• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Compact Interlaced Dual Circularly Polarized Sequentially Rotated Dielectric-Resonator Antenna Array

    2022-11-11 10:45:20YazeedQasaymeh
    Computers Materials&Continua 2022年9期

    Yazeed Qasaymeh

    Department of Electrical Engineering,College of Engineering,Majmaah University,AL-Majmaah,11952,Saudi Arabia

    Abstract: In this study, a compact 2×2 interlaced sequentially rotated dual-polarized dielectric-resonator antenna array is proposed for 5.8 GHz applications.The array is composed of a novel unit elements that are made of rectangular dielectric resonator(RDR)coupled to an eye slot for generating the orthogonal modes,and to acquire circular polarization(CP)radiation.For the purpose of miniaturization and achieving dual polarized resonance,the array is fed by two interlaced ports and each port excites two radiating elements.The first port feeds horizontal elements to obtain left hand circular polarization (LHCP).The second port feeds vertical elements to obtain right hand circular polarization (RHCP).A quarter-wave length transformer is employed to reduce the attenuation and consequently increase the array gain performance.The 35×35 mm2(0.676λ0×0.676λ0)gains were 8.4 and 8.2 dBi for port 1 and port 2, respectively, with port isolations of-33.51 dB.The design achieves a voltage standing-wave ratio (VSWR) <-10 dB and an axial ratio (AR) <- 3 dB bandwidth of 2.48% (5.766 to 5.911 GHz)for LHCP at port 1 and a VSWR <-10 dB and AR <-3 dB bandwidth of 2.28%(5.788 to 5.922 GHz)for RHCP at port 2.The findings of the proposed design validate its use for ISM band applications.

    Keywords:Antenna array;compact;dielectric resonator antenna;dual polarized;interlaced;sequential rotation

    1 Introduction

    Dual-circularly polarized (CP)antennas have been investigated recently because of their ability to improve the channel capacity of wireless devices and enhance their spectral efficiency [1].When designing a practical dual-polarized antenna, a wide operating band, high isolation, and low crosspolarization are the major characteristics.Furthermore,antennas with low profiles are highly desired because miniaturization is the leading trend.

    In meanwhile,The sequentially rotated(SR)array geometry first introduced by[2]offers several advantages,such as enhancing the circular-polarization performance,and improving the polarization purity, impedance matching, beam forming, and pattern symmetry across wider bandwidths [3,4].However,with dual-polarization architectures,ports isolation,compactness,and design simplicity are important characteristics that should be considered.

    Few dual-polarized (DP)SR dielectric-resonator antenna (DRA)arrays have been re-ported in the literature.Xie et al.(2016)proposed a 2×2 array that operates at 5.94-6.54 GHz for port 1 and 5.84-6.51 GHz for port 2[5].The 80×80 mm2 array gain was 11.5 dB with ports isolation of 34 dB.Dwivedy et al.(2017)employed a Wilkinson power divider to design a 190×82 mm22×1 array,with 190×82 mm2operating on the 6-6.6-GHz band with 40-dB ports isolation [6].The peak gain was 12.5 dB.Recently, Kowalewski et al.(2020)proposed a multilayer 2×2 array to operate at 28 GHz with a peak gain of 8.49 dBi[7].

    Interlacing the feeding network for an SR array will boost the DP SR array’s performance in various aspects.First, the spacing of the resonating elements can be minimized by interlacing the feeding network [8].In addition, operating with signals of different frequencies is another prime advantage that makes it compatible with multiple-input multiple-output(MIMO)systems[9].

    In view of these considerations,the objectives of this study are twofold.First,a novel resonating element composed of an eye-shaped slot coupling a RDR is proposed to obtain the CP radiation.A miniaturized interlaced SR DP DRA array, operating at the IEEE 802.11 WLAN band with some gain enhancement and port isolation,is the second objective.

    The manuscript is organized as follows: The geometry of the proposed single radiating element and parametric study is presented in Section 2.The interlaced SR-array layout is described in Section 3.The results and discussion are presented in Section 4.Finally,conclusions are drawn in Section 5.

    2 Antenna Geometry

    2.1 Single Element

    A novel resonating element composed of an eye-shaped slot coupling an RDR is proposed in this section.The proposed resonating element is expected to exhibit CP radiation.In addition,the design simplicity and compactness should be considered.Fig.1 depicts an eye slot carved on the bottom plane and fed by a microstrip etched onto the opposite side.The RDR is mounted over the eye slot at the bottom plane and is omitted here to better visualize the slot fundamentals.The eye slot can be modeled using two intersecting circles of radii (r).The circle slot dimensions in Eq.(1), reported by[10,11], were used to estimate the eye-slot resonance frequency.Eq.(1)reveals that the circular-slot antenna can support the different resonance modes that are required for CP radiation.

    wherexnmis themthzero of the Bassel functions andCis the speed of light.aeis the effective radius of the slot andεris the dielectric of the substrate.

    The effective radius of the slot can be calculated by Eq.(2):

    wherehis the substrate height.

    Fig.2 depicts the 3D geometry of the proposed resonator element composed of an RDR coupled to an eye slot on the bottom plane.The RDR shape was selected because its dimensions can be chosen independently.Once the RDR is excited using a slot at the bottom plane,theTEmnmodes are excited.

    The dielectric waveguide model reported in[12,13]was used to estimate the RDR resonant frequency.Eq.(3)was used to estimate the RDR dimensions at the resonance frequency.

    whereεris the dielectric constant,cis the speed of light,k0is the wave number in free space,andkx,ky,andkzrepresent the wave numbers in thex,y,andzdirections inside the DR,respectively.

    Figure 1:Proposed single resonator:(a)Front plane,(b)Bottom plane

    Figure 2:3D geometry of the proposed resonating element

    2.2 Single-Element Parametric Study

    In this section, the relationship between the design sub-elements is clarified to achieve a CPmatched DRA.Fig.3 depicts the prototype single-resonating element that was modeled using the CST Microwave Studio suite simulation software.The substrate was modeled as an RO4003C substrate with a permittivity of 3.38 and a thickness of 0.813 mm.An alumina material with a dielectric constant of 10 was used to model the RDR.The parametric study was carried out on the prototype model for the optimum performance at 5.8 GHz.

    Fig.4 depicts the reflection coefficient of variation in accordance with the circle radii (r)intersected to form the eye slot.The optimum resonance occurs if the radius is 5 mm with-24.58 dB at 5.795 GHz, while keeping the RDR dimensions constant at 6×6×6 mm3unchanged.It can be observed that as the radii increase,the resonant frequency decreases with more reflection-coefficient matching.Fig.5 shows the Smith chart for the optimum resonance.A small loop occurs at the loci that indicate CP radiation.In addition,a good matching of 48.62Ωcan be observed at 5.795 GHz.

    Figure 3:Prototype single-element resonator used for the parametric study:(a)Microstrip on the front plane,(b)RDR mounted over the slot in the bottom plane,(c)Eye slot beneath the RDR

    Figure 4:Reflection coefficients of variations with respect to the circle radii forming the eye slot

    Figure 5:Simulated smith chart at the optimum resonance frequency

    Fig.6 presents the AR variations in accordance to the radii alteration.A good CP purity is achieved at the optimum resonance frequency of 5.795 GHz.In addition,once the frequency increases,the resonant frequency shifts toward the left.

    Figure 6:Effect of varying the slot radii on the AR

    Fig.7 shows the 3D field radiation pattern of the proposed antenna.The gain was approximately 4.1 dBi with a directive radiation pattern.The simulated co-polarized electric field is higher than the cross-polarized electric field for the proposed single radiating element at an optimum resonance frequency of 5.795 GHz by 20 dB.The magnitude of the cross-polarized electric field was-17 dB.

    Figure 7:3D radiation pattern of the proposed resonating element

    Fig.8 depicts the excited modes of the proposed resonating element.At the optimum resonance frequency, two excited orthogonal modes are required for CP radiation at the optimum resonance frequency,namely,and.

    Figure 8:Electric-field distribution for the proposed resonator

    3 Array Topology

    The array size can be minimized by interlacing the radiation elements.Based on this fact,the 2×2 DP SR geometry depicted in Fig.9 is proposed.The power provided by port 1 is divided into two equivalent amounts to feed the horizontal(along the x-axis)resonating elements.Similarly,the power provided by port 2 is fed to the vertical(along the y-axis)resonating elements.Hence,the polarization modes are created individually by ports 1 and 2.A quarter-wavelength transformer is employed to minimize the attenuation and consequently improve the coupled power to the slots at the bottom plane.Once designing an interlaced dual polarized array,the feeding network arms overlapping is a critical issue that should be taken into consideration while keeping a compact array size.

    Fig.9a presents the impedances of the feeding networks, as a single quarter-wavelength transformer is employed.Fig.9b depicts the length of each segment.Fig.9c depicts the angle rotation at the coupling slots.The figure shows that two orthogonal signals can be manipulated at the same frequency.In[14],it was experimentally proven that the optimal element spacing for 2×2 SR arrays was 0.7λ0.Here,for the sake of miniaturization,an element spacing of 22 mm was implemented,approximately 0.425λ0at 5.8 GHz.The analysis and validation provided in[15]prove that if the element spacing is too large,the grating lobes will appear in a specific direction.Ostensibly,once the proper sequentially rotated feed networks are injected,the interlaced RHCP and LHCP sub-arrays will be well-established.In this design,the effect of overlapping the feeding networks to achieve dual-polarization operation is expected to be reduced due to the use of the coupling slots at the bottom plane.These coupling slots will isolate the radiating DRs from the feeding networks at the front plane.

    Figure 9:Proposed array geometry:(a)Line impedances,(b)Lines and substrate lengths,(c)Angle at each eye slot

    The current distribution over the feeding network was studied to ensure that the coupling slots were fed with sufficient power.Figs.10a and 10b depict the current distribution over the feeding network.As can be seen from the figure, a sufficient current will reach each radiating slot.Hence,sufficient power is expected to reach the coupling slots.Moreover,it can be observed that the current rotates counterclockwise.For port 1,the angles lie on the horizontal plane.Meanwhile,for port 2,the angles lie on the vertical plane.Thus, an RHCP is obtained from port 1, and an LHCP is expected from port 2.

    The power allocations over the feeding array are shown in Fig.11.As can be seen from Fig.11a,the power nodes take their places exactly over the vertical coupling slots,once they are fed by port 2.In addition,the power nodes take their places just over the horizontal slot,as can be seen from Fig.10b,if they are fed by port 1.These results will maximize the radiated gain of the array.

    Figure 10:Current distribution over the feed network:(a)Excited from port 1,(b)Excited from port 2

    Figure 11: Power allocation over the feeding network: (a)Power distribution for port 1, (b)Power distribution for port 2

    4 Results and Discussion

    Fig.12 depicts the fabricated 2×2 DP S R array.The array dimensions measures 35×35 mm2.The resonating element dimensions,optimized in Section 2.2,are used to diagram the array.The RDR dimensions were 6×6×6 mm3.The two circles forming the eye-slot radii are 5.5 mm.Fig.12a depicts the dual-feeding topology on the front plane.As the RO4003C substrate was used for fabrication,the line width was 1.898 mm for 50Ωand 0.482 mm for 100Ω.The width of the quarter-wavelength transformer of 70.7Ωis 1.035 mm and its length is 7.9 mm.Fig.12b shows the eye slots in the bottom plane while omitting the RDR.Fig.12c shows the RDRs located above the slots at the bottom plane.

    Fig.13 depicts the simulated and measured reflection coefficients of the proposed array.The simulated and measured results were in good agreement because of the accuracy of setting the simulation and measurement environments.For port 1,the minimal simulated resonance of-26.03 dB occurs at 5.822 GHz within a bandwidth range of 5.769-5.913 GHz.However,the measured bandwidth ranges from 5.766 to 5.911 GHz, with a minimal value of -26.78 dB at 5.816 GHz.For port 2, the bandwidth ranges from 5.788 to 5.922 GHz with a minimal resonance of-26.53 dB at 5.838 GHz for the simulation.Whereas,the minimal measured resonance of-26.28 dB occurs at 5.833 GHz within a bandwidth range of 5.788-5.919 GHz.The port isolation is shown in Fig.14.The isolation at 5.8 GHz was-33.51 dB.

    Figure 12:Fabricated 2×2 SR array:(a)Front plane showing the feeding network,(b)Bottom plane showing the eye slots,(c)Bottom plane showing the drs located over the coupling slots

    Figure 13:Simulated and measured reflection coefficients:(a)At port 1,(b)At port 2

    Figure 14:Simulated and measured|S21|between port 1 and port 2

    The simulated and measured radiated electric fields for ports 1 and 2 at 5.8 GHz are depicted in Figs.15a and 15b,respectively.Again,the simulations and measurements are in good agreement.For port 1,the co-polarized fields are higher than the cross-polarized ones;i.e.,an RHCP was achieved.For port 2,the cross-polarized fields are higher than the co-polarized ones;i.e.,an LHCP was attained.These results confirm the validity of the proposed array for acquiring dual-CP resonance by feeding the resonating elements using two ports and having proper interlaced resonating-element alignment.Figs.16a and 16b depicts the simulates and measured magnetic fields for both ports at 5.8 GHz.The magnetic field results agrees with the ones provided in Fig.15 that dual polarized resonance is achieved.Again, the agreement between the simulated and measured values were fairly good.The pattern difference between the results from both ports was minimal.

    Figure 15:Radiation patterns in the xz plane:(a)Port 1,(b)Port 2

    Figure 16:Radiation patterns in the yz plane:(a)Port 1,(b)Port 2

    Fig.17 depicts the simulated and measured gains and ARs for both ports.The maximum measured gains obtained from port 1 and port 2 were 8.4 and 8.2 dBi, respectively, compared with the simulated ones,which were 8.58 and 8.3 dBi,respectively.The slight difference between the results obtained from the different ports may be attributed to the matching and fabrication.A notable gain enhancement was obtained with a miniaturized array structure.The measured AR<-3 dB bandwidth was 2.48%(5.766 to 5.911 GHz)for port 1%and 2.28%(5.788 to 5.922 GHz)for port 2.In general,the simulated and measured results remained consistent.

    Figure 17:Simulated and measured gains and ARs:(a)Port 1,(b)Port 2

    Table 1: Comparison between the proposed array and other reported DP DRA arrays

    5 Conclusion

    In this study,a DP 2×2 SR DRA array has been presented.A novel resonating element composed of an eye-shaped slot coupling an RDR was proposed to obtain CP radiation.A dual interlaced port SR feeding topology was proposed to acquire dual-polarized array.The agreement between the simulated and measured data was fairly good.Tab.1 presents a comparison between the proposed method and other DP DRA arrays.A significant size reduction was observed,compared with the DP DRA arrays reported in the literature with good gain and ports isolation.For future work,the work can be further extended to enhance the array gain by increasing the number of array elements.Also,the techniques of altering the DR geometry or using copper stacked might be employed for enhancing the bandwidth performance.

    Funding Statement:The author would like to thank the Deanship of Scientific Research at Majmaah University for supporting this work under Project Number R-2022-71.

    Conflicts of Interest:The author declares that he has no conflicts of interest to report regarding the present study.

    国产亚洲5aaaaa淫片| 亚州av有码| 天堂√8在线中文| 99在线人妻在线中文字幕| 久久精品影院6| 舔av片在线| 我要看日韩黄色一级片| 成人午夜高清在线视频| 插阴视频在线观看视频| 国产中年淑女户外野战色| 极品教师在线视频| 中文字幕人妻熟人妻熟丝袜美| 国产又黄又爽又无遮挡在线| 国产欧美日韩精品一区二区| 国产激情偷乱视频一区二区| 国产伦理片在线播放av一区 | 国产熟女欧美一区二区| 三级国产精品欧美在线观看| 成人亚洲欧美一区二区av| 国产精品一区二区在线观看99 | 国产成年人精品一区二区| 国产精品免费一区二区三区在线| 美女国产视频在线观看| av又黄又爽大尺度在线免费看 | 搡女人真爽免费视频火全软件| 国产精品国产三级国产av玫瑰| 国产高清视频在线观看网站| 青春草亚洲视频在线观看| 狠狠狠狠99中文字幕| 一区二区三区免费毛片| 午夜爱爱视频在线播放| 99热这里只有是精品50| 成人毛片a级毛片在线播放| 搡女人真爽免费视频火全软件| 我的女老师完整版在线观看| 国产成年人精品一区二区| 成年女人永久免费观看视频| 美女xxoo啪啪120秒动态图| 91在线精品国自产拍蜜月| 99riav亚洲国产免费| 国产精品美女特级片免费视频播放器| 国产黄色视频一区二区在线观看 | 99久久人妻综合| 亚洲三级黄色毛片| 日本-黄色视频高清免费观看| 免费av毛片视频| 嫩草影院新地址| 99riav亚洲国产免费| av卡一久久| 久久午夜亚洲精品久久| 青春草国产在线视频 | 日本黄大片高清| 国产午夜精品一二区理论片| 伦理电影大哥的女人| 熟妇人妻久久中文字幕3abv| 免费av不卡在线播放| 大香蕉久久网| 久久人人爽人人爽人人片va| 搡女人真爽免费视频火全软件| 蜜臀久久99精品久久宅男| 久久人人精品亚洲av| 欧美日韩精品成人综合77777| 丰满的人妻完整版| 欧美性感艳星| 午夜精品在线福利| 午夜精品在线福利| 岛国毛片在线播放| 一区二区三区高清视频在线| 美女黄网站色视频| 精品一区二区免费观看| 国产国拍精品亚洲av在线观看| 12—13女人毛片做爰片一| 久久精品久久久久久噜噜老黄 | 国产av在哪里看| 九九久久精品国产亚洲av麻豆| 成年女人永久免费观看视频| 最后的刺客免费高清国语| 最近2019中文字幕mv第一页| 色尼玛亚洲综合影院| 国产午夜精品一二区理论片| 欧美三级亚洲精品| 日韩制服骚丝袜av| 一级二级三级毛片免费看| 一本一本综合久久| 国内久久婷婷六月综合欲色啪| 国产伦理片在线播放av一区 | 国产成年人精品一区二区| 99久久无色码亚洲精品果冻| 一级av片app| 一级毛片aaaaaa免费看小| 九九在线视频观看精品| 久久欧美精品欧美久久欧美| 两性午夜刺激爽爽歪歪视频在线观看| 麻豆成人午夜福利视频| 日韩大尺度精品在线看网址| 亚洲国产精品合色在线| 国产高潮美女av| 国产精品,欧美在线| 国产成人a∨麻豆精品| 青春草国产在线视频 | 九九爱精品视频在线观看| 美女被艹到高潮喷水动态| 婷婷亚洲欧美| 亚洲精品乱码久久久久久按摩| 精品久久久久久久久亚洲| 亚洲精品国产成人久久av| 欧美zozozo另类| 男人的好看免费观看在线视频| 久久人人爽人人片av| av黄色大香蕉| 国产成人午夜福利电影在线观看| 欧美区成人在线视频| 国产午夜精品久久久久久一区二区三区| 亚洲精品色激情综合| 69人妻影院| 国产精品麻豆人妻色哟哟久久 | 欧美一区二区亚洲| 毛片女人毛片| 免费黄网站久久成人精品| 亚洲国产精品国产精品| 国产探花极品一区二区| 我的老师免费观看完整版| 哪个播放器可以免费观看大片| 91麻豆精品激情在线观看国产| 久久久久久大精品| 在线观看午夜福利视频| 夜夜夜夜夜久久久久| 精品国内亚洲2022精品成人| 免费观看a级毛片全部| 国产精品久久久久久av不卡| 男女那种视频在线观看| 村上凉子中文字幕在线| 久久国内精品自在自线图片| 国产伦在线观看视频一区| 欧美日韩精品成人综合77777| 欧美xxxx黑人xx丫x性爽| 亚洲av成人精品一区久久| 亚洲激情五月婷婷啪啪| 亚洲高清免费不卡视频| 亚洲欧美成人精品一区二区| 久久久久久久久大av| 国产片特级美女逼逼视频| kizo精华| 久久中文看片网| 国产精品久久久久久精品电影小说 | 韩国av在线不卡| 黄色配什么色好看| 亚洲熟妇中文字幕五十中出| 亚洲精品456在线播放app| 看十八女毛片水多多多| 亚洲无线在线观看| 又爽又黄a免费视频| ponron亚洲| 一级毛片久久久久久久久女| 国产色婷婷99| 久久人人精品亚洲av| 嫩草影院入口| 国产伦精品一区二区三区四那| 黄片无遮挡物在线观看| 欧美成人a在线观看| 亚洲天堂国产精品一区在线| 日本五十路高清| 国产精品免费一区二区三区在线| 国产麻豆成人av免费视频| 啦啦啦观看免费观看视频高清| av福利片在线观看| 青春草亚洲视频在线观看| 精品日产1卡2卡| 看十八女毛片水多多多| 国产精品爽爽va在线观看网站| 欧美另类亚洲清纯唯美| 国产精品一区二区性色av| 深爱激情五月婷婷| 天堂网av新在线| 人人妻人人澡欧美一区二区| 国内精品宾馆在线| 看免费成人av毛片| 97在线视频观看| 午夜精品国产一区二区电影 | 97热精品久久久久久| 国产av麻豆久久久久久久| 91av网一区二区| 久久久久九九精品影院| 国产精品乱码一区二三区的特点| 床上黄色一级片| 麻豆av噜噜一区二区三区| 一级黄色大片毛片| 日本av手机在线免费观看| 乱码一卡2卡4卡精品| 亚洲精品亚洲一区二区| 午夜福利视频1000在线观看| 久久精品国产亚洲av涩爱 | 波多野结衣巨乳人妻| 老师上课跳d突然被开到最大视频| 亚洲在线观看片| 人人妻人人澡人人爽人人夜夜 | 欧美一区二区国产精品久久精品| 久久久久九九精品影院| 欧美另类亚洲清纯唯美| 国产成人一区二区在线| 日韩av不卡免费在线播放| 日韩三级伦理在线观看| 一边摸一边抽搐一进一小说| 女的被弄到高潮叫床怎么办| 国产伦一二天堂av在线观看| 人人妻人人澡欧美一区二区| 激情 狠狠 欧美| 最近的中文字幕免费完整| 国产亚洲av片在线观看秒播厂 | a级毛色黄片| 99视频精品全部免费 在线| 亚洲无线在线观看| 精品久久久噜噜| 亚洲精品日韩av片在线观看| 麻豆成人午夜福利视频| 色综合色国产| 久久久久久久午夜电影| 精品人妻一区二区三区麻豆| 日韩欧美精品v在线| 给我免费播放毛片高清在线观看| 白带黄色成豆腐渣| 偷拍熟女少妇极品色| 直男gayav资源| 国产高潮美女av| 少妇猛男粗大的猛烈进出视频 | 欧美一区二区亚洲| 一级毛片aaaaaa免费看小| avwww免费| 最近的中文字幕免费完整| 三级经典国产精品| 免费观看人在逋| 精品久久久噜噜| 免费观看a级毛片全部| 99久国产av精品国产电影| 伦精品一区二区三区| 我的女老师完整版在线观看| 女人被狂操c到高潮| 精品熟女少妇av免费看| 国产成人a∨麻豆精品| 日韩欧美在线乱码| 丰满乱子伦码专区| 国产亚洲欧美98| 亚洲欧美精品自产自拍| 亚洲五月天丁香| 国产成人午夜福利电影在线观看| 国产成人精品婷婷| 九九爱精品视频在线观看| 久久精品人妻少妇| 一级毛片我不卡| 国产精品99久久久久久久久| 亚洲一级一片aⅴ在线观看| 国产精品一区www在线观看| 中文字幕制服av| 少妇熟女欧美另类| 可以在线观看毛片的网站| 亚洲一区二区三区色噜噜| 天堂√8在线中文| 国产人妻一区二区三区在| 日韩在线高清观看一区二区三区| 国产 一区精品| 免费人成视频x8x8入口观看| 精品日产1卡2卡| 高清午夜精品一区二区三区 | 久久久久九九精品影院| 国产精品麻豆人妻色哟哟久久 | 免费黄网站久久成人精品| 国产精品1区2区在线观看.| 国内揄拍国产精品人妻在线| 免费人成视频x8x8入口观看| 蜜桃久久精品国产亚洲av| 插阴视频在线观看视频| 亚洲欧美日韩无卡精品| 亚洲aⅴ乱码一区二区在线播放| 国产乱人偷精品视频| 黄色日韩在线| 国产高清视频在线观看网站| 成人性生交大片免费视频hd| 丝袜喷水一区| 夜夜看夜夜爽夜夜摸| 国产一区亚洲一区在线观看| 国产精品久久久久久精品电影小说 | 人妻制服诱惑在线中文字幕| 色尼玛亚洲综合影院| 国产精品99久久久久久久久| www日本黄色视频网| 一进一出抽搐gif免费好疼| 天堂√8在线中文| 男人和女人高潮做爰伦理| 中文字幕人妻熟人妻熟丝袜美| 伦精品一区二区三区| 久久精品久久久久久噜噜老黄 | 男女边吃奶边做爰视频| 欧美成人精品欧美一级黄| 两性午夜刺激爽爽歪歪视频在线观看| 一级毛片电影观看 | 一级毛片aaaaaa免费看小| 五月伊人婷婷丁香| 如何舔出高潮| 国产一区二区三区av在线 | 少妇被粗大猛烈的视频| 美女高潮的动态| 久久精品人妻少妇| 一进一出抽搐动态| 91午夜精品亚洲一区二区三区| 一边摸一边抽搐一进一小说| 亚洲在久久综合| 国产成人福利小说| 国产日韩欧美在线精品| 精品午夜福利在线看| 亚洲图色成人| 男人舔女人下体高潮全视频| 亚洲欧美精品综合久久99| 波多野结衣高清无吗| 国产淫片久久久久久久久| 全区人妻精品视频| 一本久久中文字幕| 久久精品91蜜桃| 亚洲高清免费不卡视频| 在线a可以看的网站| 嫩草影院新地址| av在线亚洲专区| 国产一区二区亚洲精品在线观看| 99热精品在线国产| 国产精品三级大全| 亚洲三级黄色毛片| 国产亚洲91精品色在线| 日韩大尺度精品在线看网址| 天堂√8在线中文| 国产色爽女视频免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 成人一区二区视频在线观看| АⅤ资源中文在线天堂| 国产av麻豆久久久久久久| 亚洲国产欧美在线一区| 大又大粗又爽又黄少妇毛片口| 久久中文看片网| 99久久人妻综合| 一区福利在线观看| 亚洲图色成人| 高清日韩中文字幕在线| 观看免费一级毛片| 国产精品人妻久久久影院| 久久精品国产亚洲av天美| 欧美日韩精品成人综合77777| 免费看av在线观看网站| 亚洲国产精品sss在线观看| 麻豆av噜噜一区二区三区| 2022亚洲国产成人精品| 久久99热6这里只有精品| 日韩av不卡免费在线播放| 国产真实乱freesex| 我的老师免费观看完整版| 给我免费播放毛片高清在线观看| 人妻夜夜爽99麻豆av| 18禁裸乳无遮挡免费网站照片| 国产白丝娇喘喷水9色精品| 日日摸夜夜添夜夜爱| 伊人久久精品亚洲午夜| 日日摸夜夜添夜夜爱| 日韩,欧美,国产一区二区三区 | 99久国产av精品| 少妇人妻一区二区三区视频| 日韩一区二区三区影片| 亚洲欧美日韩无卡精品| 亚洲欧美精品综合久久99| av国产免费在线观看| 久久草成人影院| 亚洲精品日韩av片在线观看| 午夜福利成人在线免费观看| 久久精品国产亚洲av香蕉五月| 一卡2卡三卡四卡精品乱码亚洲| 国产一区二区三区av在线 | 久久久久久久久久黄片| 亚洲av成人精品一区久久| 免费不卡的大黄色大毛片视频在线观看 | 一级毛片久久久久久久久女| 亚洲在久久综合| 日日干狠狠操夜夜爽| 久久鲁丝午夜福利片| 久久6这里有精品| 日本熟妇午夜| 美女内射精品一级片tv| 国产熟女欧美一区二区| 国产淫片久久久久久久久| 边亲边吃奶的免费视频| 欧美xxxx性猛交bbbb| 国产三级中文精品| 啦啦啦啦在线视频资源| 久99久视频精品免费| av天堂中文字幕网| 午夜精品在线福利| 日韩人妻高清精品专区| 亚洲成a人片在线一区二区| 自拍偷自拍亚洲精品老妇| 欧美3d第一页| 欧美日韩精品成人综合77777| 欧美另类亚洲清纯唯美| 美女国产视频在线观看| 黄色欧美视频在线观看| 亚洲国产欧美在线一区| 中文字幕av在线有码专区| 亚洲最大成人av| 亚洲成av人片在线播放无| 中文字幕熟女人妻在线| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品久久久久久av不卡| 99视频精品全部免费 在线| 一级毛片我不卡| 日本黄色视频三级网站网址| 成人性生交大片免费视频hd| 亚洲精品久久久久久婷婷小说 | av黄色大香蕉| 日韩三级伦理在线观看| 欧美变态另类bdsm刘玥| 免费看美女性在线毛片视频| 色综合色国产| 一本久久精品| 精品人妻偷拍中文字幕| 日本黄色片子视频| 亚洲美女视频黄频| 又黄又爽又刺激的免费视频.| 亚洲自偷自拍三级| 午夜视频国产福利| 国产黄色小视频在线观看| 精品少妇黑人巨大在线播放 | 蜜桃久久精品国产亚洲av| 菩萨蛮人人尽说江南好唐韦庄 | 中国美白少妇内射xxxbb| 午夜亚洲福利在线播放| 国产精品一区二区在线观看99 | 又粗又硬又长又爽又黄的视频 | 丰满人妻一区二区三区视频av| 成人美女网站在线观看视频| 国产精品日韩av在线免费观看| 中文字幕av在线有码专区| 禁无遮挡网站| 你懂的网址亚洲精品在线观看 | 午夜福利视频1000在线观看| 日韩国内少妇激情av| 亚洲av成人av| 亚洲天堂国产精品一区在线| 国产一区二区三区av在线 | 午夜福利高清视频| 在线观看午夜福利视频| 少妇熟女aⅴ在线视频| 日韩强制内射视频| 级片在线观看| 少妇被粗大猛烈的视频| 婷婷色av中文字幕| 国产乱人视频| 午夜精品在线福利| 成人特级黄色片久久久久久久| 91久久精品国产一区二区成人| 18+在线观看网站| 精品久久久久久久久av| 老师上课跳d突然被开到最大视频| 看非洲黑人一级黄片| 99热这里只有是精品在线观看| 精品人妻偷拍中文字幕| 亚洲最大成人手机在线| 我的老师免费观看完整版| 在线免费观看不下载黄p国产| 中文欧美无线码| 蜜桃久久精品国产亚洲av| 国产成年人精品一区二区| 麻豆一二三区av精品| av在线天堂中文字幕| 色综合色国产| 国产精品嫩草影院av在线观看| 国产三级中文精品| 免费黄网站久久成人精品| 免费不卡的大黄色大毛片视频在线观看 | 老司机影院成人| 久久精品人妻少妇| 午夜福利成人在线免费观看| 爱豆传媒免费全集在线观看| 麻豆一二三区av精品| 69人妻影院| 熟女电影av网| 久久久久性生活片| 26uuu在线亚洲综合色| 国产在线精品亚洲第一网站| 舔av片在线| 国产白丝娇喘喷水9色精品| 国内精品宾馆在线| 村上凉子中文字幕在线| 级片在线观看| 国产视频首页在线观看| 国产精品.久久久| 国产老妇伦熟女老妇高清| 神马国产精品三级电影在线观看| 亚洲国产精品久久男人天堂| 久久精品影院6| 欧美激情国产日韩精品一区| 国产成人影院久久av| 午夜福利高清视频| 成熟少妇高潮喷水视频| 国产亚洲91精品色在线| 久久久久久久久久成人| 18禁裸乳无遮挡免费网站照片| 22中文网久久字幕| 精品99又大又爽又粗少妇毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99热网站在线观看| 亚洲人成网站在线观看播放| 日日摸夜夜添夜夜爱| 不卡一级毛片| 国产精品伦人一区二区| 爱豆传媒免费全集在线观看| 麻豆成人av视频| 日韩高清综合在线| 欧美又色又爽又黄视频| 99热这里只有精品一区| 九色成人免费人妻av| 国产免费男女视频| 国内精品宾馆在线| 国产一区二区三区av在线 | 国产精品精品国产色婷婷| 亚洲色图av天堂| 精品欧美国产一区二区三| 自拍偷自拍亚洲精品老妇| 高清在线视频一区二区三区 | 久久韩国三级中文字幕| 成人毛片a级毛片在线播放| 国产精品蜜桃在线观看 | 99久久人妻综合| 色哟哟·www| 久久鲁丝午夜福利片| 男人和女人高潮做爰伦理| 深夜a级毛片| 男女那种视频在线观看| 国产精品女同一区二区软件| 你懂的网址亚洲精品在线观看 | 国产探花极品一区二区| 给我免费播放毛片高清在线观看| 深夜a级毛片| 久久久久久久亚洲中文字幕| 一个人免费在线观看电影| 久久精品91蜜桃| 国产单亲对白刺激| 国产精品一区二区三区四区久久| 天天一区二区日本电影三级| 精品一区二区三区视频在线| 男人舔女人下体高潮全视频| 美女被艹到高潮喷水动态| 卡戴珊不雅视频在线播放| 午夜福利高清视频| 别揉我奶头 嗯啊视频| 综合色av麻豆| 人体艺术视频欧美日本| 麻豆精品久久久久久蜜桃| 国产私拍福利视频在线观看| 成人永久免费在线观看视频| 亚洲最大成人手机在线| www日本黄色视频网| 99热精品在线国产| 国产精品久久久久久av不卡| 亚洲精品乱码久久久久久按摩| 欧美极品一区二区三区四区| 国产一区二区激情短视频| 三级经典国产精品| 人妻系列 视频| 免费电影在线观看免费观看| 国产伦一二天堂av在线观看| 男人和女人高潮做爰伦理| 看非洲黑人一级黄片| av专区在线播放| 午夜福利在线观看吧| av天堂在线播放| 中文在线观看免费www的网站| 18禁在线播放成人免费| 国产精品一区二区性色av| 精品99又大又爽又粗少妇毛片| 男女边吃奶边做爰视频| 小说图片视频综合网站| 日本黄色片子视频| АⅤ资源中文在线天堂| 久久久久久久久久久免费av| 午夜激情福利司机影院| 久久中文看片网| 成人高潮视频无遮挡免费网站| 麻豆成人午夜福利视频| 国产精品av视频在线免费观看| 欧美日本视频| 久久国内精品自在自线图片| 看非洲黑人一级黄片| 波多野结衣巨乳人妻| 午夜免费激情av| av免费观看日本| 高清日韩中文字幕在线| 搞女人的毛片| 亚洲国产精品成人久久小说 | 麻豆一二三区av精品| 能在线免费看毛片的网站| 深夜a级毛片| 亚洲丝袜综合中文字幕| 一边摸一边抽搐一进一小说| 国产真实伦视频高清在线观看| 免费观看精品视频网站| 午夜福利在线观看吧| 中文欧美无线码| 日韩一区二区视频免费看| 欧美成人一区二区免费高清观看| 欧美日本亚洲视频在线播放| 中文字幕久久专区| 18禁在线无遮挡免费观看视频| 国产精品福利在线免费观看| 日韩视频在线欧美| 国产精品久久久久久av不卡| 久久99精品国语久久久| 免费人成在线观看视频色| 在线观看午夜福利视频| 日本色播在线视频| 精品久久久久久久人妻蜜臀av| 一本久久中文字幕|