• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-View Auxiliary Diagnosis Algorithm for Lung Nodules

    2022-11-11 10:46:12ShiQiuBinLiTaoZhouFengLiandTingLiang
    Computers Materials&Continua 2022年9期

    Shi Qiu,Bin Li,Tao Zhou,Feng Li and Ting Liang

    1Key Laboratory of Spectral Imaging Technology CAS,Xi’an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi’an,710119,P.R.China

    2School of Information Science and Technology,Northwest University,Xi’an,710127,P.R.China

    3School of Computer Science and Engineering,North Minzu University,Yinchuan,750021,P.R.China

    4Institute of Education,University College London,London,The United Kingdom

    5Department of Radiology,The First Affiliated Hospital of Xi’an Jiaotong University,Xi’an,10061,P.R.China

    Abstract: Lung is an important organ of human body.More and more people are suffering from lung diseases due to air pollution.These diseases are usually highly infectious.Such as lung tuberculosis, novel coronavirus COVID-19,etc.Lung nodule is a kind of high-density globular lesion in the lung.Physicians need to spend a lot of time and energy to observe the computed tomography image sequences to make a diagnosis,which is inefficient.For this reason, the use of computer-assisted diagnosis of lung nodules has become the current main trend.In the process of computer-aided diagnosis,how to reduce the false positive rate while ensuring a low missed detection rate is a difficulty and focus of current research.To solve this problem, we propose a three-dimensional optimization model to achieve the extraction of suspected regions,improve the traditional deep belief network,and to modify the dispersion matrix between classes.We construct a multi-view model,fuse local three-dimensional information into two-dimensional images, and thereby to reduce the complexity of the algorithm.And alleviate the problem of unbalanced training caused by only a small number of positive samples.Experiments show that the false positive rate of the algorithm proposed in this paper is as low as 12%,which is in line with clinical application standards.

    Keywords: Lung nodules; deep belief network; computer-aided diagnosis;multi-view

    1 Introduction

    Lung nodules are the main lesions of the lungs.If they are not detected and treated in time,the malignant lung nodules will be transformed into lung cancer, which will seriously affect human life and health[1-3].Lee et al.[4]proposed the random forest classification of lung nodules.Wu et al.[5]constructed a hierarchical learning network to extract lung nodules.Diciotti et al.[6] constructed a morphological model to segment lung nodules.Li et al.[7] established Principal Components Analysis(PCA)model to identify lung nodules.Song et al.[8]used the Local Binary Pattern(LBP)features to identify lung sessions.Song et al.[9]established a local optimal classification network to identify lung nodules.Teramoto et al.[10]used the cylindric nodule-enhancement filter to enhance the image information of lung nodules.Tariq et al.[11]introduced neuro fuzzy to identify lung nodules.De Carvalho Filho et al.[12]used quality threshold clustering,genetic algorithm and diversity index to detect solitary lung nodules.Parveen et al.[13] used Support Vector Machine (SVM)kernels to classify lung nodules.Hua et al.[14] applied the theory of deep learning to the classification of lung nodules.Shen et al.[15] established a multi-scale convolutional neural network to classify lung nodules.Sun et al.[16] distinguished lung nodules based on Three-Dimensional (3D)texture features of lung.Javaid et al.[17] distinguished the signs of lung nodules from the gray, geometric,statistical point of view.Qiu et al.[18]used Gestalt to detect nodules.Huang et al.[19]detected the lung nodules with 3D conventional neural networks.Shaukat et al.[20]combined multiple features to reduce the false detection rate of lung nodules.Han et al.[21] established a system of diameter and volume to judge benign and malignant lung nodules.Nishio et al.[22] used gradient tree boosting and Bayesian optimization to assist in the diagnosis of lung nodules.Xie et al.[23]realized automatic classification of lung nodules by fusion of multiple features at the decision-making level.Saien et al.[24]proposed sparse field level sets and boosting algorithms to reduce the false detection rate of lung nodules.Qiu et al.[25]detected lung nodules on Computed Tomography(CT)image.Qiu et al.[26]detection of solitary lung nodules based on brain-computer interface.Rey et al.[27]used CT studies based in soft computing to achieve lung nodule segmentation.Mittapalli et al.[28] build a multilayer Multiscale Convolutional Neural Networks(CNN)to reduce the risk of false detection of lung nodules.Manickavasagam et al.[29]developed Computer Aided Diagnosis(CAD)software based on CNN to detect lung nodules.El-Askary et al.[30]constructed Random Forest optimization to target lung nodules.

    In general,computer-aided detection of lung nodules is moving towards intelligent development,in which the research represented by deep learning framework is the focus of current research.The current algorithm research issues mainly focus on 1)how to enhance the stability of the deep learning framework.2)In the training process,how to get a more complete training effect when the number of positive samples is limited.3)How to obtain an effective feature fusion method to realize lung nodule recognition.

    In response to the above problems, this paper 1)Improve the composition of the deep belief network and build a more stable structure.2)Propose a multi-view model that conforms to the principles of vision,increase the number of positive samples,and balance the number of positive and negative samples.3)Construct a lung nodule recognition algorithm based on multi-feature vector(FV)fusion.

    2 Algorithm

    The lung nodules are spherical-like in space, and exist as partially highlighted circles on the CT image.The diagnosis of lung nodules usually often divided into two parts: segmentation and recognition.Segmentation can obtain the suspected area of lung nodule [31] and recognition is to ensure a low missed detection rate of lung nodules while reducing the false positive rate[32].We focus on the recognition part in this paper.Under the current common deep belief network structure, we build the algorithm flow chart as shown in Fig.1.According to the principle of vision, a sample model is established from six perspectives,which can quickly present the spatial structure and improve the number of positive samples.Images with different view models are input into the improved depth belief network to get the eigenvectors.Then,a feature fusion algorithm is proposed to recognize lung nodules.

    Figure 1:The algorithm flow chart

    2.1 Three-Dimensional Reconstruction Algorithm

    Lung nodules present a spherical shape in the lungs, which is an important feature for judging whether the area is a lung nodule or not.Therefore,it is necessary to reconstruct the suspected area in three dimensions.The Feldkamp-Davis-Kress(FDK)algorithm is the current mainstream algorithm for 3D reconstruction.The specific process is as follows:firstly,the two-dimensional projection data is weighted, then the weighted projection data of different projection angles are filtered, and finally the weighted back projection reconstruction along the ray direction is carried out.

    The key step of FDK algorithm is filtering.The Shepp-Logan filter function[33]is usually used as follows:

    whereNis the filter width.Based on the morphological characteristics of three-dimensional lung nodules,a smooth function is constructed to reduce noise and interference from other tissues.

    whereSis an adjustable parameter.

    When the voxel size of the reconstruction matrix is greater than the width of the filter, the reconstructed image cannot fully express the high-frequency information,and high-frequency aliasing occurs.For this purpose,a truncation function is constructed:

    whereSizepis the pixel number of the filter;Sizevis the pixel number of the reconstructed voxel.The time-domain Shepp-Logan filter function is transformed into the frequency domain through Fast Fourier Transform(FFT)changes,and then a new filter function is constructed based on this:

    Through the above algorithm processing, the suspected lung nodule area is smoothed, but the contrast and edge features are suppressed to a certain extent.Therefore, it is proposed to design a high-frequency enhancement filter.

    whereb1andp1are the parameters.Whenb1>0,high frequency enhancement can be realized,andp1controls the frequency range of enhancement.g1refers to the angle.

    On the basis ofFB1,the filter function is added iteratively,which can enhance different frequency bands.

    Therefore,the final filter function can be achieved:

    2.2 Improved Deep Belief Network

    Deep Belief Network(DBN)is a generative model that allows the entire neural network to generate training data according to the maximum probability by training the weights between its neurons[34].This network has received widespread attention since its inception.And a series of research and application carried out on it.Bu et al.[35] constructs DBN to learn high-level features.Shen et al.[36]introduced Boltzmann machines to constrain DBN.Khatami et al.[37]firstly reduced the dimensionality of medical data and then extracted high-level features through DBN.Zhong et al.[38]improved the process of fine-tuning to reduce never responding or always responding latent factors.Lu et al.[39] introduced a reconstruction error model to modify DBN to predict the probability of cardiovascular occurrence.

    Due to the initial weight matrix between the last hidden layer and the classification layer of the deep belief network is randomly generated, which causes the weight matrix do not have the discriminative ability,and the feature cannot be guaranteed to be suitable for the classification task.Thus,we improve the deep belief network model,shown as in Fig.2.

    Figure 2:Improved DBN chart

    The network consists Restricted Boltzmann Machine (RBM)and Latent Dirichlet Allocation(DLA).They input layer {h0}, hidden layer {h1,h2...hN}, and Label is the classification layer.The number of input layer nodes is equal to the dimension of input samples, and the number of classification layer nodes is equal to the number of categories in the input sample set.

    C-type training sample set is defined asi= 1,2...C, whereNiis the number of classisamples andis thej-th sample in classi.

    Latent Dirichlet Allocation(LDA)is an effective feature extraction method.Its purpose is to find the linear transformation matrixW, which maximizes the ratio of the inter-class dispersion to the intra-class dispersion,

    whereWois the optimal projection matrix.Sbis the matrix of dispersion between sample classes.Swis the dispersion matrix within the sample class.So the process of solvingWois transformed into the process of solving generalized matrix:

    Due to the rank limit problem of LDA,Rank(Sb)≤C-1,it shows that under Fisher criterion,onlyC-1 non-zero eigenvectors can be obtained,which does not meet the requirements.For this reason,we define a new matrix of inter class dispersion according to the two class problem:

    It can be seen that Rank(Snb)≤min(Rank(X),Rank(XT))=Rank(X).For this reason,multiple discriminant projection vectors are obtained to meet the requirements of the number of nodes in the DBN classification layer.According to Eq.(9), the improved optimal optimization matrixWo=[w1,w2,...,wc]is obtained.

    2.3 The Multi-View Model Fusion

    Lung nodules present a sphere-like structure in space and a cross-sectional structure on CT images.Recognizing lung nodules from a single location has a higher risk of misdetection and missed detection.And when using deep learning training,it is impossible to obtain enough positive samples.Therefore,we establish a multi-angle model that conforms to the principle of vision,which increases the number of positive samples while reducing the false detection rate and the missed detection rate.Blood vessels and trachea are the main interfering reasons during the detection of lung nodules.Because CT imaging is a tomographic scan, the tubular structures of blood vessels and tracheas will be truncated, and their cross-section will also be a round shape.This is similar to the two-dimensional morphology of lung nodules,which make the detection become difficult.Therefore,it is necessary to build a multidirectional model to carry out researches.

    It is high risk of false detection and missed detection to identify lung nodules only from a single location[40].When using deep learning training,we cannot get enough positive samples.Therefore,we build a multi-angle model to reduce the rate of false detection and missed detection while increasing the number of positive samples.

    Because the size of lung nodules is not consistent, the lung nodules are normalized as a certain size.According to the axial,coronal and sagittal views,the lung nodule was identified by the section image.In order to increase the number of positive samples and achieve a balance between positive and negative samples,the characteristics of lung nodules were analyzed from three perspectives.However,only axial,coronal and sagittal sections cannot show the overall information of lung nodules.So we introduce the concept of perspective projection.

    whereM(x,y)is the pixel value of the perspective projection image in(x,y).Pm(x,y)is the pixel value of the input image in the projection direction.This model is in accords with the principle of visual occlusion.The amount of calculation is greatly reduced compared with the 3D algorithm, while presenting the three-dimensional structure of the object.

    Therefore,from the perspective of cube hexahedron,we construct a projection model to show the spatial structure.The six-view image is generated into feature vector(FV)after learning from DBN,and then the feature fusion strategy is established.Finally,the SVM classifier is connected to get the classification result.

    In order to verify the performance of proposed algorithm,we build following fusion algorithms respectively,shown as in Fig.3.

    TYPE1:Input the axial image,generate the feature vector,and then identify the lung nodules by SVM classifier.

    TYPE2:Input the axial,coronal and sagittal images respectively(the coronal and sagittal images are generated from the axial images),and then use SVM classifier to judge the properties.It is better to choose the one with more modes for more accurate result.

    TYPE3:Input one-view image,generate the feature vector,and then use SVM classifier to identify lung nodules.

    TYPE4:Input three-view images,generate the feature vector,and then use SVM classifier to judge the properties.It is better to choose the one with more modes for more accurate result.

    TYPE5:Input six-view images,generate the feature vector,and then use SVM classifier to judge the properties.It is better to choose the one with more modes for more accurate result.

    TYPE6:Input six-view images,divide them into three groups to generate eigenvectors.Use SVM classifier to judge the properties.It is better to choose the one with more modes for more accurate result.

    TYPE7:Input six-view images,generate feature vectors respectively and recognize lung nodules by SVM classifier.

    Figure 3:Fusion algorithms chart

    3 Experiment and Result Analysis

    300 sets of lung CT data are collected from the early international lung cancer action project[18]database.The size of the test and training datasets is 1:2.This database includes lung nodules and normal lung data,in which the data of lung nodules are labeled by doctor blind labeling method,and the data set is constructed.Also, the data in the database are taken down at different time and by different equipment to ensure a diversity of data and the reliability of the algorithm.

    The program of the algorithm is implemented in the WIN7 system using VS2018.The detection speed is positively correlated with the complexity of the data and the amount of data,with an average of 31 s/sequence.

    According to the difference of lung nodule scale,when the radius of lung nodule is less than 15 pixels,it is a small nodule,and when it is more than 30 pixels,it is a large nodule.Thus,we will classify lung nodules smaller than 152πpixel into cubes of 322pixels,and lung nodules larger than 302πpixel into cubes of 642pixels.

    3.1 Parameter Selection

    For the deep learning network we use, the input image is 512 × 512.And for images that do not meet the size requirements,it is normalized to 512×512.In this paper,the proposed algorithm includes the parameters ofb1,p1,b2andp2.To evaluate the performance of the filter,we introduceAOMandAVMto evaluate the combination of different parameters[41],which can build the relationship between the three-dimensional reconstructed areaRgand the marked areaRsby physician,

    whereAOMis proportional to the effect of the proposed algorithm.On the contrast,AVMis reversely proportional to the effect of the proposed algorithm.

    As shown in Tab.1,whenb1,p1/=0,b2andp2=0,only the first layer filter works.Asb1andp1increase,whenb1=3 andp1=12,AOMandAVMreach the peak values.On this basis,the second layer filter is added.Whenb1=3 andp1=15,AOMandAVMreach the peak values.It shows that the proposed algorithm can suppress the background and enhance the area of lung nodules.

    Table 1: The effect of different parameters

    We analyzed the filter response curve,as shown in Fig.4.The traditional Shepp-Logan function can enhance the high frequency part, but the enhancement effect is limited.The similarity between the target and the background is not large enough.Through the selection of the above parameters,the proposed algorithm increases the difference between the target and the background,and reaches the peak value at the edge of lung nodules.Thus,effectiveness of the proposed algorithm is illustrated.

    Figure 4:The filter response curve

    3.2 Performance of Multi-View Fusion Algorithm

    In order to verify the effect of different algorithms,we introduce ROC curve for measurement,as shown in Fig.5.TYPE1: The three-dimensional features of lung nodules are ignored by the feature judgment of single section image.The representativeness of the selected image will directly affect the recognition effect.TYPE2:With increase of the profile,the risk of missing detection and false detection is reduced.However,the three-dimensional features of lung nodules cannot be fully displayed in the section structure.

    TYPE3: The one-view image is used as input to fuse part of three-dimensional information.The effect is better than single section image input.TYPE4, 5: With increase of the number of perspective images, more three-dimensional information is fused into the perspective images.The result of comprehensive judgment is the best, but with the increase of the number of classifiers, the speed decreases.TYPE6:Reducing the number of classifiers is helpful to improve the speed,but the grouping method will directly affect the classification results.TYPE7:In general,the lung nodule can be identified by inputting the six-view images together.When the number of classifiers is small.

    Figure 5:ROC of different fusion algorithms

    A multi-view aided diagnosis algorithm based on small sample of lung nodules is proposed in this paper,and the characteristics of lung nodules have been analyzed.The model has been built according to the characteristics of high brightness and round shape of lung nodules.Seven types of connection frames for experiments have been proposed and experimental results shows that the seventh has the best result.

    This method can be extended to other fields,but it cannot be applied in practice directly.In order to get better results,it is necessary to analyze the characteristics of the target to be detected.

    3.3 Lung Nodule Recognition Performance

    In order to verify the performance of the improved deep belief network algorithm,we measure the performance of different algorithms from sensitivity(SEN),specificity(SPE),false positive fraction(FPF)[42]

    As shown in Tab.2 and Fig.6,the type 7 fusion algorithm is better than other algorithms in terms of performance.PCA algorithm[7]replaced the original features with fewer features.The new features are linear combinations of the old features.These linear combinations maximize sample variance and make the new features irrelevant to each other.This method is more sensitive in training category data.LBP algorithm[8]features local gray invariance and rotation invariance,but the lung nodule pattern cannot be well expressed by only a single feature.DBN [34] algorithm does not consider the initial weight matrix between the last hidden layer and the classification layer when building the network,resulting in the weight matrix does not have discrimination ability.EDBN algorithm [38] optimizes the fine-tuning algorithm to improve the accuracy.Our algorithm improves the initialization structure of hidden layer and classification layer,and optimizes the stability of the algorithm.It achieved nice recognition effect.

    The detection speed of the proposed algorithm is positively correlated with the number of lesions in the sequence.The average detection time of each sequence is less than 3 minutes, which greatly reduces the time of manual interpretation.

    Table 2: Comparison table of algorithm effect

    3.4 Algorithm Effect Display

    We display the images of different angles of lung nodules,as shown in Fig.7.We select Normal lung nodule(Fig.7a),lung nodule with vascular adhesion(Fig.7b)and blood vessel(Fig.7c),Lung nodule and blood vessel are in the form of spheroids, but they cannot be distinguished from axial images.Lung nodules and blood vessels can be distinguished from V1-V6.The multi-view model can display the local texture information on the two-dimensional image,which makes the obtained features more abundant than the single section image.

    Figure 6:ROC curves of different fusion algorithms

    Figure 7:Algorithm effect display

    4 Conclusion

    In order to meet the needs of high accuracy and low false positive rate of computer-aided detection of lung nodules,the traditional deep belief network was improved to enhance network stability.Also,a multi-view model that conforms to the principle of visual perception is proposed to balance the number of positive and negative samples.And establish a feature fusion mechanism to realize the extraction of lung nodules.On this basis,the development of the judgment of subsequent lung nodules signs has been promoted.

    Funding Statement:This work was supported by Science and Technology Rising Star of Shaanxi Youth(No.2021KJXX-61);The Open Project Program of the State Key Lab of CAD&CG,Zhejiang University(No.A2206);The China Postdoctoral Science Foundation(No.2020M683696XB);Natural Science Basic Research Plan in Shaanxi Province of China(No.2021JQ-455);Natural Science Foundation of China(No.62062003),Key Research and Development Project of Ningxia(Special projects for talents)(No.2020BEB04022); North Minzu University Research Project of Talent Introduction(No.2020KYQD08).

    Conflicts of Interest:Bin Li contributed equally to this work.The authors declare that they have no conflicts of interest to report regarding the present study.

    高清在线国产一区| 亚洲专区国产一区二区| 人人妻人人看人人澡| 国产亚洲av高清不卡| 波多野结衣巨乳人妻| 午夜两性在线视频| 老汉色∧v一级毛片| 午夜福利18| 亚洲激情在线av| 成在线人永久免费视频| 后天国语完整版免费观看| av福利片在线| 精品一区二区三区四区五区乱码| 亚洲av成人一区二区三| www.自偷自拍.com| 亚洲18禁久久av| 精品免费久久久久久久清纯| 中出人妻视频一区二区| 欧美乱色亚洲激情| www日本黄色视频网| 叶爱在线成人免费视频播放| 久久久国产成人精品二区| 午夜日韩欧美国产| www.自偷自拍.com| 免费看美女性在线毛片视频| 成人三级做爰电影| 757午夜福利合集在线观看| 久久人人精品亚洲av| 天堂动漫精品| 亚洲成人久久爱视频| 精品国产乱子伦一区二区三区| 全区人妻精品视频| 国产欧美日韩精品亚洲av| 俺也久久电影网| 色尼玛亚洲综合影院| 国产精品乱码一区二三区的特点| 国产又色又爽无遮挡免费看| 1024视频免费在线观看| 精品久久久久久久久久免费视频| 国产高清视频在线播放一区| 亚洲av日韩精品久久久久久密| 别揉我奶头~嗯~啊~动态视频| 国产成人av激情在线播放| 亚洲专区国产一区二区| 香蕉av资源在线| 久久天躁狠狠躁夜夜2o2o| 欧美极品一区二区三区四区| 免费无遮挡裸体视频| 欧美在线黄色| 一级片免费观看大全| 可以免费在线观看a视频的电影网站| 亚洲专区字幕在线| 国内揄拍国产精品人妻在线| 夜夜爽天天搞| 熟女少妇亚洲综合色aaa.| 不卡av一区二区三区| 日韩欧美精品v在线| 亚洲九九香蕉| 一卡2卡三卡四卡精品乱码亚洲| 亚洲自偷自拍图片 自拍| 午夜激情av网站| 午夜a级毛片| 亚洲黑人精品在线| 婷婷丁香在线五月| 女同久久另类99精品国产91| 丰满的人妻完整版| 日本一二三区视频观看| 欧美最黄视频在线播放免费| 大型黄色视频在线免费观看| 19禁男女啪啪无遮挡网站| 人人妻,人人澡人人爽秒播| 欧美成人免费av一区二区三区| 一个人观看的视频www高清免费观看 | 成年免费大片在线观看| 国产aⅴ精品一区二区三区波| 亚洲自偷自拍图片 自拍| 97人妻精品一区二区三区麻豆| 中文字幕人妻丝袜一区二区| 在线观看午夜福利视频| 亚洲avbb在线观看| 日本三级黄在线观看| 亚洲色图 男人天堂 中文字幕| 高清在线国产一区| 757午夜福利合集在线观看| 日韩中文字幕欧美一区二区| 亚洲片人在线观看| 国产精品久久视频播放| 国产精品美女特级片免费视频播放器 | 久久午夜亚洲精品久久| 观看免费一级毛片| 久久香蕉精品热| 五月伊人婷婷丁香| 亚洲精华国产精华精| 熟女少妇亚洲综合色aaa.| 怎么达到女性高潮| av免费在线观看网站| 午夜两性在线视频| 深夜精品福利| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲 欧美一区二区三区| 18禁观看日本| www.自偷自拍.com| 国产三级黄色录像| 在线观看日韩欧美| 91老司机精品| 亚洲精品在线美女| 国产爱豆传媒在线观看 | 国产97色在线日韩免费| 亚洲成av人片在线播放无| 国产一区二区三区视频了| 99久久精品热视频| 亚洲五月天丁香| 性欧美人与动物交配| 91九色精品人成在线观看| 久久精品亚洲精品国产色婷小说| 日韩欧美精品v在线| 日韩欧美一区二区三区在线观看| 日本免费a在线| 国产精品美女特级片免费视频播放器 | 99在线人妻在线中文字幕| 亚洲五月天丁香| 欧美黄色淫秽网站| 中文资源天堂在线| 久久久国产欧美日韩av| www.999成人在线观看| 丝袜人妻中文字幕| 首页视频小说图片口味搜索| 超碰成人久久| 亚洲国产看品久久| 亚洲欧美日韩高清专用| 国产精品亚洲美女久久久| 午夜福利欧美成人| 后天国语完整版免费观看| 久久久久久久久中文| 亚洲全国av大片| av在线天堂中文字幕| 可以免费在线观看a视频的电影网站| 无人区码免费观看不卡| 精品久久久久久久人妻蜜臀av| 亚洲欧美精品综合一区二区三区| 欧美 亚洲 国产 日韩一| www日本黄色视频网| 日本a在线网址| 久久久国产成人免费| 欧美高清成人免费视频www| 国产精品免费视频内射| 国产91精品成人一区二区三区| 18禁裸乳无遮挡免费网站照片| 亚洲国产中文字幕在线视频| 两个人的视频大全免费| a级毛片a级免费在线| 老司机午夜十八禁免费视频| 久久久久国产精品人妻aⅴ院| 午夜福利18| 黄色视频,在线免费观看| 桃色一区二区三区在线观看| 成人高潮视频无遮挡免费网站| 国产男靠女视频免费网站| 亚洲精品中文字幕一二三四区| 欧美丝袜亚洲另类 | 久久草成人影院| 国产av麻豆久久久久久久| 男女午夜视频在线观看| 狠狠狠狠99中文字幕| 欧美极品一区二区三区四区| av福利片在线观看| 色综合站精品国产| 99久久精品国产亚洲精品| 国产精品国产高清国产av| 国产一区在线观看成人免费| 亚洲黑人精品在线| 亚洲在线自拍视频| 97人妻精品一区二区三区麻豆| 两个人视频免费观看高清| 精品久久蜜臀av无| 一区二区三区高清视频在线| 一级a爱片免费观看的视频| 国模一区二区三区四区视频 | 欧美一级a爱片免费观看看 | 免费在线观看日本一区| 巨乳人妻的诱惑在线观看| 性色av乱码一区二区三区2| svipshipincom国产片| 老司机在亚洲福利影院| 精品久久久久久久毛片微露脸| 日本撒尿小便嘘嘘汇集6| 精品高清国产在线一区| 亚洲真实伦在线观看| 久久亚洲真实| 99精品在免费线老司机午夜| 国产一级毛片七仙女欲春2| 天堂√8在线中文| 欧美成人一区二区免费高清观看 | 免费一级毛片在线播放高清视频| 亚洲精品一区av在线观看| 免费搜索国产男女视频| 99精品在免费线老司机午夜| www日本黄色视频网| 久久亚洲真实| 一本精品99久久精品77| 日韩成人在线观看一区二区三区| a在线观看视频网站| 成人18禁高潮啪啪吃奶动态图| 欧美+亚洲+日韩+国产| 亚洲无线在线观看| 国产成人欧美在线观看| 在线a可以看的网站| 18禁国产床啪视频网站| 在线观看免费午夜福利视频| 成人永久免费在线观看视频| 最好的美女福利视频网| 欧美日韩福利视频一区二区| 日本熟妇午夜| 欧美黑人欧美精品刺激| 色综合欧美亚洲国产小说| 成人国产综合亚洲| 免费av毛片视频| 亚洲精品中文字幕一二三四区| 亚洲国产中文字幕在线视频| 日韩免费av在线播放| videosex国产| 亚洲男人的天堂狠狠| 国产亚洲av高清不卡| 国产精品久久久久久精品电影| 黄色片一级片一级黄色片| 亚洲国产欧美网| 少妇人妻一区二区三区视频| 久久性视频一级片| 好看av亚洲va欧美ⅴa在| 男人舔女人的私密视频| 免费看十八禁软件| 亚洲第一电影网av| 白带黄色成豆腐渣| 欧美在线黄色| tocl精华| 高清在线国产一区| 亚洲 欧美 日韩 在线 免费| 视频区欧美日本亚洲| 欧美国产日韩亚洲一区| 男人舔女人的私密视频| 男女之事视频高清在线观看| 久久久国产成人精品二区| 窝窝影院91人妻| 亚洲中文字幕一区二区三区有码在线看 | aaaaa片日本免费| 亚洲精品国产一区二区精华液| 亚洲国产欧美网| 在线观看www视频免费| 中文字幕人成人乱码亚洲影| 国产精品九九99| 久久精品综合一区二区三区| 国产精品久久视频播放| 九色国产91popny在线| 成人欧美大片| 国产探花在线观看一区二区| 男男h啪啪无遮挡| 婷婷精品国产亚洲av| 亚洲美女黄片视频| 中文字幕人成人乱码亚洲影| 亚洲av电影在线进入| 舔av片在线| 毛片女人毛片| 国产激情久久老熟女| 99热这里只有精品一区 | 国产精品一区二区三区四区久久| 国产私拍福利视频在线观看| 久久天堂一区二区三区四区| 色综合站精品国产| 男女床上黄色一级片免费看| 日本五十路高清| 久久人妻福利社区极品人妻图片| 最近在线观看免费完整版| 禁无遮挡网站| 一进一出抽搐动态| 成人一区二区视频在线观看| 黑人巨大精品欧美一区二区mp4| 草草在线视频免费看| 国产精品日韩av在线免费观看| 禁无遮挡网站| 国产片内射在线| 老熟妇乱子伦视频在线观看| 亚洲国产精品999在线| videosex国产| 国产日本99.免费观看| 很黄的视频免费| 欧美黄色淫秽网站| 99精品在免费线老司机午夜| 变态另类成人亚洲欧美熟女| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美三级三区| 亚洲中文av在线| 欧美午夜高清在线| 叶爱在线成人免费视频播放| 狂野欧美激情性xxxx| 真人做人爱边吃奶动态| 91字幕亚洲| 宅男免费午夜| 亚洲精品美女久久久久99蜜臀| 精品国产乱码久久久久久男人| 最近最新免费中文字幕在线| 99在线人妻在线中文字幕| 在线视频色国产色| 国产成人系列免费观看| avwww免费| www.自偷自拍.com| 久久婷婷成人综合色麻豆| 在线观看日韩欧美| 欧美色欧美亚洲另类二区| 国产人伦9x9x在线观看| 国产精品乱码一区二三区的特点| 国产野战对白在线观看| 午夜福利18| 日韩三级视频一区二区三区| 亚洲av电影在线进入| 午夜免费激情av| a在线观看视频网站| 日本撒尿小便嘘嘘汇集6| 久久草成人影院| 99国产精品一区二区三区| 成人三级黄色视频| 精品久久久久久久毛片微露脸| 成人手机av| 老司机福利观看| 激情在线观看视频在线高清| 五月伊人婷婷丁香| 亚洲精品中文字幕一二三四区| 又爽又黄无遮挡网站| 国产精品免费视频内射| av中文乱码字幕在线| 亚洲18禁久久av| 欧美成人一区二区免费高清观看 | 久久久久久亚洲精品国产蜜桃av| 欧洲精品卡2卡3卡4卡5卡区| 国内精品久久久久精免费| 久久香蕉精品热| 美女黄网站色视频| 亚洲国产精品成人综合色| 色尼玛亚洲综合影院| 真人做人爱边吃奶动态| 久久婷婷成人综合色麻豆| 日本免费一区二区三区高清不卡| 国产午夜精品久久久久久| 国产精品久久电影中文字幕| 两个人的视频大全免费| 我要搜黄色片| 国产又黄又爽又无遮挡在线| 欧美性长视频在线观看| 好男人电影高清在线观看| 男女床上黄色一级片免费看| 中亚洲国语对白在线视频| 两个人视频免费观看高清| 亚洲欧美激情综合另类| 精品久久久久久久久久免费视频| 欧美性长视频在线观看| 999久久久国产精品视频| 色哟哟哟哟哟哟| 男女床上黄色一级片免费看| 在线视频色国产色| 91成年电影在线观看| 一进一出抽搐动态| 日韩欧美在线乱码| 好男人电影高清在线观看| 国产精品爽爽va在线观看网站| 精品一区二区三区四区五区乱码| 国产免费男女视频| 婷婷六月久久综合丁香| 又大又爽又粗| 亚洲天堂国产精品一区在线| 欧美日韩精品网址| 五月玫瑰六月丁香| 久久九九热精品免费| 成年免费大片在线观看| 亚洲免费av在线视频| 日本熟妇午夜| netflix在线观看网站| 99精品在免费线老司机午夜| 日韩精品中文字幕看吧| 欧美日本亚洲视频在线播放| 国产精品久久久久久人妻精品电影| 亚洲国产精品久久男人天堂| 亚洲精品在线美女| 日本免费a在线| 一进一出抽搐动态| 亚洲欧洲精品一区二区精品久久久| 夜夜看夜夜爽夜夜摸| 婷婷六月久久综合丁香| 久久人妻福利社区极品人妻图片| 久久这里只有精品19| 好看av亚洲va欧美ⅴa在| 搡老岳熟女国产| 亚洲黑人精品在线| 少妇的丰满在线观看| 久久久久久久久免费视频了| 久久国产精品影院| 日韩 欧美 亚洲 中文字幕| 视频区欧美日本亚洲| 丝袜人妻中文字幕| 女人被狂操c到高潮| 99久久99久久久精品蜜桃| av天堂在线播放| 欧美日韩中文字幕国产精品一区二区三区| 欧美日韩一级在线毛片| 欧美色欧美亚洲另类二区| 久久久久久九九精品二区国产 | 亚洲一区二区三区色噜噜| 婷婷六月久久综合丁香| 又大又爽又粗| 久久精品国产99精品国产亚洲性色| 99热这里只有是精品50| ponron亚洲| 九九热线精品视视频播放| 热99re8久久精品国产| 欧美极品一区二区三区四区| 黑人巨大精品欧美一区二区mp4| 亚洲男人天堂网一区| 丝袜美腿诱惑在线| 国产真实乱freesex| 成熟少妇高潮喷水视频| netflix在线观看网站| 亚洲成人久久性| 欧美性猛交黑人性爽| 两性夫妻黄色片| 中文字幕av在线有码专区| 久热爱精品视频在线9| 黄色视频不卡| 国产日本99.免费观看| 国产精品一区二区精品视频观看| www.999成人在线观看| 欧美一级毛片孕妇| 亚洲 欧美 日韩 在线 免费| 亚洲激情在线av| 午夜精品久久久久久毛片777| 50天的宝宝边吃奶边哭怎么回事| 国产精品影院久久| 床上黄色一级片| 日本撒尿小便嘘嘘汇集6| 两性午夜刺激爽爽歪歪视频在线观看 | 999久久久精品免费观看国产| 亚洲熟妇熟女久久| 亚洲人成伊人成综合网2020| 最近最新中文字幕大全电影3| 日本黄色视频三级网站网址| 亚洲无线在线观看| 97超级碰碰碰精品色视频在线观看| 法律面前人人平等表现在哪些方面| 成人高潮视频无遮挡免费网站| 大型黄色视频在线免费观看| 午夜福利18| a在线观看视频网站| 制服人妻中文乱码| 亚洲精品中文字幕在线视频| 久久中文字幕一级| 久久久精品国产亚洲av高清涩受| 欧美中文综合在线视频| 国产激情久久老熟女| 色综合站精品国产| 狂野欧美白嫩少妇大欣赏| 免费看日本二区| 久久精品亚洲精品国产色婷小说| 中文字幕人成人乱码亚洲影| 久久九九热精品免费| 亚洲男人的天堂狠狠| 香蕉久久夜色| 国产欧美日韩一区二区三| 十八禁人妻一区二区| 香蕉久久夜色| 亚洲精品美女久久av网站| 亚洲五月婷婷丁香| 欧美日韩福利视频一区二区| 亚洲中文日韩欧美视频| 此物有八面人人有两片| www.自偷自拍.com| www.www免费av| 国产一区二区在线av高清观看| 免费看美女性在线毛片视频| 在线视频色国产色| 无限看片的www在线观看| 国产免费男女视频| 日韩精品青青久久久久久| АⅤ资源中文在线天堂| 老司机福利观看| 又紧又爽又黄一区二区| 欧美日韩中文字幕国产精品一区二区三区| 久久香蕉激情| 国产精品一区二区精品视频观看| 日本 av在线| 母亲3免费完整高清在线观看| www.精华液| 午夜福利在线在线| 啪啪无遮挡十八禁网站| 中文字幕久久专区| 97人妻精品一区二区三区麻豆| 欧美日韩福利视频一区二区| 黄色成人免费大全| videosex国产| 最近最新中文字幕大全电影3| 亚洲国产精品999在线| 日本免费a在线| 高潮久久久久久久久久久不卡| 两个人免费观看高清视频| 精品无人区乱码1区二区| 欧美日韩国产亚洲二区| 色在线成人网| 久久午夜亚洲精品久久| 在线a可以看的网站| 亚洲国产欧洲综合997久久,| 久久久精品国产亚洲av高清涩受| 日日夜夜操网爽| 国产高清激情床上av| 女警被强在线播放| 老司机在亚洲福利影院| 最近视频中文字幕2019在线8| 亚洲人成网站高清观看| 精华霜和精华液先用哪个| 夜夜躁狠狠躁天天躁| 成人特级黄色片久久久久久久| 精品电影一区二区在线| av有码第一页| 两人在一起打扑克的视频| 成人高潮视频无遮挡免费网站| 国产欧美日韩精品亚洲av| 又爽又黄无遮挡网站| 国产99白浆流出| 亚洲av电影在线进入| 精品一区二区三区av网在线观看| 搡老岳熟女国产| 欧美日韩一级在线毛片| 亚洲精品一卡2卡三卡4卡5卡| 最近视频中文字幕2019在线8| 97超级碰碰碰精品色视频在线观看| 精品一区二区三区视频在线观看免费| 久久久精品欧美日韩精品| 久久伊人香网站| 亚洲一区二区三区色噜噜| 日本a在线网址| 国内精品久久久久精免费| 99re在线观看精品视频| 精品熟女少妇八av免费久了| 日本熟妇午夜| 国产精品久久久人人做人人爽| 国产视频内射| 久久精品91蜜桃| 99在线视频只有这里精品首页| 大型黄色视频在线免费观看| 国产成人aa在线观看| www.自偷自拍.com| 久久这里只有精品19| 亚洲美女黄片视频| 欧美极品一区二区三区四区| 国产私拍福利视频在线观看| 午夜精品一区二区三区免费看| 亚洲国产欧洲综合997久久,| 人妻丰满熟妇av一区二区三区| 五月玫瑰六月丁香| 淫妇啪啪啪对白视频| 国产成年人精品一区二区| 亚洲天堂国产精品一区在线| 久久亚洲精品不卡| 日韩欧美在线二视频| 男女做爰动态图高潮gif福利片| 欧美极品一区二区三区四区| 欧美精品亚洲一区二区| 麻豆av在线久日| 老司机深夜福利视频在线观看| 日韩欧美免费精品| 人妻丰满熟妇av一区二区三区| 亚洲国产精品999在线| 一级作爱视频免费观看| 亚洲专区国产一区二区| 国产精品爽爽va在线观看网站| 美女扒开内裤让男人捅视频| 国产av在哪里看| 欧美乱妇无乱码| 老熟妇乱子伦视频在线观看| 美女高潮喷水抽搐中文字幕| 中文字幕精品亚洲无线码一区| 又紧又爽又黄一区二区| 亚洲性夜色夜夜综合| 亚洲欧美日韩高清在线视频| 啦啦啦免费观看视频1| 男人的好看免费观看在线视频 | 亚洲成人久久爱视频| 中文资源天堂在线| 亚洲国产欧洲综合997久久,| 法律面前人人平等表现在哪些方面| 亚洲国产精品sss在线观看| xxxwww97欧美| 亚洲全国av大片| 久9热在线精品视频| 久久婷婷成人综合色麻豆| 国产亚洲av嫩草精品影院| 亚洲欧美精品综合一区二区三区| 欧美zozozo另类| 在线十欧美十亚洲十日本专区| 精品国产乱码久久久久久男人| 午夜日韩欧美国产| 国产一区二区激情短视频| 级片在线观看| 他把我摸到了高潮在线观看| 久9热在线精品视频| 国产99白浆流出| 国产亚洲av嫩草精品影院| 国产精品亚洲一级av第二区| 日本 欧美在线| 亚洲av五月六月丁香网| 午夜福利欧美成人| 亚洲欧美激情综合另类| www.自偷自拍.com| 欧美色视频一区免费| 在线观看66精品国产| 免费搜索国产男女视频| 夜夜看夜夜爽夜夜摸| 色综合站精品国产| 18禁黄网站禁片午夜丰满| 亚洲av片天天在线观看|