• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Intelligent Networks for Chaotic Fractional-Order Nonlinear Financial Model

    2022-11-11 10:46:34PremJunswangZulqurnainSabirMuhammadAsifZahoorRajaWaleedAdelThongchaiBotmartandWajareeWeera
    Computers Materials&Continua 2022年9期

    Prem Junswang,Zulqurnain Sabir,Muhammad Asif Zahoor Raja,Waleed Adel,Thongchai Botmartand Wajaree Weera

    1Department of Statistics,Faculty of Science,Khon Kaen University,Khon Kaen 40002,Thailand

    2Department of Mathematics and Statistics,Hazara University,Mansehra,Pakistan

    3Department of Electrical Engineering,COMSATS Institute of Information Technology,Attock,Pakistan

    4Department of Mathematics and Engineering Physics,Faculty of Engineering,Mansoura University,Egypt

    5Université Fran?aise D’Egypte,Ismailia Desert Road,El-Shorouk,Cairo,Egypt

    6Department of Mathematics,Faculty of Science,Khon Kaen University,Khon Kaen 40002,Thailand

    Abstract: The purpose of this paper is to present a numerical approach based on the artificial neural networks(ANNs)for solving a novel fractional chaotic financial model that represents the effect of memory and chaos in the presented system.The method is constructed with the combination of the ANNs along with the Levenberg-Marquardt backpropagation (LMB),named the ANNs-LMB.This technique is tested for solving the novel problem for three cases of the fractional-order values and the obtained results are compared with the reference solution.Fifteen numbers neurons have been used to solve the fractional-order chaotic financial model.The selection of the data to solve the fractional-order chaotic financial model are selected as 75%for training, 10% for testing, and 15% for certification.The results indicate that the presented approximate solutions fit exactly with the reference solution and the method is effective and precise.The obtained results are testified to reduce the mean square error (MSE)for solving the fractional model and verified through the various measures including correlation,MSE,regression histogram of the errors,and state transition(ST).

    Keywords:Financial model;chaotic;fractional-order;reference dataset;artificial neural networks;levenberg-marquardt backpropagation

    1 Introduction

    During the last few years, the terminology of econophysics has been used to simulate real-life models describing the complex behavior of financial models and economic systems.This terminology was invented by those researchers who are working in the field of simulating financial and economic systems.Economic data,erratic and microeconomic fluctuations,irregular growth,and overlapping developments of economic systems are some of these newly rising topics in the financial field that needs some new tools to understand.The researchers are describing these models in a simple form without the effect of any external forces and undergo stationary equilibrium behavior.Then, the system is augmented with some shock variables whose behavior can be assumed to come from external forces outside the system along with their effects.These variables are displaying irregular behavior with the effect of these forces is assumed to be random.These variables may have various forms including weather behaviors,political events,and human or other related factors.The irregular behavior may be translated through chaotic behavior in the economic system and this may provide some explanations to the complexity of the behavior of these systems [1].This was one of the main reasons that reach recently tries to invest deep in the application of Chaotic behaviors in similar systems.

    Fractional calculus has been used in mathematical modeling in science,engineering,and biology since it was first established back in the last century.It has proven to be an effective tool to simulate such problems and to better understand the dynamics of various physical processes and systems[2,3].These systems include biological forms, fluid dynamics, neurons processes, analytical chemistry, and life science[4].Likewise,it has been used to simulate the financial models of regular and chaotic behaviors.For example,Wen et al.[5]investigated the complex evolution of some chaotic financial systems from the stability point of view of the fractional equilibrium point and the chaotic phenomenon.A brief preview of the application of fractional calculus in the field of finial systems was introduced in[6]by Tarasov.In addition,a new algorithm based on the definition of the variable-order fractional calculus was examined for a chaotic financial system by Soradi-Zeid in[7].A numerical verification and circuit realization in the perspective of fractional calculus have been presented in [8] by Chen et al.The application of the fractional calculus has been whitened to expand to more physical as in [9] while dealing with problems in the field of nanotechnology.Kulish et al.in[10]investigated the application of fractional calculus in the field of fluid mechanics through some model problems.The branch of viseloacitity has its share in simulating through the fractional calculus and was studied in [11] by Bagley et al.by proposing a well-known Bagley-Torvik equation.Some new insights through novel results were found while simulating some of the basic problems in the view of fractional calculus by Rossikhin et al.in[12].Other related problems of fractional order include economic systems[13],solid propellants simulation[14],and duffing type equations[15],and other nonlinear systems of paramount significance[16-20].

    This study aims to present a real-life financial model with the effect of memory and chaos in the presented system.The memory effect can be witnessed clearly in the fractional-order models and this was the reason behind studying the presented model.The presence of financial variables such as the foreign exchange rate, interest rates, and stock market prices has a long memory effect [21,22].The basic model of the fractional incommensurate-order model can take the following form:

    The detail of each parameter is presented in Tab 1 as:

    Table 1: Parameters details in the model(1)

    With the importance of model(1)in the field of financial systems,the need for an effective tool for simulating this was a priority.One of the most effective methods that have been developed is artificial neural networks (ANNs).This tool has been used extensively during the last few years to simulate stiff and complicated problems.For example, a singular model with Neumann-robin and Dirichlet was investigated in[23]by Sabir et.al using the last-mentioned method.The application of this effective approach has been used in the field of neuroscientists as in[24].The application of the ANNs technique has been used in the field of medicine as well.For example, El-Mahelawi et al.in[25] investigated the simulation of the models representing the classification of the types of tumors through applying this effective approach.Also, the method has some application in microgrids has been indicated in[26]by Lopez-Garcia et al.which proves to be a tool to help overcome said challenges in the electrical network.In addition to the last-mentioned areas of application,and has been used to simulate some of the small-world topologies as in [27].Liu et al.in [28] investigated the application of the proposed technique in modeling composite materials revealing some of the new constitutive laws with some new potential solutions.Generating some urban and architectural designs which may help to customize some geometric data structures through trained ANN as in [29].With these wide and several applications of this method,researchers have been trying to expand the application of the basic technique and apply some modifications to it to make it more suitable to other related more complex applied problems.

    This work aims to solve the nonlinear chaotic financial system represented in Eq.(1)using a modification of the artificial neural networks(ANNs)method inspired from recent relevant reputed reported studies [30-32].This modification includes the merging of the (ANNs)along with the Levenberg-Marquardt backpropagation (LMB), i.e., ANNs-LMB.This ANN-LMB is based on authentication, testing, and training of some sample data and the results proves the method to be accurate and reliable.The ANNs have proven to be an effective numerical tool to simulate such problems.For example,Raja et al.in[33]investigated the application of a novel stochastic computing paradigm for simulating the heat-conducting model that presents the distribution of heat in the human head representing these through a nonlinear singular problem to be able to better understand their dynamics.In addition,the ANNs procedures have been used to solve a nonlinear multi-singular thirdorder Emden-Fowler equation in[34]by Sabir et al.[35].Also,Sabir et al.in[36]adopted a new solver based on the fractional Meyer neuro-evolution computing method for solving a doubly singular multifractional order Lane-Emden system.Other fields of application are pantograph models as in[37-39]and some fractional-order models [40,41].The previously mentioned advantages have driven us to investigate more on the application of the existing technique for simulating the presented model.To the best of our knowledge,the ANNs-LMB is applied the first time to solve this model.

    The novel features of the ANNs for solving the fractional order financial model are itemized as:

    ? A new stochastic numerical procedure with the aid of the ANNs-LMB method is adapted to simulate the chaotic financial models in the system(1).

    ? Three different cases based on the fractional-order have been presented to solve the chaotic financial models.

    ? The correction of the proposed scheme is observed through the comparison of the proposed and reference solutions.

    ? The absolute error (AE)is performed in good measures to authenticate the accuracy of the proposed ANNs-LMB solver.

    ? The combined features of the ANNs with the LMB enhance the accuracy of the obtained results in terms of error for solving the financial problem.

    ? The error histograms(EHs),MSE presentations,correlation metrics,and regression measures authenticate the novel computing stochastic numerical procedure based on ANNs-LMB.

    The organization of the paper is as follows:Section 2 presents the numerical procedure for solving the chaotic financial models using the ANNs-LMB method.The performance of this novel technique is illustrated through several measures in tables and figures presented in Section 3.The conclusion for the work along with the future work can be found in Section 4.

    2 Methodology:ANNs-LMB

    In this section,the proposed method based on the ANNs-LMB is given in detail for solving the chaotic financial model.The main steps for solving the system can be categorized in the following main steps:

    1.Some explanation regarding the use of the stochastic numerical-based ANNs-LMB technique is provided.

    2.The implementation of the proposed technique for solving the chaotic financial model validates the exactness and effectiveness of the method for solving the chaotic financial system.

    These steps for approximating the solution of the financial model with the proposed technique for simulating the financial model are illustrated in Fig.1 via actions of the multilayer procedure.In addition,Fig.2 shows the solution based on a single neuron based on SNNs-LMBT.The solution is presented through ‘nftool’build-in command in ‘Matlab’using the selection of data for solving the fractional-order chaotic financial model are selected as 75%for training,10%for testing,and 15%for certification.

    Figure 1:Workflow diagram of the proposed ANNs-LMB for the fractional-order chaotic financial model

    Figure 2:Proposed framework of the single neuron

    3 Numerical Validation

    In this section, the performance of the obtained results is presented for solving problem 1 with different three cases using the proposed ANNs-LMB technique.The mathematical representation of each of the obtained cases is solved for F = 0.3,M= 0.2 and ? = 0.1.Then,problem(1)will be in the form

    The ICs for system(2)isψ1(0) =ψ2(0) =ψ3(0) = 0.2.Each case with a different value of the fractional-orderα.Case I is simulated for system(2)withα=0.4,Case II withα=0.6,and Case III withα=0.8.

    The numerical simulations are done through the application of the proposed ANNs-LMB for solving the fractional-order chaotic financial model with the input span of [0, 1].Fifteen numbers neurons have been used to solve the fractional-order chaotic financial model.The selection of the data to solve the fractional-order chaotic financial model are selected as 75%for training,10%for testing,and 15%for certification.The performance of the obtained results is tested in Fig.3.

    Figure 3:Schematic diagram for the proposed technique for solving the financial chaotic system

    The plotted graphs for solving the fractional financial system using the proposed technique are given in Figs.4-8.The efficiency of the used technique is first demonstrated in Figs.4a-4d using the performance and transitions of the method.The measures for the MSE are provided in Figs.4a-4c and the values of the STs are given in Figs.4d-4f for all three cases.It can be noticed from these figures that the best curves,training,and testing for case I are drawn at epoch 63 which produces an error between 4.93×10-10, 4.11×10-08,and 9.58×10-08, respectively for each case.Also, the gradient values for solving the financial system using the ANNs-LMB are found to be 9.52×10-08for case I,3.26×10-08for case II,and 4.78×10-08for case III.In addition,the last-mentioned performance measures showed by the graphical representation of the convergence based on the ANNs-LMB method can be observed in Figs.5a-5f,which presents the fitting curves and the comparison and EHs for each of the presented three cases.This validates the obtained results and their comparison with the reference solutions.It can be observed from Figs.5a-5c,which demonstrates the comparison of the obtained output results through authentication, testing, and training for the ANNs-LMB technique that the comparison is the best fitting for all three cases.Also Figs.5d-5f gives the EHs values for the three cases and we can notice that the maximum EHs for case I are around-8.3×10-05,1.7×10-05and 6.69×10-05compared to -9.3×10-05, 6.97×10-05and 1.24×10-04for case II and finally, -4.5×10-05, -4.5×10-06and 3.61×10-05for case III.The correlation measures of all three cases for solving the fractional financial model are illustrated in Figs.6-8 and based on that it indicates the correctness of the proposed ANNs-LMB technique based on the verification, training, and testing.Tab.2 gives the training, epochs,authentication,testing,backpropagation measures,and complexity for solving the fractional financial model using the ANNs-LMB method.

    Figure 4: (Continued)

    Figure 4:MSE and state transitions to solve the chaotic financial system

    Figure 5: (Continued)

    Figure 5:Comparisons and EHs values for solving problem(2)using ANNs-LMB

    Figure 6:Regression measures for case I using the ANNs-LMB

    Figure 7:Regression measures for case II using the ANNs-LMB

    Figure 8: (Continued)

    Figure 8:Regression measures for case III using the ANNs-LMB

    Table 2: Acquired results to solve the chaotic financial system

    The plot of the comparison for different cases is illustrated in Figs.9 and 10 for solving the chaotic financial model.The obtained results and the reference solutions overlapped,which indicates that the proposed technique is efficient in simulating the chaotic financial model using the ANNs-LMB.Fig.9 gives the obtained results for the three cases compared to the reference solutions for solving the chaotic financial model.Fig.10 provides the measures of the absolute error for the three cases using the ANNs-LMB method.It can be noted that the presented solutions using the ANNs-LMB method are precise and accurate for solving the chaotic financial model.

    Figure 9:Comparison of the results for the financial system

    Figure 10: (Continued)

    Figure 10:Measure of AE for the financial system

    4 Concluding Remarks

    The purpose of this article is to investigate the dynamics of the fractional nonlinear chaotic financial system using a new modification of the ANNs-LMB technique.This technique is performed using the form of the ANNs method combined with the LMB for simulating the proposed system.The fractional-order derivative is defined in the Caputo sense and the method is tested for several values of the fractional-order through three cases.The solutions of the nonlinear,fractional order,financial differential model is not easy to present,however,ANN-LMB is an efficient solver to solve these types of models.The solution is presented through‘nftool’build-in command in‘Matlab’using the selection of data for solving the fractional-order chaotic financial model are selected as 75%for training,10%for testing,and 15%for certification.The results acquired by the ANNs-LMB method are demonstrated through the graphs representing the proportional measures of MSE,correlation,EHs,regression,and STs.This indicates that the proposed algorithm is effective in simulating the fractional system with high performance and can be extended in the future for solving the different problems related to biology,fluid mechanics as well as other problems in science and engineering[42-46].

    Funding Statement:This research received funding support from the NSRF via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(Grant Number B05F640088).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    久久综合国产亚洲精品| 国产精品一区二区精品视频观看| 亚洲人成电影观看| 中文字幕人妻熟女乱码| 国产欧美日韩一区二区精品| 久久这里只有精品19| 波多野结衣一区麻豆| 最新在线观看一区二区三区| 国产亚洲欧美精品永久| www.熟女人妻精品国产| 成年女人毛片免费观看观看9 | av网站在线播放免费| 国产高清国产精品国产三级| 国产av国产精品国产| 99久久综合免费| 高清欧美精品videossex| 黑人巨大精品欧美一区二区mp4| 婷婷色av中文字幕| 欧美日韩av久久| 欧美成人午夜精品| 午夜视频精品福利| 日韩视频在线欧美| 十八禁网站免费在线| 黄色视频,在线免费观看| 男女边摸边吃奶| 两性夫妻黄色片| 日本vs欧美在线观看视频| 2018国产大陆天天弄谢| 亚洲情色 制服丝袜| 91精品伊人久久大香线蕉| 97人妻天天添夜夜摸| 成人av一区二区三区在线看 | 欧美人与性动交α欧美精品济南到| 亚洲国产欧美一区二区综合| 99国产综合亚洲精品| 亚洲少妇的诱惑av| 久久精品aⅴ一区二区三区四区| 欧美+亚洲+日韩+国产| 老司机影院成人| 免费日韩欧美在线观看| 欧美激情久久久久久爽电影 | 精品国产国语对白av| 免费不卡黄色视频| 午夜成年电影在线免费观看| 一级毛片精品| 色婷婷久久久亚洲欧美| 悠悠久久av| 纯流量卡能插随身wifi吗| 亚洲欧美色中文字幕在线| 国产欧美日韩精品亚洲av| 亚洲一码二码三码区别大吗| 最黄视频免费看| 中文字幕色久视频| 久久青草综合色| 欧美国产精品va在线观看不卡| 国产成人欧美| 亚洲国产看品久久| 亚洲第一青青草原| 岛国在线观看网站| 国产亚洲欧美在线一区二区| 久久久久久久国产电影| 男女国产视频网站| 成人手机av| 99久久国产精品久久久| 国产精品欧美亚洲77777| 久久国产亚洲av麻豆专区| 欧美日韩av久久| 亚洲少妇的诱惑av| 午夜精品国产一区二区电影| 欧美国产精品va在线观看不卡| 99热全是精品| 91成人精品电影| 高清视频免费观看一区二区| 男人爽女人下面视频在线观看| 97人妻天天添夜夜摸| 三上悠亚av全集在线观看| 日韩欧美一区视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 日本91视频免费播放| 人人妻人人爽人人添夜夜欢视频| 欧美久久黑人一区二区| 法律面前人人平等表现在哪些方面 | videos熟女内射| 国产一区二区三区在线臀色熟女 | 在线观看免费视频网站a站| 中文字幕人妻丝袜制服| 久久久久久亚洲精品国产蜜桃av| 精品卡一卡二卡四卡免费| 亚洲全国av大片| 久久久国产精品麻豆| 99热国产这里只有精品6| 男男h啪啪无遮挡| 女人被躁到高潮嗷嗷叫费观| 岛国毛片在线播放| 操出白浆在线播放| 亚洲中文日韩欧美视频| 国产在线一区二区三区精| 天天添夜夜摸| 日本撒尿小便嘘嘘汇集6| 咕卡用的链子| 丁香六月天网| 欧美在线一区亚洲| 久久久久精品国产欧美久久久 | 少妇裸体淫交视频免费看高清 | 飞空精品影院首页| 岛国毛片在线播放| 久久这里只有精品19| 丰满少妇做爰视频| 国产在线观看jvid| 亚洲激情五月婷婷啪啪| 久久午夜综合久久蜜桃| 欧美日韩黄片免| 老汉色av国产亚洲站长工具| 一区二区av电影网| 国产在视频线精品| 巨乳人妻的诱惑在线观看| 高清黄色对白视频在线免费看| 高清av免费在线| 一二三四在线观看免费中文在| 久久久欧美国产精品| a在线观看视频网站| 久久人人爽av亚洲精品天堂| 久久久久久久大尺度免费视频| www.999成人在线观看| 一区在线观看完整版| 国产99久久九九免费精品| 人人妻,人人澡人人爽秒播| 国产av精品麻豆| 亚洲成国产人片在线观看| 成年人午夜在线观看视频| 少妇被粗大的猛进出69影院| a在线观看视频网站| 亚洲精品久久午夜乱码| 欧美+亚洲+日韩+国产| 国内毛片毛片毛片毛片毛片| 日本猛色少妇xxxxx猛交久久| 亚洲精品第二区| 欧美激情 高清一区二区三区| 国产熟女午夜一区二区三区| 王馨瑶露胸无遮挡在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲一码二码三码区别大吗| 久久久精品94久久精品| 热re99久久精品国产66热6| 久久久久精品人妻al黑| 国产成人一区二区三区免费视频网站| 99久久99久久久精品蜜桃| 欧美在线黄色| 亚洲一区二区三区欧美精品| 天堂8中文在线网| 91字幕亚洲| 91av网站免费观看| 黑人猛操日本美女一级片| 亚洲熟女毛片儿| 亚洲精品美女久久av网站| 精品一区二区三区四区五区乱码| 国产精品熟女久久久久浪| 欧美黑人精品巨大| 成人手机av| 9191精品国产免费久久| 欧美精品高潮呻吟av久久| 最近最新免费中文字幕在线| 久久久久久久精品精品| 成人国产一区最新在线观看| 精品国产乱码久久久久久男人| 一级片'在线观看视频| 日韩一区二区三区影片| 91精品三级在线观看| 国产区一区二久久| a 毛片基地| 亚洲第一青青草原| 亚洲欧美成人综合另类久久久| 我要看黄色一级片免费的| 蜜桃在线观看..| 一区在线观看完整版| 丰满少妇做爰视频| 人妻 亚洲 视频| 青草久久国产| 国产免费一区二区三区四区乱码| 欧美在线黄色| 国产色视频综合| 欧美大码av| 每晚都被弄得嗷嗷叫到高潮| 肉色欧美久久久久久久蜜桃| 制服人妻中文乱码| 老熟女久久久| cao死你这个sao货| 我的亚洲天堂| 新久久久久国产一级毛片| 久久免费观看电影| 国产成人av激情在线播放| 午夜免费成人在线视频| 一本大道久久a久久精品| 考比视频在线观看| 国产国语露脸激情在线看| 欧美性长视频在线观看| 国产不卡av网站在线观看| av福利片在线| 在线观看免费高清a一片| 国产日韩欧美在线精品| 国产色视频综合| 欧美乱码精品一区二区三区| h视频一区二区三区| 欧美人与性动交α欧美精品济南到| 国产亚洲精品一区二区www | 女人高潮潮喷娇喘18禁视频| 伊人亚洲综合成人网| 亚洲色图综合在线观看| 少妇精品久久久久久久| 青草久久国产| 热99国产精品久久久久久7| 宅男免费午夜| 女人精品久久久久毛片| 狂野欧美激情性bbbbbb| 国产三级黄色录像| 欧美中文综合在线视频| 欧美亚洲日本最大视频资源| 久久久国产精品麻豆| 国产男女内射视频| 我要看黄色一级片免费的| 免费少妇av软件| 亚洲一区二区三区欧美精品| www.精华液| 欧美亚洲日本最大视频资源| 大型av网站在线播放| 精品国内亚洲2022精品成人 | 高清欧美精品videossex| 欧美激情 高清一区二区三区| 精品一区二区三区四区五区乱码| 久久人人爽人人片av| 国产成人精品在线电影| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩亚洲高清精品| 亚洲av日韩在线播放| 色视频在线一区二区三区| 国产日韩欧美亚洲二区| 嫁个100分男人电影在线观看| 在线观看舔阴道视频| 考比视频在线观看| 欧美黄色淫秽网站| 蜜桃国产av成人99| 91av网站免费观看| 亚洲欧美日韩高清在线视频 | 国产有黄有色有爽视频| 久久热在线av| 国产成人系列免费观看| 后天国语完整版免费观看| 午夜免费鲁丝| 国产成人系列免费观看| 久9热在线精品视频| 我要看黄色一级片免费的| 成年人免费黄色播放视频| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品自拍成人| 久久国产亚洲av麻豆专区| 午夜福利一区二区在线看| 99久久国产精品久久久| 亚洲欧美激情在线| 国产有黄有色有爽视频| 日日摸夜夜添夜夜添小说| 午夜福利视频在线观看免费| 欧美日本中文国产一区发布| 男女之事视频高清在线观看| 日韩中文字幕视频在线看片| 精品国产超薄肉色丝袜足j| 久久中文字幕一级| 久久午夜综合久久蜜桃| 男人添女人高潮全过程视频| 精品国产乱码久久久久久小说| 亚洲一区中文字幕在线| 国产精品.久久久| 伦理电影免费视频| 亚洲成人免费av在线播放| 久久精品亚洲av国产电影网| 美女国产高潮福利片在线看| 亚洲av日韩精品久久久久久密| 午夜成年电影在线免费观看| av在线app专区| 国产精品成人在线| 日韩 亚洲 欧美在线| 国产一区二区三区在线臀色熟女 | 亚洲精品粉嫩美女一区| 多毛熟女@视频| 男女午夜视频在线观看| 桃红色精品国产亚洲av| 亚洲va日本ⅴa欧美va伊人久久 | 制服人妻中文乱码| 青春草视频在线免费观看| 香蕉国产在线看| 欧美乱码精品一区二区三区| 宅男免费午夜| 国产亚洲午夜精品一区二区久久| 99国产极品粉嫩在线观看| 国产精品偷伦视频观看了| 欧美 亚洲 国产 日韩一| 国产在线免费精品| 9色porny在线观看| 天天影视国产精品| av片东京热男人的天堂| 老司机靠b影院| 交换朋友夫妻互换小说| 女人爽到高潮嗷嗷叫在线视频| 日本黄色日本黄色录像| 伦理电影免费视频| 欧美97在线视频| 国产97色在线日韩免费| 亚洲国产成人一精品久久久| 最新的欧美精品一区二区| 国产精品熟女久久久久浪| 亚洲av美国av| 国产精品欧美亚洲77777| 国产精品麻豆人妻色哟哟久久| 国产极品粉嫩免费观看在线| 性色av一级| cao死你这个sao货| 在线 av 中文字幕| 欧美激情高清一区二区三区| 91精品国产国语对白视频| 亚洲精品一二三| √禁漫天堂资源中文www| 国产日韩欧美亚洲二区| 女警被强在线播放| 美女视频免费永久观看网站| 欧美日韩成人在线一区二区| 国产精品99久久99久久久不卡| 欧美日韩亚洲综合一区二区三区_| 国产成人a∨麻豆精品| 亚洲第一青青草原| 夫妻午夜视频| 日韩 欧美 亚洲 中文字幕| 日韩制服骚丝袜av| 中文字幕制服av| 亚洲天堂av无毛| 亚洲三区欧美一区| 免费看十八禁软件| 亚洲专区字幕在线| 免费高清在线观看日韩| 久久久久久久精品精品| 91精品三级在线观看| 搡老乐熟女国产| 一区福利在线观看| 精品欧美一区二区三区在线| 国产野战对白在线观看| 国产麻豆69| 三上悠亚av全集在线观看| 母亲3免费完整高清在线观看| 99九九在线精品视频| 91成年电影在线观看| 国产免费视频播放在线视频| 老汉色av国产亚洲站长工具| 天堂8中文在线网| 亚洲男人天堂网一区| 久久ye,这里只有精品| 久久亚洲精品不卡| 老司机午夜福利在线观看视频 | 久久久国产欧美日韩av| 国产国语露脸激情在线看| 悠悠久久av| 欧美日韩成人在线一区二区| 亚洲欧美日韩另类电影网站| 天天操日日干夜夜撸| 老司机深夜福利视频在线观看 | 美国免费a级毛片| 一个人免费在线观看的高清视频 | 99久久人妻综合| 女警被强在线播放| 亚洲专区中文字幕在线| 波多野结衣一区麻豆| 动漫黄色视频在线观看| 日本av免费视频播放| 黄色视频在线播放观看不卡| 在线精品无人区一区二区三| 国产99久久九九免费精品| 宅男免费午夜| 久久影院123| 80岁老熟妇乱子伦牲交| 欧美人与性动交α欧美精品济南到| 性色av一级| 中国美女看黄片| 亚洲精品第二区| 视频在线观看一区二区三区| 水蜜桃什么品种好| 亚洲精品自拍成人| 国产亚洲av高清不卡| 日韩人妻精品一区2区三区| 男人爽女人下面视频在线观看| 亚洲国产精品一区二区三区在线| 岛国在线观看网站| 亚洲国产欧美一区二区综合| 女性被躁到高潮视频| 免费观看人在逋| 两性午夜刺激爽爽歪歪视频在线观看 | 国产国语露脸激情在线看| 国产欧美日韩一区二区三区在线| 久久九九热精品免费| 超碰97精品在线观看| 亚洲一区二区三区欧美精品| 黑人巨大精品欧美一区二区mp4| 亚洲av国产av综合av卡| 久久久久国产精品人妻一区二区| 中亚洲国语对白在线视频| 超碰成人久久| 亚洲七黄色美女视频| 国产精品久久久久久精品电影小说| 欧美激情高清一区二区三区| 欧美国产精品va在线观看不卡| 永久免费av网站大全| 老司机在亚洲福利影院| 免费看十八禁软件| 亚洲精品国产区一区二| 99精品久久久久人妻精品| 中文字幕制服av| 久久这里只有精品19| 97在线人人人人妻| 一本色道久久久久久精品综合| 国产精品麻豆人妻色哟哟久久| 大码成人一级视频| 精品一品国产午夜福利视频| 亚洲精品国产色婷婷电影| 午夜福利,免费看| 黄色怎么调成土黄色| 91精品三级在线观看| 日日摸夜夜添夜夜添小说| 久久精品人人爽人人爽视色| 女人爽到高潮嗷嗷叫在线视频| 香蕉丝袜av| 国产老妇伦熟女老妇高清| 69av精品久久久久久 | 午夜福利乱码中文字幕| av天堂久久9| 十八禁网站网址无遮挡| 国产成人免费无遮挡视频| 亚洲久久久国产精品| 啦啦啦视频在线资源免费观看| 久久久国产精品麻豆| 丰满少妇做爰视频| 亚洲黑人精品在线| 精品福利观看| 91国产中文字幕| 亚洲精品国产av蜜桃| 菩萨蛮人人尽说江南好唐韦庄| av在线app专区| 久久久国产一区二区| 国产免费av片在线观看野外av| 国产日韩一区二区三区精品不卡| 久久久久精品人妻al黑| 亚洲国产欧美网| 国产av精品麻豆| 亚洲午夜精品一区,二区,三区| 久久人妻熟女aⅴ| 久久 成人 亚洲| 一本一本久久a久久精品综合妖精| 高清av免费在线| 波多野结衣av一区二区av| 操出白浆在线播放| 成人av一区二区三区在线看 | 国产无遮挡羞羞视频在线观看| 在线看a的网站| 亚洲国产欧美网| 亚洲av美国av| 日本猛色少妇xxxxx猛交久久| 99久久人妻综合| 男人操女人黄网站| 久久人人爽人人片av| cao死你这个sao货| 夜夜骑夜夜射夜夜干| 欧美变态另类bdsm刘玥| 一本—道久久a久久精品蜜桃钙片| 国产成人系列免费观看| 亚洲av电影在线观看一区二区三区| 亚洲久久久国产精品| 精品高清国产在线一区| 亚洲国产精品一区二区三区在线| 亚洲熟女毛片儿| 这个男人来自地球电影免费观看| 欧美精品啪啪一区二区三区 | 99香蕉大伊视频| 曰老女人黄片| 91成年电影在线观看| 青青草视频在线视频观看| 欧美变态另类bdsm刘玥| 成人国语在线视频| 在线观看www视频免费| 国产av又大| 成人国产一区最新在线观看| 国产男人的电影天堂91| 亚洲国产精品999| 中文字幕高清在线视频| 欧美xxⅹ黑人| 水蜜桃什么品种好| 欧美日韩一级在线毛片| 国产又爽黄色视频| 黑人欧美特级aaaaaa片| 国产成人精品在线电影| 欧美日韩精品网址| 欧美日韩视频精品一区| 无遮挡黄片免费观看| 久久久久精品国产欧美久久久 | 午夜激情久久久久久久| 亚洲男人天堂网一区| 国产免费一区二区三区四区乱码| 男女下面插进去视频免费观看| 亚洲成人免费电影在线观看| 精品一区二区三区四区五区乱码| h视频一区二区三区| 亚洲精品久久午夜乱码| 无限看片的www在线观看| 亚洲国产欧美一区二区综合| 成人av一区二区三区在线看 | a级片在线免费高清观看视频| 脱女人内裤的视频| 国产有黄有色有爽视频| 建设人人有责人人尽责人人享有的| 欧美日韩一级在线毛片| 国产xxxxx性猛交| 精品第一国产精品| 免费高清在线观看日韩| av免费在线观看网站| 欧美成狂野欧美在线观看| 久久人人97超碰香蕉20202| e午夜精品久久久久久久| www.自偷自拍.com| 久久久久久亚洲精品国产蜜桃av| videos熟女内射| 国产精品.久久久| 久久中文字幕一级| 亚洲国产欧美网| 五月开心婷婷网| 精品少妇内射三级| 大香蕉久久网| 精品少妇久久久久久888优播| 亚洲第一青青草原| 中国国产av一级| 丝瓜视频免费看黄片| 黄色片一级片一级黄色片| 欧美日韩亚洲高清精品| 国产麻豆69| 男女无遮挡免费网站观看| 欧美精品av麻豆av| 一区二区日韩欧美中文字幕| 成人国产av品久久久| 亚洲欧美日韩高清在线视频 | 成人亚洲精品一区在线观看| 免费一级毛片在线播放高清视频 | 精品福利观看| 永久免费av网站大全| 日日爽夜夜爽网站| 香蕉丝袜av| 精品卡一卡二卡四卡免费| 国产亚洲精品久久久久5区| 午夜91福利影院| 成年美女黄网站色视频大全免费| 无限看片的www在线观看| 久久99一区二区三区| 久久国产精品影院| 最新的欧美精品一区二区| 久久久久久久大尺度免费视频| 国产成人av教育| 日韩制服丝袜自拍偷拍| 日韩制服骚丝袜av| 日韩 欧美 亚洲 中文字幕| 亚洲欧洲精品一区二区精品久久久| 国产一卡二卡三卡精品| 欧美一级毛片孕妇| 深夜精品福利| 精品少妇内射三级| 日韩视频一区二区在线观看| 老熟妇乱子伦视频在线观看 | 91精品伊人久久大香线蕉| 高清黄色对白视频在线免费看| 国产日韩欧美视频二区| 青草久久国产| 纯流量卡能插随身wifi吗| 在线av久久热| 日韩欧美一区二区三区在线观看 | 80岁老熟妇乱子伦牲交| 久久久久精品国产欧美久久久 | 久久香蕉激情| 男人舔女人的私密视频| 日韩一卡2卡3卡4卡2021年| 国产亚洲精品第一综合不卡| 精品欧美一区二区三区在线| 两个人免费观看高清视频| 人人澡人人妻人| 国产精品九九99| 亚洲欧美清纯卡通| 人成视频在线观看免费观看| 午夜激情av网站| 香蕉国产在线看| av线在线观看网站| 一本—道久久a久久精品蜜桃钙片| 久久狼人影院| 夫妻午夜视频| 91麻豆精品激情在线观看国产 | 中文字幕精品免费在线观看视频| 一级片免费观看大全| 在线观看www视频免费| bbb黄色大片| 亚洲欧美色中文字幕在线| 亚洲精品国产色婷婷电影| 欧美日韩中文字幕国产精品一区二区三区 | 一区在线观看完整版| 精品人妻在线不人妻| 亚洲av成人一区二区三| 日本av免费视频播放| 日韩欧美一区视频在线观看| 国产亚洲精品一区二区www | 免费人妻精品一区二区三区视频| 国产真人三级小视频在线观看| 亚洲成人手机| 在线观看免费日韩欧美大片| 日韩 欧美 亚洲 中文字幕| 精品国产国语对白av| 久9热在线精品视频| 国产又色又爽无遮挡免|