• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Method for Precipitation Nowcasting Based on ST-LSTM

    2022-11-11 10:46:06WeiFangLiangShenVictorShengandQiongyingXue
    Computers Materials&Continua 2022年9期

    Wei Fang,Liang Shen,Victor S.Sheng and Qiongying Xue

    1School of Computer&Software,Engineering Research Center of Digital Forensics,Ministry of Education,Nanjing University of Information Science&Technology,Nanjing,210044,China

    2State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences,Beijing,100081,China

    3Department of Computer,Texas Tech University,Lubbock,TX,79409,USA

    Abstract: Precipitation nowcasting is of great significance for severe convective weather warnings.Radar echo extrapolation is a commonly used precipitation nowcasting method.However,the traditional radar echo extrapolation methods are encountered with the dilemma of low prediction accuracy and extrapolation ambiguity.The reason is that those methods cannot retain important long-term information and fail to capture short-term motion information from the long-range data stream.In order to solve the above problems,we select the spatiotemporal long short-term memory (ST-LSTM)as the recurrent unit of the model and integrate the 3D convolution operation in it to strengthen the model’s ability to capture short-term motion information which plays a vital role in the prediction of radar echo motion trends.For the purpose of enhancing the model’s ability to retain long-term important information, we also introduce the channel attention mechanism to achieve this goal.In the experiment,the training and testing datasets are constructed using radar data of Shanghai,we compare our model with three benchmark models under the reflectance thresholds of 15 and 25.Experimental results demonstrate that the proposed model outperforms the three benchmark models in radar echo extrapolation task,which obtains a higher accuracy rate and improves the clarity of the extrapolated image.

    Keywords: Precipitation nowcasting; radar echo extrapolation; ST-LSTM;attention mechanism

    1 Introduction

    Precipitation nowcasting refers to short-term weather forecasts within 2 h,which focuses on small and medium-scale meteorological systems,such as severe convective weather.This task aims to give a precise and timely prediction of rainfall intensity in a local region over a relatively short period[1].Compared with long-term precipitation forecasts,it has higher requirements in terms of accuracy and timeliness.Accurate prediction of short-term precipitation can assist people in assessing road water accumulation,guiding traffic,and improving the accuracy of early warning of heavy precipitation in cities,which is of great significance for disaster prevention and mitigation.

    Radar echo extrapolation is an important method for precipitation nowcasting.Traditional morphological-based radar echo extrapolation techniques mainly include the cross-correlation method[2,3]and the single centroid method[4,5].The cross-correlation method selects two consecutive times of spatial optimization correlation coefficients to establish a fitting relationship but it has low data utilization which brings the problem of low prediction accuracy.The centroid tracking method can achieve better results in stable precipitation forecasting[6].But for the echoes which evolve quickly,this method cannot meet the conservation conditions and the forecasting effect will rapidly decrease with time.The optical flow method[7]is a widely used method for extrapolating radar echoes.This method calculates the optical flow field from a continuous image sequence, and uses the changes in the time domain of pixels in the image sequence and the correlation between adjacent frames to establish the correspondence between the previous frame,and then calculate the motion information of the object between adjacent frames, the optical flow method can capture the motion and change information of the radar echo, but it does not make full use of the echo image information over a longer period of time.

    In recent years, Deep learning methods is a hot research topic.Shi et al.[8] proposed a convolutional long short-term memory(ConvLSTM)neural network structure based on LSTM,which achieves a higher prediction accuracy than the optical flow method.Since then,many improved variant structures have been developed based on ConvLSTM.For example, Shi [9] introduced the idea of optical flow trajectory and proposed Trajectory GRU(TrajGRU),which can learn the position change information of echo and further improve the accuracy of prediction.Villegas et al.[10]combined the encoder-decoder structure and ConvLSTM to establish a motion and content decomposition model.This model simplifies the prediction task, effectively handles the complex evolution of pixels in the video, and can independently capture the spatial structure of the image and the corresponding time dynamics.Wang introduced spatial memory unit(ST-LSTM)in ConvLSTM and proposed PredRNN[11] to enhance the ability to capture short-term dynamic changes by using a larger convolutional neural receptive field.Wang et al.[12] proposed the Memory in Memory model to learn high-level nonlinear spatiotemporal dynamic information.Lin et al.[13] proposed a self-attention mechanism ConvLSTM, which effectively captures long-term spatial dependencies.Xu et al.[14] combined the generation ability of GAN with the predictive ability of the LSTM network and proposed a Generative Adversarial Network Long Short-term Memory (GAN-LSTM)model for spatiotemporal sequence prediction.Compared with traditional methods,the radar echo extrapolation methods based on deep learning have the advantages of high data utilization efficiency,accurate prediction accuracy,and great optimization potential.

    Although the radar echo extrapolation methods based on deep learning perform well compared with the traditional methods,those methods still have some problems.The above-mentioned methods lack the ability to capture motion information between adjacent data and cannot fully extract important information from long-term information.Therefore, it remains challenging and requires principled approaches to design an effective spatiotemporal network.To this end,we propose a novel model which integrates 3D convolutions to capture motion information between adjacent time steps.Our experimental results show that 3D convolution is effective for modeling local representations in a consecutive manner.On the other hand,for long-term important feature information,we exploit an attention mechanism based on channels to extract important feature information from the long-term information stream.Experiments show that our model effectively improves the accuracy of radar echo extrapolation and solves the problem of ambiguity in extrapolation.

    2 Related Work

    2.1 Spatiotemporal Sequence Forecasting

    Radar echo extrapolation is essentially a spatiotemporal sequence forecasting problem that has been widely used in precipitation nowcasting[15,16],traffic flow prediction[17-20],and other fields[21] and led to a variety of architectures in deep learning.The current spatiotemporal sequence prediction method has undergone the evolution from the simple LSTM method to the joint convolutional network [8] to the structurally changed PredRNN [11], Memory In Memory [12] and EIDETIC 3D LSTM [22].Those models inevitably suffer from image blurring and low resolution,which greatly limits the availability of the predictions.Other techniques in deep learning, such as attention mechanism, transfer learning, graph neural network, etc., have also achieved good results in spatiotemporal sequence prediction problems.Wang et al.[23]proposed a transfer learning model,which solves the problem of data imbalance in some regions.Song et al.[24]proposed a framework based on graph convolutional neural network, STSGCN, and solve the problem that the graph relationship between data flows changes over time.The above models have achieved good results in the problem of spatiotemporal sequence prediction,but they lack the ability to learn dynamic information between adjacent images which brings the problem of inaccurate prediction of the overall motion trend with the accumulation of errors.

    When forecasting spatiotemporal sequence, it is necessary to consider not only the continuity and periodicity in time, but also the spatial correlation between different regions, and these spatial correlations will also change over time.In order to effectively extract temporal dependence and spatial motion information, we chose the ST-LSTM as the model’s recurrent unit considering its superior spatiotemporal information extraction capabilities.

    2.2 Attention Mechanism in Deep Learning

    The attention mechanism is a data processing method in machine learning,which is widely used in various types of machine learning tasks such as natural language processing,image recognition,and speech recognition.The attention mechanism is essentially similar to the human observation mechanism of external things.The Attention mechanism was first applied in natural language processing,mainly to improve the encoding method between texts,and to learn better sequence information after encoding-decoding.In recent years, Hu et al.[25] proposed SENet to learn the correlation between channels which learn feature weights according to the loss function through the network and achieve better results.Wang et al.[26]proposed ECA-NET,which uses a one-dimensional convolutional layer to aggregate cross-channel information to obtain more accurate attention information.Adding an attention mechanism to the model with an appropriate method can effectively improve the feature extraction capability of the model.

    Motivated by the convolutional block attention module(CBAM)[27],we integrated the attention mechanism based on channels into our model to improve the ability of the model that learn time dependence and important features from the long-term information.

    3 Model

    Our model is based on the ST-LSTM unit.Inspired by the 3D CNNs,we use 3D convolution in the recurrent unit to replace the original 2D convolution operation which increases the capture of the motion information of the adjacent time data.To extract important feature information in long-term data,we also add a channel attention mechanism after the last layer of the encoder.

    3.1 3D Convolution Integrated into ST-LSTM

    In order to use 3D convolution to extract motion information, the original data needs to be processed first.For expanding the input data in the time dimension,we take the multi-frame data in each sliding window as one-time step input which has 3 dimensions in which each dimension indicates the width,height,and time.This data processing process is shown in Fig.1.

    Figure 1:Data processed using a sliding window

    The encoder of our model uses ST-LSTM as the recurrent unit.ST-LSTM is proposed by Wang et al.[7].in PredRNN, which memorizes spatial and temporal characteristics in a unified memory unit,and transmits memory information on both vertical and horizontal levels.After data processing,the internal structure of the ST-LSTM recurrent unit also needs to be modified to be compatible with the input data which has 3 dimensions.According to the characteristic that the input data has three dimensions,we replace the ordinary convolution inside the ST-LSTM with 3D convolution to extract motion information between adjacent data frames.The original ST-LSTM structure is shown in Fig.2a and the structure of ST-LSTM integrating 3D convolution is illustrated in Fig.2b.

    Figure 2:Comparison of(a)the standard ST-LSTM recurrent unit and(b)the Improved ST-LSTM recurrent unit integrating 3D convolution.⊙is the Hadamard product.⊕is the matrix sum operation

    There are 4 inputs in the ST-LSTM:Xt,the feature maps from encoders or hidden states from the previous layer;,the hidden states from the last time step;,the memory states from last time step, andthe memory states from previous layer.In the recurrent unit.The input gate, input modulation gate, forget gate and output gate no longer depend on the hidden states and cell states from the previous time step at the same layer.Instead, as illustrated in Fig.2b, they rely on hidden statesand cell statesthat are updated by the previous layer at current time step.Inside the recurrent unit,We use 3D convolution as a motion perceptron to extract short-term and local motion in the continuous space-time field.The ST-LSTM integrating 3D convolution can be formulated as(1)-(10):

    whereσis the sigmoid function, * is the 3D-Conv operation, ⊙ is the Hadamard product.In general,the propagation of the data stream is divided into two directions:the transmission of timedependent information in the horizontal direction and the high-level feature information in the vertical direction.Theitandftare input gate and forget gate.Thegtis input module gate which contains input information.is the memory states of current time step.andare input gate,forget gate and input module which are used to control longitudinal information transmission.TheotandHltare output gate and the hidden state.Inside the recurrent unit,the left and right parts have two structures similar to LSTM.The left part is used to control the horizontal transmission of time information,and the right part is used to transfer the fused spatiotemporal information.This structure is capable of modeling short-term motion information.

    3.2 Attention Mechanism Based on Channels

    Radar echo extrapolation is a long-term sequence prediction problem.How to extract important feature information from long-term input data is particularly important.This is the key to improving prediction accuracy and solving the problem of extrapolation ambiguity.To this end, we added the channel attention mechanism into the model to improve the model’s ability to extract important features.The overall architecture of the model and the implementation details of the attention module are shown in Fig.3.

    Figure 3:The overall structure of the model and the attention mechanism module

    Our work is partially motivated by the convolutional block attention module (CBAM).In our model,the attention mechanism is applied over the output states behind the last layer of the encoder.The formula of the channel attention mechanism is shown in formula(11):

    We first stack the output state of each time step to get a W×H×C feature map F.Then we perform a space global average pooling and maximum pooling respectively to obtain two 1×1×C channel descriptions and send them to a two-layer multilayer perceptron(MLP)network.Finally,the two obtained features are added and passed through a sigmoid activation function to obtain the weight matrix Mc.Each channel of Mc represents a special detector,so it makes sense for channel attention to focus on what information is important for the prediction.

    4 Experiments

    4.1 Dataset

    The radar echo data used in this experiment is the radar mosaic data of Shanghai,which includes three types of scanning products: MDBZ, 2DCR, and MCR.The time interval of each radar data sample is 6 min and the single data presentation form is grid data which indicates the resolution in the latitude and longitude direction.By observing the original data, we found that there are a large number of negative values.Generally speaking,a larger reflectance value indicates a higher probability of precipitation,so negative values can be ignored.Therefore,the negative values in the original data are firstly reset to zero.Another key thing to remember, since the quality of the data will affect the training results,during the construction of the training set,we select the data with the coverage rate of the echo area greater than 1/10 into the dataset.After data preprocessing, our experiment uses 36000 sequences as training, 1000 sequences for validation, and 3000 for the test.Fig.4 shows the visualization results of the original radar echo sequence data for 5 consecutive frames at three different positions.

    Figure 4:Radar echo dataset

    4.2 Evaluation Criteria

    We evaluate the models by using several commonly used precipitation nowcasting metrics,namely,probability of detection(POD),false alarm rate(FAR),critical success index(CSI),and mean square error (MSE).The CSI, FAR and POD are skill scores similar to precision and recall commonly used by machine learning researchers.Firstly, we convert the prediction and ground truth to a 0/1 matrix by using a selected reflectance threshold which indicates raining or not.Secondly,we calculate the hits(prediction=1,truth=1),misses(prediction=0,truth=1)and false alarms(prediction=1,truth=0).The number of hits,misses,and false alarms are denoted respectively bynsuc,nerrandnavo.In the end,we can calculate the value of POD,FAR and CSI by formulas(12)-(14).The MSE metric is defined as the average squared error between the prediction and the ground truth,which is obtained by accumulating all pixel differences.The calculation formula of MSE is shown in formula(15),whereyirepresents the ground truth andypirepresents the predicted value.

    For evaluating the visual quality of the images, we measure the similarity of two images using structural similarity index measure(SSIM),which estimates the visual quality of extrapolated images from three aspects:grayscale,contrast,and structure.The calculation formula of SSIM is as formula(16).In the formula, x, y are the pixel values of the two images,μxis the mean of x,μyis the mean of y,σx2is the variance of x,σy2is the variance of y,σxyis the covariance of x and y, andC1=(K1L)2,C2=(K1L)2, L is the dynamic range of pixel values, the variation range in the paper is 0-75,K1=0.01,K2=0.01.The SSIM ranges between 0-1,representing the similarity between the generated image and the ground truth.

    4.3 Experimental Results and Analysis

    In meteorological services, different levels of warnings are often given to different precipitation intensities,with this in mind,the comprehensive performance of the model under different precipitation levels should be used for evaluating the quality of the models.To this end,we select the reflectance threshold of 15 and 25 dBz as the thresholds for binarization according to the climatic characteristics of Shanghai.In the comparison experiment,we considered three benchmark models ConvLSTM[8],PredRNN[11]and TrajGRU[9]to compare with our model under the reflectance threshold of 15 and 25 dBz.All models are trained using the ADAM optimizer with a starting learning rate of 10-3.All experiments are implemented in Pytorch and conducted on NVIDIA 2080TI GPU.We use the POD,FAR,CSI and MSE described above as the metrics for evaluation.Tabs.1 and 2 show the performance of the evaluated models using a common setting in the literature: generating 10 future frames given the previous 10 frames.Each row in the table records the average value of each model under different metrics.

    Table 1: Metrics under the reflectance threshold of 15

    Table 2: Metrics under the reflectance threshold of 25

    In order to show the experimental results more intuitively, we show the change process of the different metrics through Figs.5 and 6.In the experiment with the reflectance threshold of 15 dbz,the quantitative results presented in Tab.1 indicate that our model performs favorably against the three benchmark models.Our model achieves better results than the other three benchmark models in terms of POD, FAR, and MSE.By introducing the idea of optical flow trajectory, TrajGRU can actively learn the position change structure in the cyclic connection, which improves the prediction accuracy of radar echo waveform and achieves the highest CSI value.Although the performance of our model under CSI is parallel to TrajGRU, the overall performance is better than TrajGRU.The results shown in Fig.5 are consistent with the results in Tab.1.It can be seen from the figure that our model has a more stable extrapolation effect in the later stage of the extrapolation process.When we select the reflectance threshold as 25 dBz,our model achieved the best performance under all metrics.It can be seen that our model has a better predictive effect for stronger precipitation and our method has a more stable attenuation process over time.Besides, we use the per-frame structural similarity index measure(SSIM)to evaluate the visual quality of images.The comparison results of SSIM are shown in Fig.7.All four models have high prediction accuracy in the first 12 min,but as the prediction time goes on,the SSIM value of our model is consistently higher than the other models.Our model also achieves better performance under the SSIM metric.In summary,the experiments results suggest that our model is capable of modeling long-range periodical motions effectively.

    Figure 5:Comparison results on POD,CSI,FAR(reflectance threshold=15dBz)

    Figure 6:Comparison results on POD,CSI,FAR(reflectance threshold=25dBz)

    Figure 7:SSIM comparison results of the four models

    5 Conclusi on

    In this paper,we proposed a novel model based on ST-LSTM for precipitation nowcasting,which performs well compared with mainstream methods based on deep learning.In Our model,we design the 3D convolution module integrated into the ST-LSTM recurrent unit to enhance the model’s ability to capture short-term motion information.In addition, we construct the channel attention module based on time channels to extract important feature information in the long-term sequence to solve the ambiguity problem in the extrapolation.In the experiment, we use the real radar echo image as the test set, and the results show that our model has the best comprehensive performance among different metrics,which effectively improves the accuracy of extrapolation and solves the problem of ambiguity in extrapolation.In the future, we will further optimize the model, improve the model’s long-term dependence on the predicted value based on ensuring the existing accuracy, and further solve the problem of ambiguity in extrapolation after 10 frames.

    Acknowledgement:This work was supported by the National Natural Science Foundation of China(Grant No.42075007), and the Open Grants of the State Key Laboratory of Severe Weather (No.2021LASW-B19).

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    日本91视频免费播放| 国产欧美亚洲国产| 婷婷成人精品国产| 好男人视频免费观看在线| 国产一区二区在线观看av| 少妇高潮的动态图| 久久国产精品大桥未久av| 国产一级毛片在线| 国产免费一区二区三区四区乱码| 一级二级三级毛片免费看| 精品久久久久久电影网| 亚洲av欧美aⅴ国产| 久久久久久久久久久免费av| 午夜精品国产一区二区电影| xxxhd国产人妻xxx| 中国三级夫妇交换| 最黄视频免费看| av网站免费在线观看视频| 日韩熟女老妇一区二区性免费视频| 亚洲国产精品国产精品| 国产日韩欧美视频二区| 成人无遮挡网站| 免费久久久久久久精品成人欧美视频 | 亚洲美女搞黄在线观看| 久久久久国产精品人妻一区二区| 欧美日韩视频高清一区二区三区二| 自拍欧美九色日韩亚洲蝌蚪91| av又黄又爽大尺度在线免费看| 99热网站在线观看| 99热国产这里只有精品6| 日本-黄色视频高清免费观看| 九草在线视频观看| 中文字幕久久专区| 精品亚洲成国产av| 精品亚洲乱码少妇综合久久| 免费看av在线观看网站| 日本黄色片子视频| 男人爽女人下面视频在线观看| 亚洲成人手机| 观看美女的网站| 亚洲国产欧美在线一区| 精品久久久久久电影网| 国产精品偷伦视频观看了| 插阴视频在线观看视频| av一本久久久久| 成人国语在线视频| 男人操女人黄网站| 亚洲精品久久久久久婷婷小说| 人成视频在线观看免费观看| 一区二区日韩欧美中文字幕 | 亚洲综合色惰| 少妇丰满av| 如日韩欧美国产精品一区二区三区 | 亚洲精华国产精华液的使用体验| 午夜福利视频在线观看免费| 国产爽快片一区二区三区| 久久精品国产亚洲网站| 久久久久精品性色| 少妇猛男粗大的猛烈进出视频| 国产日韩一区二区三区精品不卡 | 一二三四中文在线观看免费高清| 成人漫画全彩无遮挡| 欧美少妇被猛烈插入视频| 十分钟在线观看高清视频www| 一区二区av电影网| 如日韩欧美国产精品一区二区三区 | 精品少妇黑人巨大在线播放| 精品人妻在线不人妻| 飞空精品影院首页| 麻豆乱淫一区二区| 黄色视频在线播放观看不卡| 老司机亚洲免费影院| 成人无遮挡网站| 欧美日韩国产mv在线观看视频| av卡一久久| 国产成人av激情在线播放 | 免费日韩欧美在线观看| 高清欧美精品videossex| 黑人欧美特级aaaaaa片| a级毛片免费高清观看在线播放| 日韩三级伦理在线观看| 3wmmmm亚洲av在线观看| 汤姆久久久久久久影院中文字幕| 日本-黄色视频高清免费观看| 熟女av电影| 亚洲无线观看免费| 欧美日本中文国产一区发布| 久久亚洲国产成人精品v| 久久狼人影院| 一级爰片在线观看| 又黄又爽又刺激的免费视频.| 亚洲精品一区蜜桃| 亚洲精品国产av蜜桃| 99久久人妻综合| 黑人巨大精品欧美一区二区蜜桃 | 91精品国产国语对白视频| 成人影院久久| 久久久久视频综合| 亚洲av男天堂| 久久精品久久久久久噜噜老黄| 亚洲欧美成人综合另类久久久| 亚洲欧美成人综合另类久久久| 少妇人妻久久综合中文| 搡女人真爽免费视频火全软件| 日韩中字成人| 精品久久久久久久久亚洲| 日本色播在线视频| 视频在线观看一区二区三区| 免费高清在线观看日韩| 伊人久久精品亚洲午夜| av有码第一页| 看十八女毛片水多多多| 国产成人一区二区在线| 国产成人精品在线电影| 日韩熟女老妇一区二区性免费视频| 国产男女超爽视频在线观看| 精品国产露脸久久av麻豆| 欧美日韩一区二区视频在线观看视频在线| 色94色欧美一区二区| 国产精品一区二区在线观看99| 女性生殖器流出的白浆| 国产成人freesex在线| 日本黄色日本黄色录像| 日韩,欧美,国产一区二区三区| 蜜桃在线观看..| 尾随美女入室| 成年人免费黄色播放视频| 亚洲人成77777在线视频| 久久国产精品大桥未久av| 亚洲中文av在线| 99精国产麻豆久久婷婷| 少妇高潮的动态图| 亚洲人成77777在线视频| 卡戴珊不雅视频在线播放| 视频中文字幕在线观看| 啦啦啦视频在线资源免费观看| 毛片一级片免费看久久久久| 亚洲高清免费不卡视频| av不卡在线播放| 丝袜脚勾引网站| 国产乱来视频区| 特大巨黑吊av在线直播| 久久久久久久国产电影| 亚洲少妇的诱惑av| 热99久久久久精品小说推荐| 国产毛片在线视频| 久久久精品免费免费高清| kizo精华| 91精品一卡2卡3卡4卡| 免费看光身美女| 国产成人精品在线电影| 国产免费现黄频在线看| 久久99一区二区三区| 午夜日本视频在线| 黄片无遮挡物在线观看| 免费观看a级毛片全部| 日本与韩国留学比较| 制服诱惑二区| 我的女老师完整版在线观看| 99久久中文字幕三级久久日本| 夫妻午夜视频| 国产综合精华液| 能在线免费看毛片的网站| 黄色视频在线播放观看不卡| 特大巨黑吊av在线直播| 久久精品国产亚洲av天美| 国产精品麻豆人妻色哟哟久久| 精品亚洲成a人片在线观看| 午夜免费观看性视频| 国产精品99久久久久久久久| .国产精品久久| 老司机影院毛片| 亚洲精品aⅴ在线观看| 日本vs欧美在线观看视频| 久久久精品94久久精品| 日本av手机在线免费观看| 我要看黄色一级片免费的| 韩国av在线不卡| 性色av一级| 日日啪夜夜爽| 日韩在线高清观看一区二区三区| 伦精品一区二区三区| 国产av码专区亚洲av| 18在线观看网站| 最黄视频免费看| 十分钟在线观看高清视频www| 国产国拍精品亚洲av在线观看| 午夜免费鲁丝| 国产精品熟女久久久久浪| 亚洲精品456在线播放app| 亚洲av成人精品一区久久| 亚洲精品美女久久av网站| 91午夜精品亚洲一区二区三区| xxx大片免费视频| 午夜老司机福利剧场| 麻豆精品久久久久久蜜桃| 亚洲,欧美,日韩| 国产熟女午夜一区二区三区 | 久久久久久久亚洲中文字幕| 永久免费av网站大全| 精品久久久久久久久av| 久久久精品区二区三区| 十八禁网站网址无遮挡| 日韩伦理黄色片| 国产免费视频播放在线视频| 久久精品国产鲁丝片午夜精品| 色94色欧美一区二区| 97超视频在线观看视频| 久久精品夜色国产| 亚洲性久久影院| 亚洲欧洲国产日韩| 亚洲精品av麻豆狂野| 少妇熟女欧美另类| 欧美3d第一页| 日韩电影二区| 国产高清不卡午夜福利| 欧美人与性动交α欧美精品济南到 | 久久99蜜桃精品久久| 色吧在线观看| 校园人妻丝袜中文字幕| 热99国产精品久久久久久7| 99热全是精品| 丝袜喷水一区| 亚洲国产日韩一区二区| 最新的欧美精品一区二区| 久久久久久伊人网av| 久久午夜综合久久蜜桃| 久久午夜福利片| 久久久精品区二区三区| 美女中出高潮动态图| 亚洲av二区三区四区| 伊人亚洲综合成人网| 搡女人真爽免费视频火全软件| xxx大片免费视频| 国产av国产精品国产| 国产黄色视频一区二区在线观看| 亚洲国产成人一精品久久久| 国产成人精品一,二区| 人妻制服诱惑在线中文字幕| 婷婷色麻豆天堂久久| 日本vs欧美在线观看视频| 欧美日韩视频高清一区二区三区二| 国产亚洲精品久久久com| 亚洲欧美一区二区三区国产| 熟妇人妻不卡中文字幕| 午夜福利视频在线观看免费| 熟女av电影| 狠狠婷婷综合久久久久久88av| 欧美日韩视频精品一区| av又黄又爽大尺度在线免费看| 好男人视频免费观看在线| 欧美 日韩 精品 国产| av视频免费观看在线观看| 久久人妻熟女aⅴ| 精品国产乱码久久久久久小说| 午夜激情久久久久久久| 男男h啪啪无遮挡| 另类精品久久| kizo精华| 边亲边吃奶的免费视频| 亚洲av成人精品一二三区| 日韩成人av中文字幕在线观看| 97精品久久久久久久久久精品| 日韩视频在线欧美| 老司机影院毛片| 亚洲美女视频黄频| 亚洲色图综合在线观看| 成年人午夜在线观看视频| 亚洲国产成人一精品久久久| 午夜免费观看性视频| 天堂中文最新版在线下载| 久久久久精品久久久久真实原创| 亚洲,一卡二卡三卡| 韩国av在线不卡| 国产精品人妻久久久久久| 久久免费观看电影| 国产一区亚洲一区在线观看| 亚洲精品av麻豆狂野| 少妇人妻精品综合一区二区| 在线观看人妻少妇| 岛国毛片在线播放| 欧美精品一区二区免费开放| 久久久久人妻精品一区果冻| 免费黄色在线免费观看| 久久久久久久亚洲中文字幕| 成人免费观看视频高清| 国产极品粉嫩免费观看在线 | av卡一久久| 超碰97精品在线观看| 精品一品国产午夜福利视频| 国产av精品麻豆| 精品久久久久久久久亚洲| 国产亚洲最大av| 亚洲av免费高清在线观看| 亚洲少妇的诱惑av| 成人免费观看视频高清| 中文欧美无线码| 大片电影免费在线观看免费| 毛片一级片免费看久久久久| 亚洲成人一二三区av| 日韩在线高清观看一区二区三区| 欧美精品一区二区大全| 亚州av有码| 精品卡一卡二卡四卡免费| 性色av一级| 免费人成在线观看视频色| 99国产综合亚洲精品| 美女主播在线视频| 久久影院123| 韩国av在线不卡| 日韩一区二区视频免费看| 国产永久视频网站| 97超视频在线观看视频| 99久久综合免费| 女的被弄到高潮叫床怎么办| 91精品三级在线观看| 亚洲精品久久久久久婷婷小说| 五月玫瑰六月丁香| 好男人视频免费观看在线| 香蕉精品网在线| 亚洲精华国产精华液的使用体验| 制服丝袜香蕉在线| 精品久久久久久电影网| 黄色毛片三级朝国网站| 嘟嘟电影网在线观看| 免费大片黄手机在线观看| 制服诱惑二区| 综合色丁香网| 国产精品蜜桃在线观看| 伦精品一区二区三区| 日本与韩国留学比较| 日本av手机在线免费观看| 妹子高潮喷水视频| 久久久久久久久久成人| 超色免费av| 搡老乐熟女国产| 亚洲精品成人av观看孕妇| av视频免费观看在线观看| 成人毛片a级毛片在线播放| 亚洲内射少妇av| 99热6这里只有精品| 18+在线观看网站| 国产永久视频网站| √禁漫天堂资源中文www| 亚洲精品日本国产第一区| 一级毛片aaaaaa免费看小| 国产精品 国内视频| 精品久久蜜臀av无| 水蜜桃什么品种好| 国产又色又爽无遮挡免| 91国产中文字幕| 色视频在线一区二区三区| 飞空精品影院首页| www.av在线官网国产| www.色视频.com| 99九九在线精品视频| 十八禁高潮呻吟视频| 国产熟女欧美一区二区| 亚洲av福利一区| 亚洲人与动物交配视频| 国产毛片在线视频| 午夜日本视频在线| 久久久精品94久久精品| 久久精品久久久久久久性| 亚洲精品美女久久av网站| 久久久久久久久大av| 久久韩国三级中文字幕| 99热这里只有精品一区| 精品久久国产蜜桃| 高清av免费在线| av女优亚洲男人天堂| 少妇的逼水好多| 欧美亚洲 丝袜 人妻 在线| 免费大片18禁| 狠狠精品人妻久久久久久综合| 岛国毛片在线播放| 国产伦精品一区二区三区视频9| 99久国产av精品国产电影| 国产精品麻豆人妻色哟哟久久| 天天操日日干夜夜撸| 久久久久久久精品精品| 久久精品国产亚洲av天美| 人体艺术视频欧美日本| 国产日韩一区二区三区精品不卡 | 欧美激情 高清一区二区三区| 欧美精品一区二区免费开放| av在线播放精品| 久久久国产欧美日韩av| 人妻夜夜爽99麻豆av| 欧美国产精品一级二级三级| 国产亚洲一区二区精品| 日韩在线高清观看一区二区三区| 欧美日韩视频精品一区| 久久97久久精品| 久久精品国产鲁丝片午夜精品| 永久网站在线| 欧美性感艳星| 午夜福利视频在线观看免费| 亚洲精品久久久久久婷婷小说| 亚洲高清免费不卡视频| 中文字幕人妻熟人妻熟丝袜美| 日本黄大片高清| 午夜免费鲁丝| 乱人伦中国视频| 高清黄色对白视频在线免费看| 中国国产av一级| 麻豆乱淫一区二区| 免费高清在线观看日韩| 高清av免费在线| 超碰97精品在线观看| 国产高清不卡午夜福利| 少妇的逼好多水| 热re99久久精品国产66热6| www.av在线官网国产| xxx大片免费视频| 久久久久精品性色| 中国美白少妇内射xxxbb| 精品一区二区免费观看| a 毛片基地| 久久久久久久久久成人| 十分钟在线观看高清视频www| 下体分泌物呈黄色| 免费看光身美女| 久久久久视频综合| 在线观看www视频免费| 国产精品一区二区在线观看99| 国产亚洲午夜精品一区二区久久| 丝袜在线中文字幕| 精品熟女少妇av免费看| 国产精品一区二区在线不卡| 黑人巨大精品欧美一区二区蜜桃 | 全区人妻精品视频| 男女边吃奶边做爰视频| 乱人伦中国视频| 国产精品无大码| 99久国产av精品国产电影| 午夜福利,免费看| 一级毛片 在线播放| 九色亚洲精品在线播放| 免费大片黄手机在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 晚上一个人看的免费电影| 天天操日日干夜夜撸| 亚洲婷婷狠狠爱综合网| kizo精华| 我的女老师完整版在线观看| 一级黄片播放器| 国产av码专区亚洲av| 久久久久人妻精品一区果冻| 久久精品国产鲁丝片午夜精品| 母亲3免费完整高清在线观看 | 久久99热6这里只有精品| 插逼视频在线观看| 日韩成人av中文字幕在线观看| 国产高清三级在线| 亚洲色图 男人天堂 中文字幕 | 成人国语在线视频| 一边摸一边做爽爽视频免费| av.在线天堂| 亚洲欧美日韩卡通动漫| 80岁老熟妇乱子伦牲交| 国产精品秋霞免费鲁丝片| 亚洲国产色片| 五月开心婷婷网| 亚洲欧美成人综合另类久久久| av福利片在线| 性色avwww在线观看| 少妇被粗大的猛进出69影院 | 亚洲,欧美,日韩| 在线观看三级黄色| 美女视频免费永久观看网站| 欧美精品一区二区大全| 亚洲成人手机| 久久亚洲国产成人精品v| 欧美精品国产亚洲| 亚洲人成网站在线播| 亚洲av中文av极速乱| 99久国产av精品国产电影| 亚洲国产日韩一区二区| 亚洲欧洲日产国产| 久久久久久人妻| 汤姆久久久久久久影院中文字幕| 最近手机中文字幕大全| 99国产精品免费福利视频| 国产男人的电影天堂91| 三上悠亚av全集在线观看| 久久99一区二区三区| 狂野欧美白嫩少妇大欣赏| 国产免费一级a男人的天堂| 性色avwww在线观看| 免费大片黄手机在线观看| 制服人妻中文乱码| 久久久精品免费免费高清| www.色视频.com| 飞空精品影院首页| 人成视频在线观看免费观看| 热re99久久国产66热| 欧美激情 高清一区二区三区| 大码成人一级视频| 欧美 日韩 精品 国产| 婷婷色麻豆天堂久久| 春色校园在线视频观看| 午夜福利,免费看| 夫妻午夜视频| 丝袜喷水一区| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品亚洲一区二区| 国产精品一区二区在线观看99| 淫妇啪啪啪对白视频| 亚洲,欧美精品.| 亚洲免费av在线视频| 在线观看www视频免费| 亚洲黑人精品在线| 窝窝影院91人妻| 亚洲,欧美精品.| 欧美国产精品一级二级三级| 亚洲成人免费av在线播放| 精品国产乱码久久久久久小说| 精品国产亚洲在线| 男女边摸边吃奶| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久视频综合| 老熟妇仑乱视频hdxx| 日韩大码丰满熟妇| 五月天丁香电影| 中文字幕另类日韩欧美亚洲嫩草| 免费在线观看日本一区| 国产一卡二卡三卡精品| www.熟女人妻精品国产| 久久精品国产亚洲av香蕉五月 | 波多野结衣一区麻豆| 精品国产超薄肉色丝袜足j| 啪啪无遮挡十八禁网站| 亚洲专区字幕在线| 露出奶头的视频| 亚洲精品久久午夜乱码| 国产免费av片在线观看野外av| 老司机午夜福利在线观看视频 | 老汉色av国产亚洲站长工具| 制服人妻中文乱码| 亚洲视频免费观看视频| 夫妻午夜视频| 国产不卡一卡二| 91麻豆av在线| 亚洲第一av免费看| 亚洲免费av在线视频| 久久精品国产a三级三级三级| 中文字幕人妻熟女乱码| 久久婷婷成人综合色麻豆| 久久午夜亚洲精品久久| 日韩一区二区三区影片| 一级片免费观看大全| 少妇 在线观看| 母亲3免费完整高清在线观看| 欧美精品啪啪一区二区三区| 性色av乱码一区二区三区2| 久久精品亚洲精品国产色婷小说| 天堂动漫精品| 一级毛片女人18水好多| 男女床上黄色一级片免费看| 亚洲精品国产色婷婷电影| 另类亚洲欧美激情| 久久久久精品国产欧美久久久| 亚洲精品一二三| 久久ye,这里只有精品| 国产欧美日韩一区二区三| 色尼玛亚洲综合影院| 两个人免费观看高清视频| 色尼玛亚洲综合影院| 午夜福利乱码中文字幕| 2018国产大陆天天弄谢| 国产不卡一卡二| 法律面前人人平等表现在哪些方面| 精品人妻在线不人妻| 中文字幕色久视频| 日本五十路高清| 成人三级做爰电影| 日韩精品免费视频一区二区三区| 亚洲综合色网址| 一区二区日韩欧美中文字幕| 熟女少妇亚洲综合色aaa.| 日本欧美视频一区| 国产97色在线日韩免费| 极品少妇高潮喷水抽搐| 桃花免费在线播放| 国产成人系列免费观看| 老司机午夜福利在线观看视频 | 性高湖久久久久久久久免费观看| 久久 成人 亚洲| 90打野战视频偷拍视频| 亚洲国产欧美网| 欧美激情高清一区二区三区| 久久精品亚洲精品国产色婷小说| 免费观看人在逋| 在线十欧美十亚洲十日本专区| 国产成人精品无人区| 黄色视频在线播放观看不卡| 久久久久久久久久久久大奶| 国产亚洲av高清不卡| 最近最新免费中文字幕在线| 国产亚洲av高清不卡| a在线观看视频网站| 在线观看www视频免费| 一区在线观看完整版| 亚洲全国av大片| 色婷婷av一区二区三区视频| 波多野结衣av一区二区av| 欧美另类亚洲清纯唯美| 国产91精品成人一区二区三区 | 久久精品国产亚洲av香蕉五月 | 国产精品 欧美亚洲| 欧美变态另类bdsm刘玥| 最新美女视频免费是黄的| 亚洲,欧美精品.| 黄色怎么调成土黄色|