产成人精品| 少妇熟女欧美另类| 最新的欧美精品一区二区| 亚洲欧美日韩另类电影网站| 中文字幕人妻丝袜制服| 99久久精品国产国产毛片| av.在线天堂| 亚洲精品国产av成人精品| 亚洲电影在线观看av| 99九九在线精品视频 | 美女福利国产在线| 成人亚洲精品一区在线观看| 高清欧美精品videossex| 中文字幕人妻丝袜制服| 国产精品一区www在线观看| 国产黄色免费在线视频| 欧美丝袜亚洲另类| 亚洲av成人精品一二三区| 自线自在国产av| 国内揄拍国产精品人妻在线| 女的被弄到高潮叫床怎么办| 少妇丰满av| 蜜桃久久精品国产亚洲av| 亚洲欧洲国产日韩| 中文字幕人妻熟人妻熟丝袜美| 国产精品人妻久久久影院| 成人午夜精彩视频在线观看| 色视频在线一区二区三区| av有码第一页| 亚洲婷婷狠狠爱综合网| 日本-黄色视频高清免费观看| 一本大道久久a久久精品| 99视频精品全部免费 在线| 国产片特级美女逼逼视频| 六月丁香七月| 精品酒店卫生间| 最后的刺客免费高清国语| 纵有疾风起免费观看全集完整版| 黄色视频在线播放观看不卡| 人妻夜夜爽99麻豆av| 少妇 在线观看| 日韩中字成人| 高清毛片免费看| 99热网站在线观看| 大又大粗又爽又黄少妇毛片口| 夫妻午夜视频| 日本黄色日本黄色录像| 人妻人人澡人人爽人人| 永久免费av网站大全| 亚洲精品第二区| 久久99精品国语久久久| 久久久久久久国产电影| 一级毛片 在线播放| 午夜影院在线不卡| 国产亚洲午夜精品一区二区久久| 久久久精品免费免费高清| 多毛熟女@视频| 亚洲欧美成人精品一区二区| 天堂8中文在线网| 在线精品无人区一区二区三| 人人澡人人妻人| 成年人免费黄色播放视频 | av国产久精品久网站免费入址| 亚洲欧美精品自产自拍| 建设人人有责人人尽责人人享有的|