• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Protected Fair Secret Sharing Based Bivariate Asymmetric Polynomials in Satellite Network

    2022-11-11 10:45:52YanyanHanJiangpingYuGuangyuHuChengleiPanDingbangXieChaoGuoandAbdulWaheed
    Computers Materials&Continua 2022年9期

    Yanyan Han,Jiangping Yu,Guangyu Hu,Chenglei Pan,Dingbang Xie,Chao Guo,6,*and Abdul Waheed

    1Department of Electronics and Communication Engineering,Beijing Electronics Science and Technology Institute,Beijing,100070,China

    2State Key Laboratory of Integrated Services Networks,Xidian University,Xi’an,710126,China

    3Department of Cryptography and Technology,Beijing Electronics Science and Technology Institute,Beijing,100070,China

    4Department of Cyberspace Security,Beijing Electronic Science and Technology Institute,Beijing,100070,China

    5School of Communication Engineering,Xidian University,Xi’an,710126,China

    6Institute of Information Engineering,Chinese Academy of Sciences,Beijing,100093,China

    7University of Management Technology,Lahore-Pakistan,55300,Pakistan

    Abstract: Verifiable secret sharing mainly solves the cheating behavior between malicious participants and the ground control center in the satellite network.The verification stage can verify the effectiveness of secret shares issued by the ground control center to each participant and verify the effectiveness of secret shares shown by participants.We use a lot of difficult assumptions based on mathematical problems in the verification stage, such as solving the difficult problem of the discrete logarithm,large integer prime factorization, and so on.Compared with other verifiable secret sharing schemes designed for difficult problems under the same security,the verifiable secret sharing scheme based on the Elliptic Curve Cryptography (ECC)system has the advantages of less computational overhead and shorter key.At present, the binary polynomial is a single secret scheme and cannot provide effective verification.Therefore,based on a Protected Verifiable Synchronous Multi Secret Sharing (PVS-MSS)scheme, this paper is designed based on bivariate asymmetric polynomials.The advanced verifiable attribute is introduced into the Protected Secret Sharing(PSS)scheme.This paper extends the protected synchronous multi-secret sharing scheme based on bivariate polynomial design.The ECC system constructs the security channel between the ground control center and participants and constructs the verification algorithm.Through the verification algorithm, any participant can verify the consistency and effectiveness of the secret shadow and secret share received from other participants or presented by the secret distribution center.Therefore, no additional key agreement protocol is required; participants do not need to negotiate the session key for encryption; the secret share polynomial can generate the session key between participants and speed up the secret reconstruction process.The verification stage has lower computational complexity than the verifiable scheme constructed by Rivest Shamir Adleman(RSA)and other encryption methods.Chinese Remainder Theorem (CRT)is used to update the secret shadow.The secret shadow does not need to be updated with the change of the scheme shared secret, and the public value update efficiency is higher.Reduce the complexity of sharing secret updates in a synchronous multi-secret sharing scheme.

    Keywords: Multi-secret sharing; binary asymmetric; verifiable synchronization;protected;satellite network

    1 Introduction

    A Satellite network is a comprehensive information system composed of different types of satellites in different orbits, ground control centers, and user terminals.It has the characteristics of wide coverage and flexible networking and is widely used in military, resource survey, meteorology, and other fields.However, Li et al.proposed a resource allocation scheme [1].Md introduces a method to save satellite space [2].However, due to the available deployment of satellites, limited onboard resources,transmission data is easy to be intercepted,and other security threats,the secret protection in the process of satellite transmission has also become particularly important.

    In 1979,Shamir and Blakley proposed(t,n)threshold secret sharing theory[3,4].Which will be a secretDintonshares, as long as there is greater than or equal totparticipants can reconstruct secretsD, and less thantparticipants cannot reconstruct secretD.However, the threshold theory can reconstruct secretDthrough Lagrange interpolation, but it can not ensure its effectiveness for malicious participants and ground control center fraud.There is no guarantee of its effectiveness.Ghodosi analyzed the schemes of Harn et al., which can not detect cheaters in a wide range in the threshold theory[5,6].Liu et al.proposed a quadratic polynomial algorithm to identify deception[7].Lin et al.solved the problem that secret reconstruction is not deceived by releasing secret shadows simultaneously[8].Han pointed out that Theorem 3 related to asynchronous network attack in secret sharing scheme in Tian et al.is incorrect[9,10].To solve the problem of dishonest participants releasing false secret shares during secret reconstruction, Harn et al.proposed a synchronous rational secret sharing scheme [11].Harn proposed a new verifiable multi-secret sharing scheme, while Gu made Harn’s scheme more flexible[12,13].Lin proposes a verifiable identity method[14].Jin et al.proposed a secret sharing scheme based on images, but it costs a lot [15].Javeed et al.proposed a method to implement ECC [16].Xue et al.proposed a group key protocol.They shared group key switching authentication between satellites based on secret sharing technology,but they can not verify the secret share and have a high overhead[17].

    Many secret sharing technologies exist in satellite network secret sharing schemes, such as literature[18].We need to ensure the security of multiple nodes in the communication requirements of satellite networks.And the secret-sharing verification shall be distributed in the ground control center and each node satellite.We propose a verifiable secret sharing scheme based on binary asymmetric polynomials.At present, verifiable secret sharing schemes based on bivariate polynomial design are all single secret sharing schemes[19];Secondly,the primary purpose of the design is to construct an efficient verifiable secret sharing protocol in the presence of different numbers of cheaters.Research status of secret sharing scheme based on bivariate polynomial design: PSS scheme lacks various additional attributes to resist separate spoofing attacks and is suitable for different scenarios [20];Reference[21,22],a simple multi-secret sharing scheme,can’t resist the invasion of semi-honest people;The Verifiable Multi-Secret Sharing (VMSS)in reference [23] has no protected characteristics.The primary purpose of this scheme research is the verifiable attribute introduced into a secret sharing scheme with protected features like the PSS scheme.Secondly, it extends the similar design of [24]synchronous multi-secret sharing scheme to make it more widely used.The scheme has the following advantages:

    ■There is no need for a secure channel between that secret distribution center and the participant.

    ■No additional key agreement protocol is needed:Participants do not need to negotiate extra session keys for encryption.The secret share polynomial can generate session keys among participants,thus accelerating the process of secret reconstruction.

    ■Protected:The pairwise session key generated by a share polynomial can protect the information exchange between participants in the process of secret reconstruction and resist external attacks.

    ■ECC realizes verifiable attributes.The verification phase has lower computational complexity than verifiable schemes constructed by RSA and other encryption methods.

    ■Synchronous multi-secret sharing:the number of optional shared secrets in the secret distribution center is flexible.A single secret reconstruction process can reconstruct multiple shared secret values according to different situations.

    Although literature [25] proposed placing some calculations below the ground or LEO, it does not introduce security issues.Therefore, to ensure security under the same premise, we achieve less computing cost, shorter key, and save system resources according to the characteristics of limited satellite resources and limited bandwidth.The ECC system constructs the safety channel between the ground control center and the node satellite.Using CRT to update the secret shadow,the ground control center only needs to publish part of the public value, which makes the public value update more efficient.

    2 Preliminary Knowledge

    2.1 Shamir Threshold Theory

    2.1.1 Key Construction

    LetPbe a prime number andkbe the keyk∈GF(P),and the key distribution centerDrandomly selects ant-1 order polynomialb(x)onGF(P),andk=b(0).The key distribution center calculateski=b(i),i=1,2,3,...,n,kidistributed to participants as secret sharesPi.

    2.1.2 Key Reconstruction

    When there aretparticipantsP1,P2,P3,...,Pt.We can reconstruct secretkby Lagrange interpolation,and the formula is:

    2.2 CRT

    Any two primen1,n2,...,ns,anya1,a2,...,asto make ?a∈Zcontent with

    Set upMi=M/ni,ti=M-1imodni,then

    3 The Project Design

    3.1 System Model

    Fig.1 describes the process of participants receiving secrets.Participants’environment is changeable, such as the ocean, wild, etc.Of course, there are various participants, such as individual participants on the ground,ground satellite stations,or satellites in orbit in the air.First,the ground control center distributes secret shares and sends broadcast parameters to Geostationary Earth Orbiting(GEO).Then,GEO sends it to each participant or Low Earth Orbiting(LEO)through the link to get the corresponding secret share.At this time,each participant will generate a unique session key and communicate with each other.The secret can be reconstructed under two different thresholds when ensuring that the participants are honest.

    Figure 1:Satellite network secret sharing scheme model

    3.2 System Initialization

    Suppose there is a trusted ground control centerD,a set of actors{P1,P2,...,Pn}.Eis an elliptic curve defined on a finite fieldFq.Whereqis a large prime number that is not equal to 2 or 3.T∈E(Fq)is the base point of an elliptic curveEwith upper order?.Public information is {Fq,E,T}.Dselect primep0<?,ndifferent positive integersp1,p2,...,pnmeet the following properties:

    ■p0<p1,i=1,2,...,n.

    ■p1,p2,...,pnmutual prime.And greater than 1.

    Perform the following steps betweenDandPi(i∈[1,n]) to transmit the master secret shadowp1,p2,...,pnto the participants(for the multi-purpose secret sharing scheme,this stage only needs to be performed once.):

    ■Step 1:Dselects integerdas its private key, satisfies 1<|d|<?, calculates, and disclosesG=dTas its public key.

    ■Step 2:Each participantPi,1 ≤i≤nrandomly selects an integernias its private key,satisfies 1<|ni|<?,calculatesTi=niTas its public key,and makes it public.IDiis the identity of participantPi,1 ≤i≤n.To ensure the inconsistency between different participantsTiandIDi,Dwill request to updateTiandIDiuntil wheni/=j,IDi/=IDjandTi/=Tjtake(Ti,IDi)public information forPi.

    ■Step 3:BothDandPican use their private keys and public information to calculate public keysGi=dniT=(xi,yi).

    ■Step 4:Dcalculates and broadcastsci=pixi,i∈[1,n],Gi=dniT=(xi,yi).

    ■Step 5:When any participantPireceivesci,it can use its private keynito getGi=dniT=(xi,yi)and then calculatepi=cii∈[1,n].

    Finally,the ground control centerDand participantPigot the primary secret shadowpi.

    3.3 The Secret to Distribute

    SupposeDwants to shareksecretss0,s1,...,sk-1and perform secret distribution in the following two cases.

    Case 1:When the number of secrets to be shared,kis less than or equal to the threshold valuet.

    Step 1:Dconstructs the following binary asymmetric polynomials with the orderxast-1 and orderyash-1,h >t(t-1):

    There arekcoefficients about thexterm inf(x,y) and {s0,s1,···,sk-1} is a shared secret set among them.

    Step 2:Dselectnrandom integersp0≤yi <pi,i∈[1,n],so thatxigenerated byxi=yimodpiisnunequal integers.

    Step 3:Dcalculate the secret sharef(xi,0)mod?,i∈[1,n],A0=s0T,A1=s1T,...,Ak-1=sk-1TandAk=a0,0T,Ak+1=a1,0T,...,At-1=at-k-1,0T.

    Step 4:Dcalculates the unique integerXmodcalculates anyX≡yimodpiusing CRT and value set{y1,y2,...,yn}and value set{p1,p2,...,pn}.

    Step 5:Dcalculates the secret polynomials(x) =f(x,IDi)mod?,(y) =f(IDi,y) mod?encrypts them with the participant’s public key and elliptic curve cryptography,and sends them to the participant{P1,...,Pn}.

    Step 6:Open{X,f(x1,0),f(x2,0),...,f(xn,0),A0,A1,...,At-1}.

    Case 2:The number of secrets to be sharedkis greater than the threshold valuet.

    Step 1:Dconstructs the following binary asymmetric polynomials with the orderxast-1 and orderyash-1:

    There arekcoefficients about thexterm inf(x,y), and {s0,s1,···,sk-1} is a shared secret set among them.

    Step 2:Dselectnrandom integersp0≤yi <pi,i∈[1,n],so thatxigenerated byxi=yimodpiisnunequal integers.

    Step 3:Dcalculate the secret sharef(xi,0)mod?,i∈[1,n],A0=s0T,A1=s1T,...,Ak-1=sk-1T.

    Step 4:Dcalculates the unique integerXmod ∏ni=1pi, and calculates anyX≡yimodpiusing CRT and value set{y1,y2,...,yn}and value set{p1,p2,...,pn}.

    Step 5:Dcalculates the secret polynomials(x) =f(x,IDi)mod?,(y) =f(IDi,y)mod?,encrypts them with the participant’s public key and elliptic curve cryptography,and sends them to the participant{P1,...,Pn}.

    Step 6:Dcalculatesh1=f(1,0),h2=f(2,0),...,hk-t=f(k-t,0)and discloses it in[26,27].

    Step 7:Open{X,f (x1,0),f (x2,0),...,f (xn,0),A0,A1,...,Ak-1}.

    3.4 Secret Verification

    Because the PVS-MSS scheme has protected properties,resistance to reconstruct phase external attacks,but internal attackers,will reduce the schema’s safety.Because internal attackers can be arbitrary tamper with the secret shadow,whether conspired with the collusion attack,internal attackers benefit maximization (the remaining honest refactoring can’t get the Shared secret).Therefore, the scheme of PVS-MSS has two different secret numbers.Takingk≤tas an example, we use elliptic curve addition structure to realize the following verification algorithm:

    ■Step 1: Any refactorPican verify whether the secret sharef (xi,0)mod?disclosed by the ground control centerDis correct by the following verification equation.

    ■Step 2: The PVS-MSS scheme does not lose generality.Any reconstructorPican verify the secret shadowxjsent by other participants through the following verification equation.

    3.5 Secret Refactoring

    In the secret reconstruction stage, if the set of reconstructors participating in the protocol is{P1,P2,...,Pm}.

    Step 1: Any two reconstructorsPiandPjcan obtain the shared session key by combining the identity informationIDiandIDjcalculating their secret share polynomial:

    Step 2: Any reconstructorPiuseski,jto calculateci,j=Encki,j(xi).ci,j=Encki,j(xi) will sendPjthrough the authenticated broadcast channel?.Encki,j(xi)represents symmetric encryption.Similarly,any reconstructorPjcalculatescj,i=Encki,j(xi) using the keyki,jand sends it toPithrough the authenticated broadcast channel?.

    Step 3: When the reconstructorPireceives ciphertextcj,i,j∈ {1,2,...,u}{i},Pican decrypt ciphertextDecki,j(cki,j)=xjseparately,Decki,j(cj,i)represents the ciphertextcj,idecrypted withkj,i.

    Step 4: Each refactorer is divided into the following two cases to reconstruct the shared secret value:

    ■Case 1:When the number of shared secretskis less than or equal to the threshold valuet:

    ■Case 2:When the number of shared secretskis greater than the threshold valuet:

    The coefficient set{s0,s1,...,sk-1}inf(x,0)is the reconstructed secrets.

    3.6 The Secret to Update

    When the PVS-MSS scheme shares a secret update, the polynomial constructed by the synchronous multi-secret sharing scheme also needs to be updated, and the public value of the scheme also needs to be updated.YCH and other schemes adopt a bivariate univariate function to ensure that the ground control centerDdoes not need to re-issue secret shadow to each participant for the next new secret sharing [28].The master secret shadow of the scheme is also multi-purpose without initialization.Only the ground control centerDneeds to update some public values.In particular, the newXis very high.According to the CRT theorem in Section 2.2 of this paper,requirementMi≡ 1 modpionce the valueMiM′i,i= 1,2,...,nis calculated byD, can be saved and reused.Each secret update stage,Donly needs to select a newyiand useMiM′ito calculate a newXdisclosure.

    4 Project Analysis

    4.1 Correctness Analysis

    Theorem 4.1: The PVS-MSS scheme has any reconfigurable secret greater than or equal totreconfigurator.

    Prove: Supposet≤m≤nreconstructor sets {P1,P2,...,Pm} to want reconstruct the shared secret,in which any refactorersPiandPjcontent ?i,j∈[1,m]andi/=j.When the number of shared secretskis less than or equal to the threshold valuet, the orderf(x,0) is known to bet- 1, and any reconstructorPiuseski,jencryption to calculateci,j=Encki,j(xi) and sends it toPjthrough the authenticated broadcast channel?.Similarly,any reconstructorPjcalculatescj,i=Encki,j(xi)using the keyki,jand sends it toPithrough the authenticated broadcast channel?.When the reconstructorPireceives the ciphertextcj,i,j∈{1,2,...,u}{i}.Pican decrypt the ciphertextDecki,j(cj,i)=xj.Separately because the polynomialf(x,0)containing the secret value is a univariate polynomial,Pigetsxj,j=1,2,...,m,j/=i,f(x1,0),f(x2,0),...,f(xm,0) disclosed by ground control center is exactlympairs of interpolation points onf(x,0).Using Lagrange interpolation polynomial, the uniquef(x,0) can be obtained from Eq.(9).Similarly,when the number of shared secretskis greater than the threshold valuet, it is known that orderf(x,0) isk-1, after any refactorerPiobtainsm-1xjthrough the secret refactoring phase.Combined with the public value of the ground control center, it is exactly them+k-tpairs of interpolation points onf(x,0).Using Lagrange interpolation formula and secret sharing homomorphism,get a uniquef(x,0)from Eq.(10).The coefficient set{s0,s1,...,sk-1}inf(x,0)is the reconstructed secrets.

    4.2 Safety Analysis

    Theorem 4.2:Whenk≤tork >t,When the scheme satisfies the conditionth >(t-1)(t+h)orkh >(t-1)(t+h)+(k-t),any access set composed of less thantrefactorers cannot be reconstructed.And no one can get any secret information.

    Prove: The secret sharef(IDi,0)modpis generated by the secret polynomial.The secret share is used as the interaction value during reconstruction.The secret shadow is the public valueIDi;the secret share of the PVS-MSS scheme is the public valuef(xi,0)mod?, and the secret shadowxiis the interaction value during reconstruction.Under the two schemes,the information obtained by the internal conspirators is of the same nature and the same attack methods,and both are to reconstructf(x,0).Therefore,the proof process of this theorem is the same as that of Theorem 4.1 in Section 4.1 of this paper,so it will not repeat here.

    Theorem 4.3:The main secret shadowp1,p2,...,pnin the scheme cannot calculate from the public parameterG,Ti,ci.

    Prove: Suppose an attackerAwants to calculate the main secret shadowp1,p2,...,pnfrom the public parameterG=dT,Ti=niT,ci=pixdniT.UnlessAcan calculatedniT=(xdniT,ydniT) fromTi=niT,G=dT, which is equivalent to solving the computational Diffie-Hellman problem on elliptic curves or directly solvingTi=niT,G=dTis equivalent to solving the discrete logarithm problem of an elliptic curve (ECDLP).We can’t solve these problems under the current computing power..Therefore,only after the participantPiuses its private keynito calculateniG=nidT,can it obtain the corresponding master secret shadowpi.

    Theorem 4.4:It is computationally difficult to calculate the secrets0,s1,...,sk-1from the public valueA0,A1,...,Ak-1.

    Prove:Ai=siT,Ai∈<T >is the public value used in the verification phase.If the attackerAwants to obtainsidirectly from the public valueAi=siT.In that case it is equivalent to solving the discrete logarithm problem on an elliptic curve (ECDLP).So it isn’t easy to calculate secretss0,s1,...,sk-1.

    Theorem 4.5:The scheme resists internal and external attacks in the reconstruction process.

    Prove:Suppose there is an internal attackerA,who has identity informationIDiand secret shadowxi.His attack method is to provide a false secret shadowx′ito the honest reconstructor in the process of secret reconstruction.The valuesf(xi,0),i=1,2,...,nandAk,k=1,2,...,t-1 used for verification in the verification phase of the scheme are both public.At this time,any reconstructorPicalculatesR=Akand checks whether the equationR=f(xi,0)Tis true.If inequalityR/=f(xi,0)Tholds,thenAis identifie as an internal attacker.

    In the reconstruction process, The encryption of the session keyki,jprotects the interaction between any two reconstructorsPiandPj.The secret polynomial generates the session key.Therefore,the external enemy without any secret share polynomial information cannot participate in the reconstruction process to steal the secret.

    5 Scheme Comparison and Performance Analysis

    The PVS-MSS scheme’s main parameters, characteristics, and cost are compared with existing schemes.Compared with synchronous multi-secret sharing schemes such as[21,28-31],the PVS-MSS scheme introduces verifiability.There is no need to maintain an additional secure channel between the ground control center and participants.Compared with the verifiable multi-secret sharing schemes in [23,32-35], PVS-MSS scheme participants do not need additional key negotiation mechanisms,which reduces the actual operating cost of the scheme.In the PVS-MSS scheme, the security of the safety channel between the ground control center and participants is based on the Discrete Logarithm Problem of Elliptic Curve (ECDLP).In [32], security is based on the Discrete Logarithm Problem(DLP).Under the same security level, the required parameter bit length is smaller.The amount of calculation is smaller.For example,under the security of 256 bits of the symmetric key,the minimum bit length of the parameter?of the PVS-MSS scheme is 512,while under the same security level,the bit length of Rivest Shamir Adleman/Digital Signature Algorithm(RSA/DSA)module is at least 15360.When the key length is the same,there is little difference between ECC and RSA.Therefore,the PVSMSS scheme requires fewer resources and faster calculation speed based on the ECC initialization and verification stage.Compared with [23], whenk >t, ifkis close tot, the updated public value of PVS-MSS scheme is less.As shown in Tab.1,the main parameters and attributes of synchronous multi-secret sharing are compared in detail.The scheme in this paper has the characteristics of shadow update,verifiability,and less public values.

    Table 1: Comparison of synchronous multi secret sharing schemes

    Table 1:Continued

    In the initialization stage of the PVS-MSS scheme, the ground control center and participant calculateGi,Ti,Gby elliptic curve scalar multiplication.Therefore,there are 3n+1 elliptic curve scalar multiplication operations.This calculation process is for the reusability of secret shadows and only needs to be performed once.In the secret distribution stage, the ground control center executes the algorithm in two different cases, including the secret polynomial calculation of each participant.At this time,only the main operations are considered.The two different cases aretandktimes elliptic curve scalar multiplication,respectively.In the secret verification phase,each participant needstelliptic curve scalar multiplication operations to verify a single secret shadow.It needst2elliptic curve scalar multiplication operations to verify its correctness and other secret shadows.In the secret reconstruction stage, the PVS-MSS scheme shares the secret on the coefficient off(x,0), so the calculation cost in the secret reconstruction stage is the same as that in the scheme [23,28,30,31,33,36], both of which are Lagrange interpolation calculations,and the worst is Lagrange interpolation ofkpoints.SupposeTMis the operation time of elliptic curve scalar multiplication.THis the operation time of bivariate one-way function.TL(t)is the operation time oftpoint interpolation.TEis the BP operation time on the elliptic curve.Teq(t)is the solution operation time oftlinear equations.TPis the modular power operation time.Tab.2 shows the comparison of computing overhead.We can find the running time required by the PVS-MSS scheme.The scheme calculates the overhead in the distribution phase;whenk≤t,it istTM;whenk >t,it iskTM.The scheme calculates the cost of the verification phase;whenk≤t,it ist2TM;whenk >t,it isk2TM.This scheme calculates the cost of the reconstruction phase;whenk≤t,it isTL(t);whenk >t,it isTL(k).

    Table 2: Comparison of computing overhead

    6 Parameter Analysis

    6.1 Secret Share Leakage Probability of Satellite Nodes

    Reference [38] shows that the probability of secret share leakage of a single satellite is an exponential function,expressed byf(x),and the function varying with timexis:

    We can see from Fig.2 that the abscissa shown in the figure below is time, and the ordinate is leakage probability.With the increase of timeX,the leakage probability also increases,and the lower the leakage rateλat the initial time,the lower the leakage probability at the same time.

    Figure 2:Secret failure rate

    6.2 Satellite Network Security Quality

    Reference [39] shows that the key of each satellite network node is different.Hence, the attack onasatellite nodes is aaBernoulli process,and the probability that the secret share obtained by the attacker is less thantin one cycle:

    Whena=25,λ=0.015,Fig.3 shows the impact of the threshold valuet,and key cycleFupdate on satellite network security.Pincreases with the increase oft,and the threshold valuetalso increases with the increase of cycleF.

    Figure 3:Satellite network security quality

    7 Conclusion

    It is advanced to propose a protected synchronous multi-secret sharing scheme based on binary asymmetric polynomials.It is very advanced to introduce verifiable attributes into the PSS scheme.This scheme extends the protected synchronous multi-secret sharing scheme based on binary polynomial design.This scheme is suitable for the secret sharing of satellite networks.The ECC system is used to interact with the main secret shadow safely, and a verification algorithm is constructed.Through the verification algorithm,any participant can verify the consistency and effectiveness of the secret shadow received from other participants or the secret share presented by the ground control center.We discuss the correctness of the algorithm in Section 4.1 of this paper.Whether the number of shared secrets is greater than or less than the threshold,we can get the unique polynomial from the Lagrange difference formula and the additive homomorphism of secret sharingf(x,0).We discussed security in Section 4.2 of this article.We discuss the security of the algorithm from four aspects.We use ECDLP to ensure that attackers cannot calculate secret shadows from public values;we prove the effectiveness of resisting internal and external attacks in the reconstruction process.In Section 4.3,we discuss the computational overhead of existing schemes.Our algorithm is based on ECDLP for protection,compared with RSA/DSA;when the key is the same at the same security level,the amount of calculation is not different.This scheme uses ECC in the initialization and verification phase,which requires fewer resources and faster computing speed.The Lagrange difference calculates the cost in the secret reconstruction phase,and the worst is the Lagrange difference ofkpoints.The system simulation and other compilation will be completed in further work.The ground control center does not directly issue the secret shadow but uses CRT to calculate the unique public valueX.Participants can calculate the required secret shadow through the main secret shadow andX.When the shared secret needs to be updated,the participant’s main secret shadow and private key do not need to be updated.The public valueXupdate is very efficient,reducing the complexity of sharing secret updates in a synchronous multi-secret sharing scheme, ensuring the security of secrets, and saving satellite network resources.Our scheme can send messages in satellite networks.We can also use it in key management, secure multi-party computing,image,and audio secret sharing.Our scheme is also very suitable for situations where specific participants are present simultaneously.The secret share polynomial can also generate the session key to protect the information exchange between participants.In this way,the participants can communicate without redistributing the key in the secret distribution center,which significantly improves the security of the session and reduces the time of generating the session key.

    Acknowledgement:We gratefully acknowledge anonymous reviewers who read drafts and made many helpful suggestions.

    Funding Statement:This work is supported by The State Key Laboratory of Integrated Services Networks,Xidian University(ISN22-13).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    欧美色视频一区免费| 国产av一区在线观看免费| 亚洲 欧美一区二区三区| 在线观看66精品国产| 精品久久久久久,| 国产精品一区二区三区四区久久 | 国产亚洲精品第一综合不卡| 嫩草影院精品99| 中文字幕人妻熟女乱码| 人人澡人人妻人| 成人国产综合亚洲| 少妇 在线观看| 国产又色又爽无遮挡免费看| 午夜福利免费观看在线| 一进一出抽搐动态| 丁香六月欧美| 国产av在哪里看| 久久久久久久午夜电影| 非洲黑人性xxxx精品又粗又长| 国产av一区在线观看免费| 手机成人av网站| 国产男靠女视频免费网站| 深夜精品福利| 精品欧美国产一区二区三| 亚洲精品国产一区二区精华液| 亚洲国产日韩欧美精品在线观看 | avwww免费| 搡老妇女老女人老熟妇| 在线av久久热| 色婷婷久久久亚洲欧美| 久久亚洲精品不卡| 又大又爽又粗| 国产精品 欧美亚洲| 少妇熟女aⅴ在线视频| 免费看a级黄色片| 长腿黑丝高跟| 人人妻人人澡人人看| 窝窝影院91人妻| 久久婷婷成人综合色麻豆| 在线免费观看的www视频| 免费看十八禁软件| 天堂影院成人在线观看| 国语自产精品视频在线第100页| 精品人妻1区二区| 视频区欧美日本亚洲| 久久香蕉激情| 亚洲在线自拍视频| 18禁观看日本| 变态另类丝袜制服| 精品无人区乱码1区二区| 人妻丰满熟妇av一区二区三区| 好看av亚洲va欧美ⅴa在| 欧美日韩精品网址| 一区福利在线观看| 亚洲成av片中文字幕在线观看| 午夜免费激情av| 国产人伦9x9x在线观看| 女人被躁到高潮嗷嗷叫费观| 亚洲av日韩精品久久久久久密| 操出白浆在线播放| 又黄又粗又硬又大视频| 国产不卡一卡二| 亚洲一码二码三码区别大吗| 国产人伦9x9x在线观看| 纯流量卡能插随身wifi吗| 亚洲成av片中文字幕在线观看| 国产亚洲av嫩草精品影院| 午夜久久久久精精品| 黑人巨大精品欧美一区二区mp4| 日韩欧美一区二区三区在线观看| 夜夜爽天天搞| 免费久久久久久久精品成人欧美视频| 中文亚洲av片在线观看爽| 午夜免费观看网址| 一级作爱视频免费观看| 欧美乱码精品一区二区三区| 国产不卡一卡二| 国产精品久久久久久人妻精品电影| 精品午夜福利视频在线观看一区| 亚洲最大成人中文| 国产一卡二卡三卡精品| 91国产中文字幕| 人人澡人人妻人| 黄色 视频免费看| 19禁男女啪啪无遮挡网站| 国产精品美女特级片免费视频播放器 | 少妇熟女aⅴ在线视频| 亚洲第一av免费看| 这个男人来自地球电影免费观看| 国产片内射在线| 日韩中文字幕欧美一区二区| 国产午夜精品久久久久久| 麻豆国产av国片精品| 精品国内亚洲2022精品成人| 国产亚洲精品第一综合不卡| 亚洲精华国产精华精| 级片在线观看| 精品一区二区三区视频在线观看免费| 久久久久久国产a免费观看| 国产麻豆69| 久久精品国产综合久久久| 色在线成人网| 视频在线观看一区二区三区| 免费一级毛片在线播放高清视频 | 欧洲精品卡2卡3卡4卡5卡区| 久久精品91蜜桃| 91精品三级在线观看| 在线观看日韩欧美| 精品久久久精品久久久| 国产高清激情床上av| www.www免费av| 黄色a级毛片大全视频| 免费在线观看影片大全网站| 香蕉丝袜av| 99久久综合精品五月天人人| 欧美成人午夜精品| 久久精品人人爽人人爽视色| 校园春色视频在线观看| 久久婷婷成人综合色麻豆| 成人免费观看视频高清| 精品午夜福利视频在线观看一区| 一级黄色大片毛片| 国产黄a三级三级三级人| 亚洲欧美激情综合另类| 亚洲五月色婷婷综合| 久久中文看片网| 中文字幕人妻熟女乱码| 精品国产国语对白av| 国产精品久久久av美女十八| 成人手机av| 久久青草综合色| 亚洲av成人不卡在线观看播放网| av网站免费在线观看视频| 午夜成年电影在线免费观看| ponron亚洲| 黄色视频,在线免费观看| 人妻久久中文字幕网| 好看av亚洲va欧美ⅴa在| 伊人久久大香线蕉亚洲五| 欧美一区二区精品小视频在线| 人人妻人人澡人人看| 黑人欧美特级aaaaaa片| 亚洲一区二区三区不卡视频| 丝袜在线中文字幕| 久久精品影院6| 真人一进一出gif抽搐免费| 久久国产精品人妻蜜桃| 久久精品亚洲精品国产色婷小说| 亚洲国产精品sss在线观看| 一二三四社区在线视频社区8| 亚洲国产欧美一区二区综合| 精品一区二区三区四区五区乱码| 黄片播放在线免费| 搡老熟女国产l中国老女人| 身体一侧抽搐| 日韩欧美一区视频在线观看| 国产亚洲精品久久久久5区| 三级毛片av免费| 欧美一级a爱片免费观看看 | 老鸭窝网址在线观看| 最新在线观看一区二区三区| 日日夜夜操网爽| 国产精品亚洲一级av第二区| 日韩欧美一区视频在线观看| 性色av乱码一区二区三区2| 桃色一区二区三区在线观看| 99精品在免费线老司机午夜| 亚洲三区欧美一区| 丰满的人妻完整版| 国产高清有码在线观看视频 | 亚洲精品一区av在线观看| 亚洲av日韩精品久久久久久密| 欧美人与性动交α欧美精品济南到| 亚洲第一电影网av| 国产精品免费视频内射| 丁香欧美五月| 欧美成人一区二区免费高清观看 | 搡老妇女老女人老熟妇| 精品久久久久久久久久免费视频| 国产xxxxx性猛交| 青草久久国产| 免费观看精品视频网站| 国产xxxxx性猛交| 如日韩欧美国产精品一区二区三区| 一边摸一边做爽爽视频免费| 久久香蕉国产精品| 成人18禁在线播放| 女人高潮潮喷娇喘18禁视频| 久久精品91无色码中文字幕| 在线观看舔阴道视频| 日本 av在线| 麻豆国产av国片精品| 国产免费男女视频| 亚洲男人天堂网一区| 日本撒尿小便嘘嘘汇集6| 97人妻天天添夜夜摸| 国产精品九九99| 精品欧美一区二区三区在线| 男人舔女人的私密视频| 十八禁人妻一区二区| 精品国产国语对白av| 精品国产美女av久久久久小说| 三级毛片av免费| 欧美精品亚洲一区二区| 成人免费观看视频高清| 黑人欧美特级aaaaaa片| 午夜a级毛片| 精品熟女少妇八av免费久了| 亚洲最大成人中文| 久久久久久大精品| 夜夜躁狠狠躁天天躁| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲最大成人中文| 亚洲av电影在线进入| 色尼玛亚洲综合影院| 大型黄色视频在线免费观看| 露出奶头的视频| 亚洲第一欧美日韩一区二区三区| 日本免费一区二区三区高清不卡 | 久久久久久免费高清国产稀缺| 黄色视频,在线免费观看| 日韩欧美国产在线观看| 国产xxxxx性猛交| 久久香蕉激情| 夜夜看夜夜爽夜夜摸| 俄罗斯特黄特色一大片| 9色porny在线观看| 在线观看免费视频网站a站| bbb黄色大片| 国产精品99久久99久久久不卡| 琪琪午夜伦伦电影理论片6080| 亚洲精品国产一区二区精华液| 亚洲专区中文字幕在线| 久久性视频一级片| 国产精品免费视频内射| 成在线人永久免费视频| 日本三级黄在线观看| 悠悠久久av| 亚洲黑人精品在线| 国产精品一区二区免费欧美| 久久精品国产亚洲av香蕉五月| 热99re8久久精品国产| 女同久久另类99精品国产91| 丝袜美腿诱惑在线| 免费一级毛片在线播放高清视频 | 久久 成人 亚洲| 久久精品aⅴ一区二区三区四区| 三级毛片av免费| 中文亚洲av片在线观看爽| 国产亚洲精品久久久久5区| 我的亚洲天堂| 国产精品久久久久久精品电影 | 咕卡用的链子| 日本精品一区二区三区蜜桃| 亚洲精品国产色婷婷电影| 午夜影院日韩av| 波多野结衣一区麻豆| 老熟妇乱子伦视频在线观看| 色综合站精品国产| 成人18禁高潮啪啪吃奶动态图| 97碰自拍视频| 欧美日韩福利视频一区二区| 妹子高潮喷水视频| 视频在线观看一区二区三区| 国产乱人伦免费视频| 亚洲狠狠婷婷综合久久图片| 日日摸夜夜添夜夜添小说| 少妇被粗大的猛进出69影院| 欧美色欧美亚洲另类二区 | 99久久精品国产亚洲精品| 999久久久精品免费观看国产| 精品免费久久久久久久清纯| 一级毛片高清免费大全| 欧美午夜高清在线| www国产在线视频色| 18禁观看日本| 丝袜人妻中文字幕| 欧美精品亚洲一区二区| 日日干狠狠操夜夜爽| 男男h啪啪无遮挡| 人人妻人人爽人人添夜夜欢视频| 国产高清videossex| 在线视频色国产色| 欧美黄色淫秽网站| 亚洲少妇的诱惑av| 老司机午夜十八禁免费视频| 午夜福利高清视频| 99精品久久久久人妻精品| 国产视频一区二区在线看| 男女之事视频高清在线观看| 国产精品亚洲美女久久久| 久久久久久国产a免费观看| 久久国产精品人妻蜜桃| 国产91精品成人一区二区三区| 99久久综合精品五月天人人| 日本五十路高清| 波多野结衣一区麻豆| 亚洲欧美日韩另类电影网站| 亚洲七黄色美女视频| 在线国产一区二区在线| 亚洲av成人av| 中文字幕久久专区| 免费少妇av软件| 热99re8久久精品国产| 国产一区二区三区视频了| 久久久久久久精品吃奶| 波多野结衣巨乳人妻| 久久亚洲精品不卡| 如日韩欧美国产精品一区二区三区| 久久久久久亚洲精品国产蜜桃av| 久久久久久久久久久久大奶| 久久人人爽av亚洲精品天堂| 国产欧美日韩一区二区三区在线| 免费女性裸体啪啪无遮挡网站| 大码成人一级视频| 色综合婷婷激情| 麻豆一二三区av精品| 久热这里只有精品99| 精品一区二区三区四区五区乱码| 日本黄色视频三级网站网址| or卡值多少钱| 99久久精品国产亚洲精品| 又黄又爽又免费观看的视频| 久久天堂一区二区三区四区| 99香蕉大伊视频| 亚洲国产日韩欧美精品在线观看 | 成人欧美大片| 在线视频色国产色| 嫁个100分男人电影在线观看| 精品久久久久久久人妻蜜臀av | 亚洲一码二码三码区别大吗| xxx96com| 久久欧美精品欧美久久欧美| 亚洲黑人精品在线| 精品国内亚洲2022精品成人| 久久国产精品男人的天堂亚洲| 国产av又大| 亚洲自偷自拍图片 自拍| 岛国视频午夜一区免费看| 日本撒尿小便嘘嘘汇集6| 亚洲精品一卡2卡三卡4卡5卡| 国产精品日韩av在线免费观看 | 热re99久久国产66热| 超碰成人久久| 免费在线观看完整版高清| 亚洲精品粉嫩美女一区| 夜夜夜夜夜久久久久| 亚洲国产高清在线一区二区三 | 亚洲 欧美 日韩 在线 免费| 久久精品国产亚洲av高清一级| 一级毛片女人18水好多| 亚洲国产精品999在线| 国产亚洲av嫩草精品影院| 国产乱人伦免费视频| 天天添夜夜摸| 国产精品 欧美亚洲| 纯流量卡能插随身wifi吗| 国内毛片毛片毛片毛片毛片| 欧美黄色淫秽网站| 亚洲熟女毛片儿| 久久中文字幕人妻熟女| 亚洲情色 制服丝袜| 欧美日本亚洲视频在线播放| 啦啦啦免费观看视频1| 精品欧美国产一区二区三| 欧美日本亚洲视频在线播放| www.www免费av| 美国免费a级毛片| 午夜福利,免费看| 性欧美人与动物交配| 亚洲中文字幕一区二区三区有码在线看 | 宅男免费午夜| 亚洲一区高清亚洲精品| netflix在线观看网站| 欧美日韩中文字幕国产精品一区二区三区 | 动漫黄色视频在线观看| 欧美人与性动交α欧美精品济南到| 久久婷婷成人综合色麻豆| 99在线视频只有这里精品首页| 久久久久久免费高清国产稀缺| 欧美乱妇无乱码| 精品一区二区三区视频在线观看免费| 午夜精品久久久久久毛片777| 成人av一区二区三区在线看| 99久久国产精品久久久| 午夜福利18| 亚洲成a人片在线一区二区| 国产三级在线视频| 大码成人一级视频| 两个人免费观看高清视频| 国产亚洲欧美精品永久| 一进一出好大好爽视频| 高潮久久久久久久久久久不卡| 亚洲精品美女久久av网站| 免费在线观看日本一区| 色综合站精品国产| 一本大道久久a久久精品| а√天堂www在线а√下载| 757午夜福利合集在线观看| 欧美在线一区亚洲| 亚洲欧美激情在线| 成年人黄色毛片网站| 身体一侧抽搐| 精品一区二区三区四区五区乱码| 成人三级黄色视频| 国内久久婷婷六月综合欲色啪| 午夜免费观看网址| 脱女人内裤的视频| 日韩视频一区二区在线观看| 欧美性长视频在线观看| 老鸭窝网址在线观看| 麻豆成人av在线观看| 久久久久久久久久久久大奶| 在线观看www视频免费| 真人一进一出gif抽搐免费| 日本免费一区二区三区高清不卡 | 久久亚洲精品不卡| 久久人人爽av亚洲精品天堂| 久久久久久久午夜电影| 熟妇人妻久久中文字幕3abv| a级毛片在线看网站| 亚洲三区欧美一区| 女警被强在线播放| 日韩成人在线观看一区二区三区| 亚洲avbb在线观看| 人人妻人人爽人人添夜夜欢视频| 一区二区三区国产精品乱码| 91av网站免费观看| 国产精品一区二区精品视频观看| 欧美成狂野欧美在线观看| 每晚都被弄得嗷嗷叫到高潮| 99久久精品国产亚洲精品| 搡老岳熟女国产| √禁漫天堂资源中文www| 日日摸夜夜添夜夜添小说| 欧美av亚洲av综合av国产av| 国产精品永久免费网站| 一二三四社区在线视频社区8| 精品久久久久久久人妻蜜臀av | 免费观看精品视频网站| av在线天堂中文字幕| 欧美 亚洲 国产 日韩一| 亚洲av熟女| 侵犯人妻中文字幕一二三四区| 18禁裸乳无遮挡免费网站照片 | 无遮挡黄片免费观看| 欧美日韩亚洲国产一区二区在线观看| 在线免费观看的www视频| 窝窝影院91人妻| av在线天堂中文字幕| 激情在线观看视频在线高清| 欧美成狂野欧美在线观看| 嫩草影视91久久| 两人在一起打扑克的视频| 美女免费视频网站| 国产高清videossex| 天堂√8在线中文| 中文字幕高清在线视频| 亚洲一码二码三码区别大吗| 精品国产亚洲在线| 亚洲人成伊人成综合网2020| 精品国产一区二区三区四区第35| 久久热在线av| 久久精品人人爽人人爽视色| 亚洲一区中文字幕在线| 久久九九热精品免费| 国产亚洲av高清不卡| 波多野结衣一区麻豆| 婷婷精品国产亚洲av在线| 色综合欧美亚洲国产小说| 久久精品aⅴ一区二区三区四区| 欧美黄色淫秽网站| 欧美午夜高清在线| 黄色毛片三级朝国网站| 18禁美女被吸乳视频| 亚洲欧美日韩另类电影网站| 可以在线观看的亚洲视频| 无遮挡黄片免费观看| 国产精品永久免费网站| 国产一区二区激情短视频| 中文字幕精品免费在线观看视频| 这个男人来自地球电影免费观看| 大型黄色视频在线免费观看| 成人亚洲精品av一区二区| 亚洲男人天堂网一区| 亚洲av成人一区二区三| 国产精品 国内视频| 亚洲五月色婷婷综合| 桃红色精品国产亚洲av| 亚洲人成网站在线播放欧美日韩| 亚洲狠狠婷婷综合久久图片| 国产精品爽爽va在线观看网站 | 国产xxxxx性猛交| 国产成人一区二区三区免费视频网站| 女人被躁到高潮嗷嗷叫费观| 后天国语完整版免费观看| 麻豆久久精品国产亚洲av| 久久久国产成人免费| 纯流量卡能插随身wifi吗| 69精品国产乱码久久久| 久久精品亚洲熟妇少妇任你| 亚洲国产精品sss在线观看| 欧美丝袜亚洲另类 | 国产aⅴ精品一区二区三区波| 男人舔女人下体高潮全视频| 两人在一起打扑克的视频| 一级a爱片免费观看的视频| 校园春色视频在线观看| 国产主播在线观看一区二区| e午夜精品久久久久久久| 亚洲国产看品久久| 国内精品久久久久久久电影| 老汉色∧v一级毛片| 一边摸一边抽搐一进一小说| 曰老女人黄片| 亚洲av熟女| 在线十欧美十亚洲十日本专区| 少妇裸体淫交视频免费看高清 | 变态另类丝袜制服| 日日夜夜操网爽| 亚洲精品中文字幕一二三四区| 在线观看www视频免费| 国产97色在线日韩免费| 欧美午夜高清在线| 欧美乱码精品一区二区三区| 久久久久国内视频| 神马国产精品三级电影在线观看 | 欧美中文日本在线观看视频| 日韩欧美三级三区| 成人永久免费在线观看视频| 给我免费播放毛片高清在线观看| 亚洲国产精品sss在线观看| 久久人人爽av亚洲精品天堂| 男女之事视频高清在线观看| 身体一侧抽搐| 欧美日韩亚洲国产一区二区在线观看| 欧美激情极品国产一区二区三区| 色老头精品视频在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲美女黄片视频| 我的亚洲天堂| 满18在线观看网站| 午夜福利高清视频| svipshipincom国产片| 久久久久久国产a免费观看| 97人妻天天添夜夜摸| 99久久国产精品久久久| 国产欧美日韩一区二区三| 精品国产国语对白av| 十八禁人妻一区二区| 久久久国产欧美日韩av| 国产片内射在线| 大陆偷拍与自拍| 久久精品91蜜桃| 久久草成人影院| 变态另类丝袜制服| 777久久人妻少妇嫩草av网站| av网站免费在线观看视频| 精品福利观看| 热99re8久久精品国产| 男女做爰动态图高潮gif福利片 | 亚洲熟妇中文字幕五十中出| 中文字幕精品免费在线观看视频| 后天国语完整版免费观看| 日韩 欧美 亚洲 中文字幕| 日日爽夜夜爽网站| 亚洲国产欧美一区二区综合| 婷婷精品国产亚洲av在线| 最近最新中文字幕大全电影3 | 国产成人影院久久av| 无遮挡黄片免费观看| 怎么达到女性高潮| 夜夜爽天天搞| 精品电影一区二区在线| 正在播放国产对白刺激| 国产亚洲精品久久久久5区| 99久久久亚洲精品蜜臀av| 国产精品久久电影中文字幕| 90打野战视频偷拍视频| 一区二区三区激情视频| 欧美成人免费av一区二区三区| 国产精品二区激情视频| 欧美激情久久久久久爽电影 | 在线观看一区二区三区| 色播在线永久视频| 国产精华一区二区三区| 日韩 欧美 亚洲 中文字幕| 一区二区三区国产精品乱码| 嫁个100分男人电影在线观看| 国产在线观看jvid| 国产成人免费无遮挡视频| 丝袜人妻中文字幕| 搡老岳熟女国产| 精品久久久久久久人妻蜜臀av | 曰老女人黄片| 性少妇av在线| 免费高清视频大片| 亚洲欧美精品综合一区二区三区| 免费不卡黄色视频| 老汉色av国产亚洲站长工具| 黄色成人免费大全| 欧美中文日本在线观看视频| 国产一区二区激情短视频| 国产视频一区二区在线看| 99久久综合精品五月天人人| 午夜福利免费观看在线| 国产99白浆流出| 一卡2卡三卡四卡精品乱码亚洲| 久久精品人人爽人人爽视色| 亚洲精品在线美女| 欧美中文综合在线视频| 国产精品自产拍在线观看55亚洲| 激情视频va一区二区三区| 国产激情久久老熟女|