• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Incremental Learning Model for Load Forecasting without Training Sample

    2022-11-11 10:47:46CharnonChupongandBoonyangPlangklang
    Computers Materials&Continua 2022年9期

    Charnon Chupong and Boonyang Plangklang

    Faculty of Engineering,Rajamangala University of Technology Thanyaburi,Pathum Thani,12110,Thailand

    Abstract: This article presents hourly load forecasting by using an incremental learning model called Online Sequential Extreme Learning Machine (OSELM), which can learn and adapt automatically according to new arrival input.However, the use of OS-ELM requires a sufficient amount of initial training sample data,which makes OS-ELM inoperable if sufficiently accurate sample data cannot be obtained.To solve this problem, a synthesis of the initial training sample is proposed.The synthesis of the initial sample is achieved by taking the first data received at the start of working and adding random noises to that data to create new and sufficient samples.Then the synthesis samples are used to initial train the OS-ELM.This proposed method is compared with Fully Online Extreme Learning Machine(FOS-ELM),which is an incremental learning model that also does not require the initial training samples.Both the proposed method and FOS-ELM are used for hourly load forecasting from the Hourly Energy Consumption dataset.Experiments have shown that the proposed method with a wide range of noise levels,can forecast hourly load more accurately than the FOS-ELM.

    Keywords:Incremental learning;load forecasting;Synthesis data;OS-ELM

    1 Introduction

    Global photovoltaic system deployments from 2017 to 2020 increased from 384.45 to 707.50 GW, representing an approximately 84% increase in three years [1].By 2020, global electric vehicle registrations increased by 41%,bringing the total number of electric vehicles to about 10 million[2].By the end of 2020,5 GW of grid-sized energy storage systems has been installed globally,a 50%increase from mid-2019 and a steady increase[3].All of the above events have resulted in a dramatic change in electricity usage patterns from the past.Therefore,the models used for electrical load forecasting need to be constantly updated according to the changes in the patterns of electricity consumption.But in general,those conventional models cannot learn from newly received data to adapt themselves during operation.Improving the models require new and sufficient data to re-train the model from scratch,which time consuming and inconvenient.

    To solve this problem, researchers have developed a model that can learn from newly received data without forgetting what was previously learned, called incremental learning.The examples of incremental learning include Incremental Support Vector Machine (ISVM)[4], Online Random Forecast(ORF)[5],Incremental Learning Vector Quantization(ILVQ)[6],Learn++[7],Stochastic Gradient Descent(SGD)[8],and Online Sequential Extreme Learning Machine(OS-ELM)[9].In this article,OS-ELM was chosen because it is a fast-learning model suitable for short-term load forecasting and easy to implement in hardware with low computational power.OS-ELM is a single hidden layer feed-forward neural network model where the weights in the input layer are randomly generated and retained over time,while hidden layer weights are computed based on a recursive least square method.This structure allows OS-ELM to function similarly to conventional neural networks but learning speed is more quickly.The OS-ELM requires initial samples for initial training, the amount of this initial sample must be more or equal to the number of nodes in the OS-ELM hidden layer.Usually,the number of nodes in this hidden layer affects forecast accuracy,implying that the amount of initial training data also affects the forecast accuracy.

    In the implementation of OS-ELM,there are cases where a sufficient initial training sample cannot be obtained,such as a new building or building that never records the electricity usage data.Such a problem may be solved by the Transfer Learning technique[10],where data from other similar tasks is used as the source for initial training.But users cannot be sure whether the source data is similar to the real data or not.The researchers later proposed improvements to the OS-ELM model so that it can be used without an initial training sample called Fully Online Sequential Extreme Learning Machine(FOSELM)[11].

    In the image classification and object detection research field, there is a method to solve the insufficient training samples problem by creating augmented samples from real samples [12].For example in [13], the authors use the Mosaic data augmentation method to create more training samples.But in the load forecasting research field,there are few studies on using the augmented sample to train the forecasting models.

    To the convenient use of OS-ELM especially in the case of new buildings or buildings without historical data of energy usage,this article proposed a method that allows OS-ELM to be used without the need for initial training samples.The proposed method takes a single sample through the synthesis process by adding random noise.The synthesis process makes enough new samples for the initial training of the OS-ELM.The proposed method was compared to the FOSELM in short-term load forecasting using a dataset called Hourly Energy Consumption [14].The dataset was based on the hourly electricity consumption of cities in the Eastern United States from nine utility companies.The rest of this article contains related research in part 2,the proposed method is presented in part 3,the experiment and results in part 4,analysis of the experimental results in part 5,and conclusion in part 6.

    2 Related Research

    2.1 Load Forecasting

    Load forecasting is an integral part of the smart grid.Numerous studies have been conducted on load forecasting[15],load forecasting is divided into four forecasting periods.

    1.Very short-term load forecasting is a forecast up to 1 h in advance where the forecast result is often used to control the power system quality.

    2.Short-term load forecasting is a forecast one hour but not more than a week in advance.The forecast result is often used to balance the supply and demand use of electricity.

    3.Medium-term load forecasting is a forecast one month but not more than 1 year in advance.The forecast result is often used in planning the fuel supply in the electricity generation.

    4.Long-term load forecasting is a forecast more than one year in advance.The forecasting result is often used in investment planning in power plants or power system infrastructure.

    There are two main models used for load forecasting that are commonly found in research.

    1.Auto Regressive Integrated Moving Average(ARIMA)is popular for time series data analysis.ARIMA consists of:

    a)The Autoregressive(AR)part describes the linear regression between current data and past data,and

    b)The Moving Average(MA)part describes linear regression between current data and past forecast errors caused by white noise in the data.AR and MA are only applicable for stationary data.To improve AR and MA model to be applicable with non-stationary data“Integrated”part has been added and called ARIMA.

    2.Artificial Neural Network(ANN)in time series forecasting the ANN model differs from the ARIMA model in that it can use non-linear activation functions and hidden layer structures.That allows the ANN can predict the non-linear relationship between input and output better than ARIMA models[16].

    2.2 Incremental Learning

    Modeling for load forecasting requires historical sample data to calculate parameters in the model.In ANN,various machine learning techniques are used to calculate ANN’s parameters,this process is called “training”.The sample data used for training must be sufficiently large and should have a pattern similar to the data that the model must forecast.The training is done once at the beginning of the operation,known as batch learning.But at present,the pattern of electricity load has changed all the time due to photovoltaic systems[17-19]electric vehicles[20,21],and energy storage systems[22,23].Therefore models created by batch training method require constantly re-training the model from scratch to be able to forecast accurately.The re-training in such cases creates inconvenience in practice.Therefore, researchers have introduced a model that can learn from new incoming data and still remember the past data,known as online learning or incremental learning.There are some examples of incremental learning such as.

    ? Incremental Support Vector Machine (ISVM)[4] incremental version of Support Vector Machine (SVM)working by storage some data as “candidate vector”.This candidate vector may be promoted as“support vector”according to newly receive data during operation.

    ? Online Random Forest (ORF)[5] works like Random Forecast, but the number of trees (the number of sub-models)increases if the new data received changes from the past data.

    ? Incremental Learning Vector Quantization(ILVQ)[6]a Learning Vector Quantization(LVQ)that can be expanded by increasing the number of prototypes in the model when the new data received changes from the past data.

    ? Learn++[7]uses the same principle as the ensemble model like AdaBoost[24].Sub-model is added and trained with new data that is randomly selected from past data.Data samples with high forecasting errors are more likely to be selected,therefore Learn++can adjust according to changes in data.

    ? Stochastic Gradient Descent (SGD)[8] is an optimization method for adjusting the model’s parameters without needing to use the entire batch of data at once.The model’s parameter can be adjusted according to the change of newly received data.

    ? Online Sequential Extreme Learning Machine (OS-ELM)[9] is an incremental model that is characterized by learning speed and low computation cost allowing it to run on the machine with low computational power.The details of the OS-ELM are presented in the next sections.

    2.3 Extreme Learning Machine(ELM)

    ELM structure is like a single hidden layer feed-forward neural network(SLFN)model.The ELM was first introduced by Guang et al.in 2004[25].The most outstanding feature of ELM is its extremely high learning speed since ELM does not use an iterative method such as gradient descent to calculate the parameters but uses the normal equation instead.The structure of the ELM is shown in Fig.1.The bias and weight values that are connected between the input and the hidden layer are randomly generated and remain constant.While the weight between the hidden layer and the output layer is calculated by the normal equation as follows.

    Figure 1:ELM Structure

    If the dataset hasNsamples calledwhere xj∈Rnand yj∈Rmnumbers of nodes in the hidden layer equal toLrelationship between xjand yjcan be defined as follows.

    whereβi∈Rmare weights in the hidden layer,g(...): R →R is an activation function in the hidden layer,ai∈Rnare weights in the input layer,andbi∈R are bias in input layer,Eq.(1)can be re-write in more simple form as follows:

    Matrix H is called“Hidden layer output matrix”aiand biare constant from random generated,causing H is also constant, therefore training ELM is calculatingβas in Eq.(2).If the number of data or dimensions is not too large, the normal equation can be directly calculated more quickly as compared to the Gradient Descent method.βcan be calculated as follows:

    Although ELM uses random weights and bias values in the input layer,many studies have shown that ELM has good performance as other learning algorithms[26,27].The ELM model may encounter problems with numerical stability since sometimes inversion of the matrix HTH is not possible, the Singular Value Decomposition(SVD)method has been proposed[28]to find the inverse of HTH.

    2.4 Regularization Extreme Learning Machine(Re-ELM)

    Numerical stability problems of the ELM model can be solved by adding the regularization factor[29]for calculating matrixKas shown in Eq.(5)which lowers the cost of computational than SVD.

    whereλis a very small value called the regularization factor and I is the identity matrix.

    2.5 Online Sequential Extreme Learning Machine(OS-ELM)

    The ELM model is a batch learning method, where it uses all available data to train the model and make the model work.While the model is running,it cannot learn more from the new incoming data.Therefore,a research paper proposed an improvement of the ELM model to be able to perform incremental learning called the Online Sequential Extreme Learning Machine(OS-ELM)[9]using the recursive principle of Eq.(4).At the beginning of work, the OS-ELM will calculatewherewhich subscript 0 mean round 0 of work or initial of work.When OS-ELM receives new sample(s)data causing the value of matrix H and Y change, thereforeβ1can be calculated as follows.

    Substitute the K0value from Eq.(7)into the above equation.

    Substitute Eq.(8)into Eq.(6).

    Eq.(9)can be arranged in a general recursive form as:

    The subscriptionkmeans the kthsamples and the subscriptionk+1 means the(k+1)thsamples.Each incoming sample does not need to be equal in numbers.In short, the OS-ELM works in two steps as follows.

    ? The initial step is like the ELM, the initial samples are used to calculateβ0by Eq.(4).The number of initial samples needs to be more than or equal to the number of nodes in a hidden layer of the model.

    ? The incremental learning step uses the newly receives sample to adjust the model parameters as in Eq.(10).

    2.6 Regularization Online Sequential Extreme Learning Machine(ReOS-ELM)

    Like the ELM,if k is a non-invertible matrix then the OS-ELM has a numerical stability problem that can be solved by adding a regularization factor[30]as shown in Eq.(11).

    whereλis a very small value called the regularization factor and I is the identity matrix.

    2.7 Fully Online Sequential Extreme Learning Machine(FOS-ELM)

    The OS-ELM and ReOS-ELM require samples for initial training,but in some situations,we are unable to obtain enough appropriate samples for initial training.Therefore,the FOS-ELM model is presented,which is a model that does not need the initial data for initial training[11]by setting initial parametersβ0= 0, K0=λI.In other words, the FOS-ELM is initial training by the initial sample(X=0,Y=0).

    3 Proposed Method

    As mentioned above, the implementation of OS-ELM require sufficient and appropriate initial training samples.But in some situations,those samples cannot be obtained.Therefore,in this article,we present a method to solve that problem.The method presented in this article uses a single sample received at the start of working to synthesize sufficiently the initial training data.The data synthesis method is done by adding random noise to all features of the sample to create new samples.The noise is randomly generated according to uniform distribution and the user can adjust the level of noise that to be added to the sample called“percent noise”.This proposed method can be described as a diagram in Fig.2 and an algorithm 1.Please note that this article uses ReOS-ELM instead of OS-ELM to avoid the numerical stability problem.

    Figure 2:Diagram of the proposed method

    Algorithm 1:Synthesize data by noise adding INPUT:data=1st sample in dataset N =numbers of output sample required percent_noise=noise level(set by user)OUTPUT:synt_data STEP:1:for n=0 to n=N:2:for i=0 to i=length(data):3:rand[i]=random value between[0,1)in uniform distribution 4:synt_data[n][i]=data[i]+(data[i]*percent_noise/100)*rand[i]5:end for 6:synt_data[n]/max(synt_data[n])7:end for 8:return synt_data 9:end

    To improve forecasting accuracy, ten ReOS-ELM models were combined to form an ensemble model and the mean function is used as an ensemble function.In other words,the forecast values are obtained by averaging the 10 forecast values from all ReOS-ELM models.All 10 models are learning from the same sample both the initial training phase and the incremental learning phase as shown in Fig.3.

    Figure 3:The proposed ensemble model

    4 Experiment Results and Discussion

    This experiment uses a dataset from www.kaggle.com named“Hourly Energy Consumption”[14],which is the hourly electricity usage (hourly load profile)of cities in the eastern United States that gathered from nine utility companies.In the experiment,data are divided into two parts:(1)target is the 1-hour load each and(2)input is the 24-h load before the target as shown in Fig.4.Inputs are fed to the model so that the model forecasts the next hour’s load.The forecast values obtained from the model are compared to the target and forecasting errors can be determined.Both the input and the target are used in the model for incremental learning.The model uses an ensemble model as shown in Fig.3,where the sub-model is ReOS-ELM with 24 nodes in input layers,50 nodes in hidden layers,and 1 node in the output layer.The hidden layer uses Sigmoid as the activation function.

    Figure 4:Dataset is divided into Input and Target

    The experiment in this article uses two incremental learning models:(1)the FOS-ELM model is the baseline for comparison, and (2)the ReOS-ELM model trained with 50 synthesized samples by the method presented in Section 3.In addition,various percent noises for synthesizing the sample are also tested to determine the appropriate values.The experimental flowchart is shown in Fig.5,using the first 72 h of data in the dataset to study the early phase of the forecasting operation.

    Figure 5:Flow chart of the experiment

    The performance metrics used to compare the accuracy of the forecasting is Mean Absolute Percentage Error (MAPE)and Mean Absolute Error (MAE).The experimental results are shown in Tab.1.

    Table 1: Experimental results

    Table 1:Continued

    From the results in Tab.1,it was found that using the ReOS-ELM trained with samples synthesized by the proposed method can achieve lower forecasting error than the FOS-ELM.This is because FOS-ELM is like using a single sample for the initial training,resulting in the model facing the over-fit problem.While the ReOS-ELM model uses synthesized samples with sufficient numbers for the initial training,so the over-fit problems can be avoided.

    From the experiment, it was found that the appropriate percent noise is flexible.That is to say,the forecasting error of the ReOS-ELM still lower than the FOS-ELM regardless of the percent noise value (except in the EKPC and FE dataset, when 1% percent noise is used, forecasting error of the ReOS-ELM is slightly higher than the FOS-ELM).

    Different forecasting errors that occur when using different percent noise may be caused by the following reasons.At low percent noise, the synthesized samples for initial training are similar to each other,making the model more prone to over-fit problems.At high percent noise,the synthesized samples for initial training may differ from the real data, this makes the model prone to underfit problems.The experiment found that approximately 5%-10% noise levels resulted in the lowest forecasting error.

    5 Conclusion

    The proposed method can allow ReOS-ELM or OS-ELM to run without an example for initial training.By adding noise to a single sample received at the start of the operation to increase the number of samples to be sufficient for initial training.The experiment found that whether using noise levels 1%,5%,10%,or 20%the ReOS-ELM can forecast loads more accurately than the FOS-ELM.The noise level for synthesis initial samples that allow the ReOS-ELM model to the most accurate forecasting is about 5%-10%.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    婷婷亚洲欧美| 亚洲成人久久性| 日韩成人在线观看一区二区三区| 成人特级av手机在线观看| 欧美激情在线99| 久久久国产成人免费| 亚洲精品乱码久久久v下载方式 | 国产成人影院久久av| 午夜激情欧美在线| 色综合婷婷激情| 波野结衣二区三区在线 | 一级作爱视频免费观看| 人妻丰满熟妇av一区二区三区| 99国产精品一区二区三区| 亚洲 国产 在线| 深夜精品福利| 国模一区二区三区四区视频| 国产又黄又爽又无遮挡在线| 99久久九九国产精品国产免费| 2021天堂中文幕一二区在线观| 男女床上黄色一级片免费看| 欧美成狂野欧美在线观看| 国内久久婷婷六月综合欲色啪| 日韩国内少妇激情av| 午夜福利高清视频| 亚洲激情在线av| 精品免费久久久久久久清纯| 欧美日韩亚洲国产一区二区在线观看| 搞女人的毛片| 国产真人三级小视频在线观看| 免费电影在线观看免费观看| 国产精品爽爽va在线观看网站| 18美女黄网站色大片免费观看| 一进一出抽搐动态| 高清在线国产一区| 可以在线观看毛片的网站| 国内精品久久久久精免费| 色哟哟哟哟哟哟| 1000部很黄的大片| 色在线成人网| 色噜噜av男人的天堂激情| 国产精品免费一区二区三区在线| 色综合站精品国产| 亚洲欧美日韩卡通动漫| 午夜老司机福利剧场| 成年人黄色毛片网站| 日本黄色片子视频| 久久国产精品人妻蜜桃| 在线播放无遮挡| 亚洲av二区三区四区| 伊人久久大香线蕉亚洲五| 国产蜜桃级精品一区二区三区| 成人特级av手机在线观看| 一本久久中文字幕| 精品99又大又爽又粗少妇毛片 | 亚洲五月天丁香| 欧美成人免费av一区二区三区| 欧美日本视频| 国产真人三级小视频在线观看| 18禁美女被吸乳视频| 熟女人妻精品中文字幕| 成人欧美大片| 午夜福利在线在线| 亚洲精品粉嫩美女一区| 国产中年淑女户外野战色| 99热这里只有是精品50| 亚洲 欧美 日韩 在线 免费| 97超视频在线观看视频| 好男人在线观看高清免费视频| 男女那种视频在线观看| 久久久久久人人人人人| 长腿黑丝高跟| 一级毛片女人18水好多| 免费在线观看成人毛片| 久久久久性生活片| aaaaa片日本免费| 亚洲精品乱码久久久v下载方式 | 欧美在线一区亚洲| 欧美一区二区亚洲| 亚洲欧美日韩卡通动漫| 久久午夜亚洲精品久久| 观看美女的网站| 亚洲 欧美 日韩 在线 免费| 999久久久精品免费观看国产| av天堂在线播放| 香蕉av资源在线| 欧美性猛交╳xxx乱大交人| 欧美bdsm另类| 综合色av麻豆| www.www免费av| 18禁黄网站禁片午夜丰满| 法律面前人人平等表现在哪些方面| 99久久精品一区二区三区| 国内精品一区二区在线观看| 久久久久久九九精品二区国产| 国产精品香港三级国产av潘金莲| 国产三级黄色录像| 久久亚洲真实| 免费在线观看成人毛片| 高潮久久久久久久久久久不卡| 国产美女午夜福利| 国产一区二区三区在线臀色熟女| 欧美乱妇无乱码| 国产在视频线在精品| 伊人久久精品亚洲午夜| 亚洲av成人不卡在线观看播放网| 高清日韩中文字幕在线| 欧美xxxx黑人xx丫x性爽| 久久午夜亚洲精品久久| 国产精品永久免费网站| 亚洲国产日韩欧美精品在线观看 | 亚洲美女黄片视频| 日本精品一区二区三区蜜桃| 亚洲精品影视一区二区三区av| 熟女人妻精品中文字幕| 国产美女午夜福利| 日韩欧美一区二区三区在线观看| 哪里可以看免费的av片| 亚洲五月婷婷丁香| av黄色大香蕉| 亚洲av五月六月丁香网| 亚洲国产精品999在线| 亚洲无线在线观看| 亚洲国产色片| 午夜精品一区二区三区免费看| 中文亚洲av片在线观看爽| 亚洲真实伦在线观看| 国产一区二区亚洲精品在线观看| 禁无遮挡网站| 欧美一级a爱片免费观看看| 国产一区二区三区视频了| 久久人人精品亚洲av| 五月玫瑰六月丁香| 久久久成人免费电影| 国产主播在线观看一区二区| 精品乱码久久久久久99久播| 欧美黑人巨大hd| 国产中年淑女户外野战色| 国产色婷婷99| 亚洲成人久久性| 国产精品三级大全| 国产成人aa在线观看| 窝窝影院91人妻| 黄色日韩在线| 成年女人看的毛片在线观看| 亚洲,欧美精品.| 天天躁日日操中文字幕| 久久草成人影院| 欧美+日韩+精品| 男女午夜视频在线观看| 19禁男女啪啪无遮挡网站| 国产欧美日韩一区二区精品| 99精品在免费线老司机午夜| 国产极品精品免费视频能看的| 久久精品国产清高在天天线| 亚洲av第一区精品v没综合| 国产单亲对白刺激| 亚洲国产精品合色在线| 3wmmmm亚洲av在线观看| 亚洲第一欧美日韩一区二区三区| 精品久久久久久成人av| 看片在线看免费视频| 欧美最新免费一区二区三区 | 精品久久久久久久末码| 欧美日韩福利视频一区二区| 亚洲天堂国产精品一区在线| 国产欧美日韩精品一区二区| 天天添夜夜摸| а√天堂www在线а√下载| 在线观看免费午夜福利视频| 亚洲在线自拍视频| 99国产精品一区二区三区| 久久精品人妻少妇| 亚洲内射少妇av| 美女被艹到高潮喷水动态| 老司机午夜十八禁免费视频| 首页视频小说图片口味搜索| 国内精品久久久久精免费| 色av中文字幕| 又黄又粗又硬又大视频| 亚洲无线观看免费| 国产99白浆流出| 日韩欧美三级三区| 岛国在线免费视频观看| av片东京热男人的天堂| 亚洲av成人精品一区久久| 少妇熟女aⅴ在线视频| 日韩免费av在线播放| 88av欧美| 久久精品91无色码中文字幕| 蜜桃久久精品国产亚洲av| 日韩国内少妇激情av| 国产免费男女视频| 久久久久亚洲av毛片大全| 亚洲熟妇中文字幕五十中出| 少妇的逼好多水| 欧美xxxx黑人xx丫x性爽| 最新在线观看一区二区三区| 小蜜桃在线观看免费完整版高清| av在线蜜桃| 亚洲国产精品sss在线观看| 色综合亚洲欧美另类图片| 99久久无色码亚洲精品果冻| xxxwww97欧美| 亚洲欧美激情综合另类| 一区二区三区国产精品乱码| 亚洲一区二区三区不卡视频| 色哟哟哟哟哟哟| 国产精品,欧美在线| 亚洲七黄色美女视频| 夜夜夜夜夜久久久久| 天堂av国产一区二区熟女人妻| 婷婷精品国产亚洲av| 2021天堂中文幕一二区在线观| 亚洲熟妇中文字幕五十中出| 色播亚洲综合网| tocl精华| 国产97色在线日韩免费| 精品国内亚洲2022精品成人| 九九在线视频观看精品| 3wmmmm亚洲av在线观看| 69人妻影院| 色尼玛亚洲综合影院| 欧美三级亚洲精品| 国产成人福利小说| 在线看三级毛片| 国产精品99久久久久久久久| 国内少妇人妻偷人精品xxx网站| 乱人视频在线观看| 国产成人欧美在线观看| 免费一级毛片在线播放高清视频| ponron亚洲| 成年女人永久免费观看视频| 午夜激情欧美在线| 国产熟女xx| 亚洲自拍偷在线| 男女之事视频高清在线观看| 国产精品久久电影中文字幕| 国产精品99久久99久久久不卡| 久久这里只有精品中国| 久久精品国产清高在天天线| 麻豆国产av国片精品| 亚洲人成网站高清观看| 国产精品99久久99久久久不卡| 男女午夜视频在线观看| 欧美成人性av电影在线观看| 亚洲久久久久久中文字幕| 麻豆成人av在线观看| 香蕉av资源在线| 国产探花极品一区二区| 精品国产超薄肉色丝袜足j| 美女高潮喷水抽搐中文字幕| 1024手机看黄色片| 国产色婷婷99| 亚洲精品亚洲一区二区| 乱人视频在线观看| 首页视频小说图片口味搜索| 一个人看视频在线观看www免费 | 日本a在线网址| 亚洲人成网站在线播| 欧美日韩精品网址| 午夜免费观看网址| 亚洲五月婷婷丁香| 免费人成在线观看视频色| 日韩人妻高清精品专区| 国产一区二区亚洲精品在线观看| 在线免费观看不下载黄p国产 | 亚洲黑人精品在线| 亚洲在线观看片| 美女大奶头视频| 午夜精品在线福利| 午夜视频国产福利| 嫩草影视91久久| 欧美性猛交╳xxx乱大交人| 欧美一级毛片孕妇| 老司机深夜福利视频在线观看| 99热只有精品国产| 性欧美人与动物交配| 亚洲国产高清在线一区二区三| 国产一区二区在线av高清观看| 亚洲人与动物交配视频| 国产亚洲精品综合一区在线观看| 中文字幕人成人乱码亚洲影| 久久久久九九精品影院| 亚洲成av人片在线播放无| 国产欧美日韩一区二区三| 在线免费观看不下载黄p国产 | 少妇的丰满在线观看| 久久香蕉精品热| 99国产综合亚洲精品| 亚洲av不卡在线观看| 欧美日韩国产亚洲二区| 欧美在线黄色| 最近最新免费中文字幕在线| 99热精品在线国产| 亚洲乱码一区二区免费版| 在线观看午夜福利视频| 9191精品国产免费久久| 香蕉av资源在线| 国产69精品久久久久777片| 日本黄色视频三级网站网址| 亚洲狠狠婷婷综合久久图片| 少妇的丰满在线观看| 我的老师免费观看完整版| 母亲3免费完整高清在线观看| 久久精品亚洲精品国产色婷小说| 亚洲av电影在线进入| 中文字幕久久专区| 亚洲18禁久久av| 国内久久婷婷六月综合欲色啪| 国产成人系列免费观看| 女人被狂操c到高潮| 伊人久久大香线蕉亚洲五| 国产亚洲av嫩草精品影院| 亚洲国产精品合色在线| 69人妻影院| 中文资源天堂在线| 最近视频中文字幕2019在线8| 久久久精品大字幕| 亚洲av免费在线观看| 国产精品 欧美亚洲| 搡老岳熟女国产| 国产日本99.免费观看| 国产免费一级a男人的天堂| 最后的刺客免费高清国语| 国产精品国产高清国产av| 国内毛片毛片毛片毛片毛片| 99久久99久久久精品蜜桃| 床上黄色一级片| 国产精品一区二区免费欧美| 国产私拍福利视频在线观看| 中文字幕人妻熟人妻熟丝袜美 | 日本一本二区三区精品| 精品乱码久久久久久99久播| 国产色爽女视频免费观看| www.色视频.com| 亚洲人成网站在线播| 亚洲国产精品999在线| 亚洲欧美激情综合另类| av中文乱码字幕在线| 日韩有码中文字幕| 91字幕亚洲| 国产淫片久久久久久久久 | 欧美+亚洲+日韩+国产| 高清毛片免费观看视频网站| 国产精品久久久久久久电影 | 日韩欧美 国产精品| 久久九九热精品免费| 九九在线视频观看精品| 亚洲五月婷婷丁香| 国产一区二区三区视频了| 男人的好看免费观看在线视频| 亚洲精品一卡2卡三卡4卡5卡| 欧美激情在线99| 一个人看视频在线观看www免费 | 精品国产亚洲在线| 一本一本综合久久| 成人av一区二区三区在线看| 久99久视频精品免费| 99久久久亚洲精品蜜臀av| 久久性视频一级片| av在线蜜桃| 男人和女人高潮做爰伦理| 99视频精品全部免费 在线| 欧美xxxx黑人xx丫x性爽| 网址你懂的国产日韩在线| 欧美zozozo另类| 在线十欧美十亚洲十日本专区| 免费看美女性在线毛片视频| 国产亚洲精品av在线| 淫秽高清视频在线观看| 91在线观看av| 亚洲av一区综合| 韩国av一区二区三区四区| a级毛片a级免费在线| 一级毛片高清免费大全| 噜噜噜噜噜久久久久久91| 久久久久久久久中文| 亚洲无线在线观看| 久久久久免费精品人妻一区二区| 免费观看人在逋| 熟妇人妻久久中文字幕3abv| 51午夜福利影视在线观看| 又黄又粗又硬又大视频| 亚洲av熟女| 少妇高潮的动态图| 日韩av在线大香蕉| 天堂av国产一区二区熟女人妻| 国产精品久久久人人做人人爽| 99热6这里只有精品| 亚洲电影在线观看av| 香蕉丝袜av| 国产在视频线在精品| 国产高潮美女av| 女人十人毛片免费观看3o分钟| 日本一本二区三区精品| 国产免费一级a男人的天堂| 久久天躁狠狠躁夜夜2o2o| 久久久久免费精品人妻一区二区| 91麻豆精品激情在线观看国产| 成人性生交大片免费视频hd| 99精品在免费线老司机午夜| 久久人人精品亚洲av| 偷拍熟女少妇极品色| 国产精品永久免费网站| 国产高清视频在线播放一区| 69av精品久久久久久| 久久久久精品国产欧美久久久| 国产一区二区激情短视频| 在线看三级毛片| 亚洲国产欧美网| 村上凉子中文字幕在线| 国产精品久久视频播放| 午夜日韩欧美国产| 国产一区二区在线观看日韩 | 免费看日本二区| 成年版毛片免费区| 久久这里只有精品中国| 成人性生交大片免费视频hd| 亚洲午夜理论影院| 色综合亚洲欧美另类图片| 欧美色视频一区免费| 9191精品国产免费久久| 免费高清视频大片| 免费在线观看成人毛片| h日本视频在线播放| 午夜免费观看网址| 18禁黄网站禁片午夜丰满| a级一级毛片免费在线观看| 欧美bdsm另类| 午夜精品在线福利| 9191精品国产免费久久| 天堂√8在线中文| 国产69精品久久久久777片| 成人高潮视频无遮挡免费网站| 丰满人妻一区二区三区视频av | 欧美一级a爱片免费观看看| 久久久久久久久大av| 亚洲五月天丁香| 91九色精品人成在线观看| 亚洲av日韩精品久久久久久密| 韩国av一区二区三区四区| 18禁美女被吸乳视频| 网址你懂的国产日韩在线| 俺也久久电影网| 12—13女人毛片做爰片一| 一级黄片播放器| 美女大奶头视频| 久久伊人香网站| 97超视频在线观看视频| a级一级毛片免费在线观看| 国产精品自产拍在线观看55亚洲| 免费看光身美女| 久久精品91无色码中文字幕| 999久久久精品免费观看国产| 操出白浆在线播放| 日韩成人在线观看一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 亚洲av免费在线观看| 国产伦精品一区二区三区四那| 亚洲国产欧美人成| 无限看片的www在线观看| 色播亚洲综合网| 成人特级黄色片久久久久久久| 欧美日韩一级在线毛片| 2021天堂中文幕一二区在线观| 操出白浆在线播放| 每晚都被弄得嗷嗷叫到高潮| 国产麻豆成人av免费视频| 午夜免费成人在线视频| 亚洲久久久久久中文字幕| 国产精品免费一区二区三区在线| 一级毛片高清免费大全| 久久精品综合一区二区三区| 啦啦啦韩国在线观看视频| 少妇的逼好多水| 国产伦精品一区二区三区四那| 亚洲18禁久久av| 波野结衣二区三区在线 | 99国产精品一区二区三区| 色精品久久人妻99蜜桃| 一进一出抽搐gif免费好疼| 午夜激情欧美在线| 男女床上黄色一级片免费看| 在线国产一区二区在线| 日韩av在线大香蕉| av在线蜜桃| 国产亚洲欧美98| 草草在线视频免费看| 人妻丰满熟妇av一区二区三区| 精品久久久久久久毛片微露脸| 欧美日韩瑟瑟在线播放| 毛片女人毛片| 男女午夜视频在线观看| 高清在线国产一区| 国产亚洲欧美在线一区二区| 伊人久久精品亚洲午夜| 免费观看的影片在线观看| 久久欧美精品欧美久久欧美| 校园春色视频在线观看| 深夜精品福利| 一本综合久久免费| 日韩高清综合在线| 久久久久亚洲av毛片大全| 亚洲久久久久久中文字幕| 亚洲熟妇中文字幕五十中出| 欧美+日韩+精品| 在线观看午夜福利视频| 成人国产一区最新在线观看| 亚洲avbb在线观看| 天堂动漫精品| 欧美绝顶高潮抽搐喷水| 禁无遮挡网站| 久久人人精品亚洲av| 99久久成人亚洲精品观看| 国产一区二区亚洲精品在线观看| 又黄又爽又免费观看的视频| 国产欧美日韩一区二区精品| 国产成人系列免费观看| 日本一本二区三区精品| 免费看美女性在线毛片视频| 中文亚洲av片在线观看爽| 一级黄片播放器| 男女做爰动态图高潮gif福利片| 国产在线精品亚洲第一网站| 国产精品女同一区二区软件 | 欧美乱色亚洲激情| 性色avwww在线观看| 此物有八面人人有两片| 色尼玛亚洲综合影院| 国产亚洲欧美在线一区二区| 成年版毛片免费区| 国产精品美女特级片免费视频播放器| 一a级毛片在线观看| 脱女人内裤的视频| 日日干狠狠操夜夜爽| 999久久久精品免费观看国产| 最新在线观看一区二区三区| 国产精品一及| 久久久久免费精品人妻一区二区| www.www免费av| 人人妻,人人澡人人爽秒播| 丰满人妻熟妇乱又伦精品不卡| 琪琪午夜伦伦电影理论片6080| 手机成人av网站| 精品熟女少妇八av免费久了| 午夜福利欧美成人| 丁香六月欧美| 91久久精品国产一区二区成人 | 亚洲精品久久国产高清桃花| 午夜福利在线在线| 亚洲天堂国产精品一区在线| or卡值多少钱| 欧美日韩综合久久久久久 | 综合色av麻豆| 麻豆成人av在线观看| 亚洲欧美激情综合另类| 欧美午夜高清在线| 欧美日本视频| 免费观看的影片在线观看| 无遮挡黄片免费观看| 国产成人a区在线观看| 性色av乱码一区二区三区2| 不卡一级毛片| 欧美成人免费av一区二区三区| 久久精品影院6| 成人国产综合亚洲| 可以在线观看的亚洲视频| 日本 av在线| 人人妻人人看人人澡| 日韩欧美精品免费久久 | 免费大片18禁| 国内精品美女久久久久久| 精品午夜福利视频在线观看一区| 99在线人妻在线中文字幕| 男女那种视频在线观看| 欧美日韩乱码在线| 麻豆久久精品国产亚洲av| 国产v大片淫在线免费观看| 九色成人免费人妻av| 99久久九九国产精品国产免费| 女警被强在线播放| 日韩欧美一区二区三区在线观看| 国产熟女xx| 欧美乱妇无乱码| 91字幕亚洲| 精品午夜福利视频在线观看一区| www.色视频.com| 亚洲欧美日韩高清在线视频| 欧美日韩中文字幕国产精品一区二区三区| 欧美日韩国产亚洲二区| 老鸭窝网址在线观看| 欧美三级亚洲精品| 免费av毛片视频| 亚洲成人久久爱视频| 精品久久久久久久人妻蜜臀av| 免费观看人在逋| 麻豆成人av在线观看| 精品欧美国产一区二区三| 久久久久亚洲av毛片大全| 国产成人啪精品午夜网站| 亚洲内射少妇av| 伊人久久精品亚洲午夜| 桃红色精品国产亚洲av| 成人国产一区最新在线观看| 亚洲欧美精品综合久久99| 丰满的人妻完整版| a级一级毛片免费在线观看| 国产高清有码在线观看视频| 在线天堂最新版资源| 非洲黑人性xxxx精品又粗又长| 草草在线视频免费看| 国产成人av激情在线播放| 我要搜黄色片| 国产精品亚洲一级av第二区|