• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Compact Bat Algorithm with Deep Learning Model for Biomedical EEG EyeState Classification

    2022-11-11 10:45:14SouadLarabiMarieSainteEatedalAlabdulkreemMohammadAlamgeerMohamedNourAnwerMustafaHilalMesferAlDuhayyimAbdelwahedMotwakelandIshfaqYaseen
    Computers Materials&Continua 2022年9期

    Souad Larabi-Marie-Sainte,Eatedal Alabdulkreem,Mohammad Alamgeer,Mohamed K Nour,Anwer Mustafa Hilal,Mesfer Al Duhayyim,Abdelwahed Motwakel and Ishfaq Yaseen

    1Department of Computer Science,College of Computer and Information Sciences,Prince Sultan University,Saudi Arabia

    2Department of Computer Sciences,College of Computer and Information Sciences,Princess Nourah Bint Abdulrahman University,Riyadh,11671,Saudi Arabia

    3Department of Information Systems,College of Science&Art at Mahayil,King Khalid University,Saudi Arabia

    4Department of Computer Sciences,College of Computing and Information System,Umm Al-Qura University,Saudi Arabia

    5Department of Computer and Self Development,Preparatory Year Deanship,Prince Sattam bin Abdulaziz University,AlKharj,Saudi Arabia

    6Department of Natural and Applied Sciences,College of Community-Aflaj,Prince Sattam bin Abdulaziz University,Saudi Arabia

    Abstract: Electroencephalography (EEG)eye state classification becomes an essential tool to identify the cognitive state of humans.It can be used in several fields such as motor imagery recognition, drug effect detection,emotion categorization, seizure detection, etc.With the latest advances in deep learning (DL)models, it is possible to design an accurate and prompt EEG EyeState classification problem.In this view, this study presents a novel compact bat algorithm with deep learning model for biomedical EEG EyeState classification(CBADL-BEESC)model.The major intention of the CBADL-BEESC technique aims to categorize the presence of EEG EyeState.The CBADL-BEESC model performs feature extraction using the ALexNet model which helps to produce useful feature vectors.In addition, extreme learning machine autoencoder (ELM-AE)model is applied to classify the EEG signals and the parameter tuning of the ELM-AE model is performed using CBA.The experimental result analysis of the CBADL-BEESC model is carried out on benchmark results and the comparative outcome reported the supremacy of the CBADL-BEESC model over the recent methods.

    Keywords: Biomedical signals; EEG; EyeState classification; deep learning;metaheuristics

    1 Introduction

    Brain-Computer Interface (BCI)is the growing field in human-computer interaction (HCI).It permits users to communicate with computers via brain-activity[1].Usually,these kinds of activities are measured by using an electroencephalography(EEG)signal.EEG is a non-invasive physiological method for recording brain electrical activity based on electrodes put on distinct locations on the scalp.classification of Eye condition,the task of identifying the state of eye in case it is opened or closed,is a generic time series problem to identify human cognitive condition[2,3].Classifying human cognitive state is greater for medical concern in daily lives.Significant use-cases to detect eye condition results in the recognition of eye blinking rate,according to its possibility to forecast diseases like Parkinson’s disease or subject suffered from Tourette syndrome[4].The precise recognition of the eye condition with EEG signal is the challenge however indispensable task for the healthcare sector as well as in our daily lives[5,6].Different machine learning(ML)based methods were introduced for classifying the EEG-based signal in several applications.Many of them had presented the conventional method.However,it is necessary for correct and accurate classification models that could effectively categorize the eye conditional with electroencephalogram signal[7].

    Tahmassebi et al.[8]presented an explainable structure with capability of real time forecast.For demonstrating the analytical power of structure, a test case on eye state recognition utilizing EEG signal was utilized for investigating a deep neural network(DNN)technique that generates a forecast and that predictive was interpreting.The authors in [9] developed the temporal order of data from the place.It can generate several CNN network techniques and choose optimum filter and depth.In CNN feature techniques were effectual became concerned issue dependent and subject independent eye state EEG classifiers.Islam et al.[10]presented 3 frameworks of DL technique utilizing ensemble approach to eye state detection(open/close)in EEG directly.The analysis was implemented on freely accessible publicly EEG eye state data set of 14980 instances.The individual efficiency of all classifiers is detected,and also application of detection efficiency of an ensemble network is related to the present prominent manners.

    The authors in[11]established a hybrid classification technique for eye state recognition utilizing EEG signals.This hybrid classifier technique was estimated with other standard ML approaches,8 classifier techniques (Pre-possessed+Hypertuned), and 6 recent approaches for assessing their suitability and exactness.This presented classifier technique introduces an ML based hybrid method to the classification of eye states utilizing EEG signals with higher accuracy.Nkengfack et al.[12]presented classification model containing approaches dependent upon Jacobi polynomial transforms(JPTs).Discrete Legendre transforms (DLT)and discrete Chebychev transform (DChT)primarily remove the beta(β)and gamma(γ)rhythm of EEG signal.Afterward,various measures of difficulty are calculated in the EEG signal and its removed rhythm and executed as input of least-square support vector machine(LS-SVM)technique with RBF kernel.

    In [13], a robust and unique artificial neural network (ANN)based ensemble approach was established in that several ANN was trained separately utilizing distinct parts of trained data.The resultants of all ANNs are joined utilizing other ANN for enhancing the analytical intelligence.The resultant of this ANN has been regarded as vital forecast of user eye state.The presented ensemble technique needs lesser trained time and takes extremely accurate eye state classifier.Shooshtari et al.[14] presented 8 confidence connected property from EEG and eye data that is considered descriptive of determined confidence level from random dot motion (RDM).Since a fact, the presented EEG and eye data property were able of identifying over 9 different levels of confidence.Amongst presented features,the latency of pupil maximal diameter with stimulation performance has introduced that one of the connected to confidence levels.

    This study presents a novel compact bat algorithm with deep learning model for biomedical EEG EyeState classification(CBADL-BEESC)model.The major intention of the CBADL-BEESC technique aims to categorize the presence of EEG EyeState.The CBADL-BEESC model performs feature extraction using the ALexNet model which helps to produce useful feature vectors.In addition,extreme learning machine autoencoder(ELM-AE)model is applied to classify the EEG signals and the parameter tuning of the ELM-AE model is performed using CBA.The experimental result analysis of the CBADL-BEESC model is carried out on benchmark results

    The rest of the paper is organized as follows.Section 2 offers the proposed model, Section 3 validates the results,and Section 4 draws the conclusion.

    2 The Proposed CBADL-BEESC Model

    In this study, a novel CBADL-BEESC technique has been developed for biomedical EEG EyeState classification.The main goal of the CBADL-BEESC technique is to recognize the presence of EEG EyeState.The CBADL-BEESC model involves AlexNet feature extractor,ELM-AE classifier,and CBA parameter optimizer.The parameter tuning of the ELM-AE model is performed using CBA.Fig.1 depicts the overall process of proposed CBADL-BEESC technique.

    Figure 1:Overall process of CBADL-BEESC technique

    2.1 Feature Extraction Using AlexNet Model

    At the initial stage, the AlexNet model can be utilized to generate useful set of feature vectors.AlexNet is a kind of CNN that includes several layers like max pooling, input, dense, output, and convolution layers which are their fundamental structure blocks.It resolves the issue of images classifier in which the input image is one of 1000 distinct classes and the outcome is vector of individual classes[15].Thekthcomponent of resultant vectors are assumed that possibility the input image goes tokthclass.It is noticeable the sum of probability of the total resultant vectors is always equivalent to 1.AlexNet gets an RGB image as input containing the size of 256 * 256 that implies each image from the train and test set required to contain the size of 256*256.When the input image fails from equivalent to the typical image size,afterward it requires that changed to the typical size,for instance,256 * 256 before utilize for training the networks.Once the input image utilized is grayscale image,next it can be changed to RGB with replicate the single channel as to 3 channels RGB images.The infrastructure of AlexNet is reformed in the CNN technique that is utilized to computer vision issues and is significantly greater than CNN.AlexNet is 60 million parameters and 650,000 neurons that get a long period to train.

    2.2 Classification Using ELM-AE Model

    During classification process, the ELM-AE model is applied to classify the EEG EyeState.Autoencoder (AE)is an ANN approach that is usually employed from deep learning (DL).AE is an unsupervised neural network(NN),the resultants of AE are identical to inputs of AE,and AE is a variety of NNs that reproduce the input signals as possible.The ELMAE projected by Kasun et al.is a novel approach of NN that reproduces the input signal and AE.This technique of ELMAE established input, single-hidden, and resultant layers [16].Anjinput layer node,nhidden layer (HL)node,jresultant layer node,and the HL activation function g(x).Due to the resultant of HL representing the input signal,ELMAE was separated as to 3 distinct demonstrations as follows.

    ? j=n: Equal Dimension Representations: it can be implied feature in an input signal space dimensional equivalent to feature space dimensional.

    ? j>n: Compressed Representations: it signifies features in a superior dimension input signal space to lesser dimension feature space.

    ? j<n:Sparse Representations:it demonstrates features in a minimum dimension input signal space to maximum dimension feature space.

    There are 2 variances amongst ELMAE and typical ELM.Primarily, ELM is a supervised NN and the resultant of ELM was labeled,however,ELMAE is an unsupervised NN and the resultant of ELMAE is similar to the input of ELMAE.Secondary, the input weight of ELMAE is orthogonal and the bias of HLs of ELMAE is also orthogonal[17],however,ELM is not so.In order toNvarious instances,xi∈Rn×Rj,(j=1,2,...,N),the resultants of ELMAE technique HL was formulated as(1),and the numerical connection amongst the resultant of HLs and the resultant of resultant layer is written as(2):

    Employing ELMAE for attaining the resultant weightVis also separated as to 3 steps, yet the computation technique of resultant weightVof ELMAE in Step 3 has distinct in the computation method of resultant weightsVof ELM.Fig.2 demonstrates the structure of ELM method.

    For compressed and sparse ELMAE representation,the resultant weight V can be computed by Eqs.(3)and(4).If the amount of trained instances are greater than the amount of HL nodes,

    Once the amount of trained instances are lesser than the count of HL nodes,

    To equivalent dimensional ELMAE representation,resultant weightsVcan be computed as:

    Figure 2:ELM structure

    2.3 Parameter Tuning Using CBA

    For tuning the parameters involved in the ELM-AE model,the CBA is applied to it.The purpose of the compact process is for stimulating the operation of population-based BA method [18] in a form with small stored memory.The actual population of solution of BA is converted to the compact process through creating a dispersed data structure, i.e., perturbation vector(PV).PVdenotes the probabilistic method to population of solution.

    Whereasδandμdenote variables of standard deviation and mean of vectorPV,andtindicates the existing time.Theδandμvalues are organized in the possibility density function(PDF)and are truncated from 1 and 1.The PDF amplitude can be standardized by keeping its region equivalent to one through gaining around satisfactory in well it is the standard distribution with a complete shape.

    A real-value prototype vector was utilized to maintain sampling probability for making arbitrary components of candidate solutions.The vector process is distributed-based evaluated distribution approach (EDA)[19].The probability is that the evaluated distribution will trend, driving novel candidate forwarding to the FF.The candidate solution is probabilistically created from the vector,and the component from the best solution is utilized for making slight variations to the probability in the vector.The candidate solutionχiequivalent to the position of the virtual bat is created as(μi,Δi).

    WhereasP(x)denotes the likelihood distribution ofPVwhich formulate a truncated Gaussian PDF related toμandδ.New candidate solutions are created as biased iteratively to a potential region of optimum solution.Then attain all the components of likelihood vector through learning the preceding generation.Theerfdenotes the error function.The codomain ofCDFis ordered within 0 to 1.TheCDFdetermine the real-value arbitrary parameterxwith provided likelihood distribution,and the gained values are lesser than or equivalent toxi.

    Also,CDF specifies the distribution of multi-variate arbitrary parameters.Therefore,the relations of PDF andCDFare described byPV accomplishes the sampling parameterxithrough creating an arbitrary value within(0,1).This corresponds to obtaining the parameter through the computation of inverse operation ofχjset to inverse(CDF).

    For finding an optimal individual from the procedure of compact approach, a comparison of these parameters is implemented.These parameter agents of bat are 2 sampling individuals that accomplished from PV.The “winner” specifies the vector with fitness score is maximum when compared to others,and the“l(fā)oser”shows that low fitness assessment.The parameters,winner,and loser, are from main function valuation which compared a candidate solution with the preceding optimal global.To updatePV,μandδare taken into account on the basis of subsequent rules.When the mean value ofμwas assumed as 1, the updating rule for the element is,set forwarding to,as follows:

    WhereasNpsignifies virtual population.Regardingδvalue,the updating rule of element as:

    Generally,a probabilistic method for compact BA was applied for representing the bat solution set in which the position or velocity is saved,but a recently created candidate is saved.A variableωis utilized as a weight for controlling the likelihood ofμisampling in PDF among left[-1,μi]i.e.,PL(x),for-l ≤x≤μj,and right[1]i.e.,PR(x),forμi≤x ≤1.The extended edition of PDF for sampling method is employed.The generated new candidate of bat is applied by sampling fromPVfor example ifr <ωit produces coefficientxi∈[1,0]forPL(x),if notxi∈[1,0]forPR(x)

    3 Experimental Validation

    The presented CBADL-BEESC model is simulated using the benchmark database from UCI repository (available at https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State).It comprises 14980 samples with two classes namely eye closed with 6723 samples (class 1)and eye open (class 0)with 8257 samples.

    The confusion matrix offered by the CBADL-BEESC model with five distinct runs is portrayed in Fig.3.The figures demonstrated that the CBADL-BEESC model has resulted in effective EEG EyeState classification on all runs.For instance,with run-1,the CBADL-BEESC model has identified 6626 instances under class 1 and 8148 instances under class 2.In addition,under run-2,the CBADLBEESC model has recognized 6624 instances under class 1 and 8156 instances under class 2.Along with that, run-5, the CBADL-BEESC model has identified 6627 instances under class 1 and 8163 instances under class 2.

    Figure 3:Confusion matrix of CBADL-BEESC technique different runs

    The classifier results obtained by the CBADL-BEESC model under distinct runs are portrayed in Tab.1 and Fig.4.The results demonstrated that the CBADL-BEESC model has resulted in enhanced outcomes under every run.For instance,under run-1,the CBADL-BEESC model has obtainedprecnof 0.9838,recalof 0.9856,Fscoreof 0.9847,andaccuyof 0.9862.Eventually,under run-3,the CBADLBEESC method has gainedprecnof 0.9856,recalof 0.9851,Fscoreof 0.9853, andaccuyof 0.9868.Meanwhile,under run-1,the CBADL-BEESC approach has obtainedprecnof 0.9860,recalof 0.9857,Fscoreof 0.9859,andaccuyof 0.9873.

    Table 1:Result analysis of CBADL-BEESC technique with distinct runs interms of various measures

    Figure 4:Result analysis of CBADL-BEESC technique interms of various measures

    Fig.5 illustrates the ROC analysis of the CBADL-BEESC system on the test dataset.The figure revealed that the CBADL-BEESC technique has gained improved outcomes with the increased ROC of 99.9391.

    Tab.2 provides a brief comparative analysis of the CBADL-BEESC model with recent methods under distinct folds.

    Fig.6 investigates the classifier results analysis of the CBADL-BEESC model with recent models under two-fold.The results indicated that the CBADL-BEESC model has resulted in enhanced outcomes over the other ML models.In addition,the SVM,BGA,and RF models have accomplished lower classification outcomes over the other methods.Moreover, the ET and KNN methods have obtained moderately closer classification outcomes.Furthermore, the proposed CBADL-BEESC model has accomplished superior outcome with the higherprecnof 96.42%,recalof 98.40%,Fscoreof 97.65%,andaccuyof 98.24%.

    Figure 5:ROC analysis of CBADL-BEESC technique

    Table 2: Comparative analysis of CBADL-BEESC technique with recent approaches under distinct folds

    Fig.7 examines the classifier results analysis of the CBADL-BEESC system with recent techniques under five-fold.The results demonstrated that the CBADL-BEESC model has resulted in enhanced outcomes over the other ML technique.Besides, the SVM, BGA, and RF models have accomplished lower classification outcomes over the other algorithms.In addition, the ET and KNN techniques have obtained reasonably closer classification outcomes.Eventually, the projected CBADL-BEESC methodology has accomplished superior outcome with the superiorprecnof 97.97%,recalof 98.52%,Fscoreof 98.34%,andaccuyof 98.63%.

    Figure 6:Comparative analysis of CBADL-BEESC technique under two-fold

    Figure 7:Comparative analysis of CBADL-BEESC technique under five-fold

    Fig.8 defines the classifier results analysis of the CBADL-BEESC technique with recent approaches under ten-fold.The outcomes referred that the CBADL-BEESC model has resulted in maximum outcome over the other ML models.Likewise, the SVM, BGA, and RF models have accomplished lesser classification outcomes over the other methods.Followed by,the ET and KNN approaches have gained moderately closer classification outcomes.At last, the presented CBADLBEESC method has accomplished higher outcome with the higherprecnof 96.55%,recalof 98.80%,Fscoreof 97.64%,andaccuyof 98.50%.

    Finally, a comparative analysis of the CBADL-BEESC model is made with recent methods in Tab.3 and Fig.9.The results indicated that the SVM and BAG models have reached lower average accuracy of 88.43% and 89.68% respectively.In line with, the RF model has resulted in slightly increased average accuracy of 90.48%.Along with that, the KNN and ET models have accomplished moderately improved average accuracy of 93.51%and 92.65%respectively.However,the CBADL-BEESC model has outperformed the other methods with an average accuracy of 98.44%.By looking into above mentioned tables and figures, it is ensured that the CBADL-BEESC model has outperformed other models in terms of different measures.

    Figure 8:Comparative analysis of CBADL-BEESC technique under ten-fold

    Table 3: Average accuracy analysis of CBADL-BEESC technique with existing approaches

    Figure 9:Average accuracy analysis of CBADL-BEESC technique with recent methods

    4 Conclusion

    In this study, a novel CBADL-BEESC technique has been developed for biomedical EEG EyeState classification.The main goal of the CBADL-BEESC technique is to recognize the presence of EEG EyeState.The CBADL-BEESC model involves AlexNet feature extractor,ELM-AE classifier,and CBA parameter optimizer.At the initial stage,the AlexNet model can be utilized to generate useful set of feature vectors.During classification process,the ELM-AE model is applied to classify the EEG EyeState.For tuning the parameters involved in the ELM-AE model, the CBA is applied to it.The parameter tuning of the ELM-AE model is performed using CBA.The experimental result analysis of the CBADL-BEESC model is carried out on benchmark results and the comparative outcome reported the supremacy of the CBADL-BEESC model over the recent methods.Therefore,the CBADL-BEESC model has appeared as an effective tool for EEG EyeState classification.In future,the classification outcome can be boosted by hybrid DL approaches.

    Funding Statement:The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 2/180/43).Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R161),Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR04).The authors would like to acknowledge the support of Prince Sultan University for paying the Article Processing Charges(APC)of this publication.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产视频内射| 特大巨黑吊av在线直播| 久久精品国产99精品国产亚洲性色| 国产真实乱freesex| 成人av在线播放网站| 国产成人精品久久二区二区91| 香蕉丝袜av| 好男人在线观看高清免费视频| 成熟少妇高潮喷水视频| 少妇的丰满在线观看| 亚洲 欧美一区二区三区| 国产精品1区2区在线观看.| 最好的美女福利视频网| 欧美性猛交╳xxx乱大交人| 男男h啪啪无遮挡| 麻豆一二三区av精品| 夜夜看夜夜爽夜夜摸| 精品国产亚洲在线| 99精品欧美一区二区三区四区| 男女视频在线观看网站免费 | 日本撒尿小便嘘嘘汇集6| 国内精品久久久久精免费| 麻豆成人av在线观看| 此物有八面人人有两片| or卡值多少钱| 99久久精品国产亚洲精品| 一级毛片女人18水好多| 久久久久久人人人人人| 国产三级黄色录像| 麻豆国产av国片精品| 高清在线国产一区| 91大片在线观看| 岛国在线观看网站| 无遮挡黄片免费观看| 色综合站精品国产| 99热6这里只有精品| 亚洲欧美日韩高清在线视频| 国产精品久久久久久久电影 | 好男人电影高清在线观看| 女人高潮潮喷娇喘18禁视频| 免费在线观看视频国产中文字幕亚洲| 国产片内射在线| 又黄又爽又免费观看的视频| 久久亚洲精品不卡| 欧美性猛交黑人性爽| 久久久国产成人免费| 成人亚洲精品av一区二区| 91九色精品人成在线观看| 老熟妇仑乱视频hdxx| 深夜精品福利| 日韩大码丰满熟妇| svipshipincom国产片| 欧美性长视频在线观看| 97人妻精品一区二区三区麻豆| 黄色视频,在线免费观看| 日韩av在线大香蕉| 亚洲男人的天堂狠狠| 757午夜福利合集在线观看| 亚洲自拍偷在线| 精品久久久久久久毛片微露脸| 亚洲一卡2卡3卡4卡5卡精品中文| 50天的宝宝边吃奶边哭怎么回事| 三级男女做爰猛烈吃奶摸视频| 午夜a级毛片| av视频在线观看入口| 可以免费在线观看a视频的电影网站| 国产亚洲精品av在线| 男人舔奶头视频| 亚洲国产欧美人成| 国产亚洲欧美98| 国产成人精品久久二区二区免费| 久久人人精品亚洲av| 女生性感内裤真人,穿戴方法视频| 成年人黄色毛片网站| 欧美久久黑人一区二区| 麻豆久久精品国产亚洲av| 欧美黑人欧美精品刺激| 亚洲人成电影免费在线| 黑人操中国人逼视频| 波多野结衣高清无吗| 欧美日韩中文字幕国产精品一区二区三区| 国产视频内射| 两性午夜刺激爽爽歪歪视频在线观看 | 国内揄拍国产精品人妻在线| 精品久久久久久久末码| 黑人欧美特级aaaaaa片| 亚洲av五月六月丁香网| 久久国产乱子伦精品免费另类| 露出奶头的视频| 亚洲欧美激情综合另类| 国产精品乱码一区二三区的特点| 欧美黑人精品巨大| 嫁个100分男人电影在线观看| 午夜久久久久精精品| 国产亚洲精品久久久久久毛片| 久久精品国产亚洲av香蕉五月| 中亚洲国语对白在线视频| 亚洲男人的天堂狠狠| 777久久人妻少妇嫩草av网站| 久久精品夜夜夜夜夜久久蜜豆 | 天堂av国产一区二区熟女人妻 | 这个男人来自地球电影免费观看| 亚洲一区二区三区不卡视频| 国产三级在线视频| 老鸭窝网址在线观看| 亚洲男人的天堂狠狠| 激情在线观看视频在线高清| 精品乱码久久久久久99久播| 后天国语完整版免费观看| 久久久精品大字幕| 三级国产精品欧美在线观看 | 禁无遮挡网站| 国产99久久九九免费精品| 欧美一区二区精品小视频在线| АⅤ资源中文在线天堂| 国产区一区二久久| 两性午夜刺激爽爽歪歪视频在线观看 | 男人的好看免费观看在线视频 | 欧美性猛交╳xxx乱大交人| 夜夜夜夜夜久久久久| 国产精品亚洲美女久久久| www日本黄色视频网| 99国产精品一区二区蜜桃av| 亚洲av成人精品一区久久| 一区二区三区激情视频| 欧美一区二区国产精品久久精品 | 成人特级黄色片久久久久久久| 欧美黄色片欧美黄色片| 免费在线观看亚洲国产| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产精品sss在线观看| 亚洲av第一区精品v没综合| 亚洲国产精品合色在线| 身体一侧抽搐| 久久香蕉国产精品| 中文字幕精品亚洲无线码一区| 中文在线观看免费www的网站 | 老鸭窝网址在线观看| 亚洲天堂国产精品一区在线| 日韩欧美国产一区二区入口| 国产黄色小视频在线观看| 亚洲男人的天堂狠狠| 久久香蕉精品热| 国产成年人精品一区二区| 香蕉国产在线看| 免费观看精品视频网站| 午夜福利在线在线| av视频在线观看入口| 正在播放国产对白刺激| 日韩免费av在线播放| 国内毛片毛片毛片毛片毛片| 人妻久久中文字幕网| 欧美日韩精品网址| 黄色视频不卡| 欧美黄色淫秽网站| 中文亚洲av片在线观看爽| 哪里可以看免费的av片| 国产单亲对白刺激| 欧美三级亚洲精品| 日韩欧美免费精品| 成人18禁高潮啪啪吃奶动态图| 熟女电影av网| 亚洲狠狠婷婷综合久久图片| 国产精品永久免费网站| 日韩中文字幕欧美一区二区| 成在线人永久免费视频| 久久午夜综合久久蜜桃| 国产av在哪里看| 午夜福利免费观看在线| 亚洲人成电影免费在线| 少妇熟女aⅴ在线视频| ponron亚洲| 免费在线观看完整版高清| 精品熟女少妇八av免费久了| 欧美绝顶高潮抽搐喷水| 18禁国产床啪视频网站| 国产97色在线日韩免费| 国产午夜福利久久久久久| 亚洲中文av在线| 久久久久久亚洲精品国产蜜桃av| 麻豆成人av在线观看| 亚洲精品美女久久av网站| 美女 人体艺术 gogo| 国产亚洲精品av在线| 男女下面进入的视频免费午夜| 国产成人影院久久av| 日日摸夜夜添夜夜添小说| 国产亚洲精品第一综合不卡| 欧美乱妇无乱码| 免费一级毛片在线播放高清视频| 久久这里只有精品中国| 精品无人区乱码1区二区| 欧美激情久久久久久爽电影| 日韩精品免费视频一区二区三区| 女警被强在线播放| 手机成人av网站| 五月玫瑰六月丁香| 精品午夜福利视频在线观看一区| 黄色成人免费大全| 黄色视频,在线免费观看| 日本三级黄在线观看| 每晚都被弄得嗷嗷叫到高潮| 啪啪无遮挡十八禁网站| 亚洲av中文字字幕乱码综合| 亚洲成人中文字幕在线播放| 成人av在线播放网站| 亚洲全国av大片| 久久久久久久久免费视频了| 亚洲欧美日韩无卡精品| 好男人在线观看高清免费视频| 女人爽到高潮嗷嗷叫在线视频| 国产av一区二区精品久久| 真人一进一出gif抽搐免费| 搡老熟女国产l中国老女人| 草草在线视频免费看| 欧美日韩福利视频一区二区| 99精品在免费线老司机午夜| 国产成+人综合+亚洲专区| 婷婷亚洲欧美| 啦啦啦免费观看视频1| 黄色视频不卡| 色尼玛亚洲综合影院| 两个人的视频大全免费| 亚洲五月天丁香| 久久久精品大字幕| 久久这里只有精品中国| 最新在线观看一区二区三区| 黄色 视频免费看| 男女之事视频高清在线观看| 国产精品电影一区二区三区| 欧美午夜高清在线| e午夜精品久久久久久久| 国产视频一区二区在线看| 亚洲精品美女久久久久99蜜臀| 午夜亚洲福利在线播放| 久久午夜综合久久蜜桃| 一级a爱片免费观看的视频| 免费看十八禁软件| 国产免费男女视频| 国产真人三级小视频在线观看| 亚洲av第一区精品v没综合| 国产精品久久电影中文字幕| 曰老女人黄片| 视频区欧美日本亚洲| 国产激情久久老熟女| 人妻夜夜爽99麻豆av| 我要搜黄色片| 日日爽夜夜爽网站| 国产精品久久久久久精品电影| 在线观看免费午夜福利视频| 一边摸一边做爽爽视频免费| 国产高清有码在线观看视频 | 中文亚洲av片在线观看爽| 最近视频中文字幕2019在线8| 日本在线视频免费播放| 人人妻人人澡欧美一区二区| 香蕉国产在线看| 精品第一国产精品| 伊人久久大香线蕉亚洲五| 大型av网站在线播放| 99热这里只有是精品50| 久久精品aⅴ一区二区三区四区| 亚洲成人久久爱视频| 欧美绝顶高潮抽搐喷水| 午夜福利免费观看在线| 男女那种视频在线观看| 亚洲国产精品999在线| 亚洲成av人片免费观看| 亚洲国产精品合色在线| 色综合站精品国产| 亚洲欧洲精品一区二区精品久久久| 人人妻人人澡欧美一区二区| 成年人黄色毛片网站| 日韩精品中文字幕看吧| 成在线人永久免费视频| 国产1区2区3区精品| 国产免费av片在线观看野外av| 中文字幕精品亚洲无线码一区| 熟女电影av网| 亚洲精华国产精华精| 亚洲午夜理论影院| 亚洲中文av在线| 日韩欧美国产在线观看| 国产精品av视频在线免费观看| 可以在线观看的亚洲视频| 国产精品免费视频内射| 国产精品日韩av在线免费观看| 久久伊人香网站| 久久人人精品亚洲av| 麻豆成人午夜福利视频| 亚洲电影在线观看av| 日本a在线网址| 高潮久久久久久久久久久不卡| av欧美777| x7x7x7水蜜桃| 两个人的视频大全免费| 一边摸一边抽搐一进一小说| 色老头精品视频在线观看| 琪琪午夜伦伦电影理论片6080| 日韩欧美国产在线观看| 久久婷婷人人爽人人干人人爱| 久久久久久亚洲精品国产蜜桃av| 久久欧美精品欧美久久欧美| 欧美人与性动交α欧美精品济南到| 白带黄色成豆腐渣| 欧美成人性av电影在线观看| 一本大道久久a久久精品| 国产黄a三级三级三级人| 在线播放国产精品三级| 巨乳人妻的诱惑在线观看| 狂野欧美白嫩少妇大欣赏| 久久精品91蜜桃| 老鸭窝网址在线观看| 成人永久免费在线观看视频| 听说在线观看完整版免费高清| 成人18禁高潮啪啪吃奶动态图| 国产不卡一卡二| 亚洲人成伊人成综合网2020| 久久久久久人人人人人| 后天国语完整版免费观看| 一二三四在线观看免费中文在| 99国产综合亚洲精品| 精品国产乱子伦一区二区三区| 国产精品av视频在线免费观看| 性欧美人与动物交配| 日韩免费av在线播放| 国产亚洲av嫩草精品影院| 国产黄片美女视频| 99国产精品一区二区蜜桃av| 欧美精品啪啪一区二区三区| 免费观看人在逋| 久久久久久久久中文| 一二三四社区在线视频社区8| 嫁个100分男人电影在线观看| 老熟妇乱子伦视频在线观看| 午夜亚洲福利在线播放| 特级一级黄色大片| 免费观看人在逋| netflix在线观看网站| 日韩三级视频一区二区三区| 亚洲欧美日韩高清在线视频| 波多野结衣高清作品| 级片在线观看| 久久天堂一区二区三区四区| 国产片内射在线| 国内揄拍国产精品人妻在线| 久久久久国产一级毛片高清牌| 久久欧美精品欧美久久欧美| 精品无人区乱码1区二区| 久久久久久人人人人人| 久99久视频精品免费| 欧美三级亚洲精品| 欧美成狂野欧美在线观看| av福利片在线观看| 久久天躁狠狠躁夜夜2o2o| 老熟妇乱子伦视频在线观看| 男女视频在线观看网站免费 | 18禁裸乳无遮挡免费网站照片| 久久久久国产精品人妻aⅴ院| 亚洲九九香蕉| 国产亚洲精品一区二区www| 欧美日韩中文字幕国产精品一区二区三区| 久久 成人 亚洲| 久久精品影院6| 最近最新中文字幕大全电影3| 99re在线观看精品视频| 日韩有码中文字幕| 国产区一区二久久| 午夜免费成人在线视频| 精品无人区乱码1区二区| 人妻夜夜爽99麻豆av| 久久久久九九精品影院| 一级黄色大片毛片| 精品国产乱码久久久久久男人| 美女扒开内裤让男人捅视频| 99久久久亚洲精品蜜臀av| 欧美日韩亚洲综合一区二区三区_| 精品午夜福利视频在线观看一区| 麻豆久久精品国产亚洲av| 俄罗斯特黄特色一大片| 欧美大码av| www.自偷自拍.com| 久久精品成人免费网站| 久久精品国产综合久久久| av欧美777| 亚洲人成电影免费在线| 婷婷精品国产亚洲av| 变态另类丝袜制服| 美女扒开内裤让男人捅视频| 亚洲 国产 在线| 色播亚洲综合网| 免费一级毛片在线播放高清视频| 国产蜜桃级精品一区二区三区| 麻豆成人午夜福利视频| 国产精品99久久99久久久不卡| 19禁男女啪啪无遮挡网站| 欧美另类亚洲清纯唯美| 久久欧美精品欧美久久欧美| 久久午夜亚洲精品久久| 国产精品国产高清国产av| 女生性感内裤真人,穿戴方法视频| 亚洲avbb在线观看| 午夜福利在线在线| 好男人在线观看高清免费视频| 免费在线观看影片大全网站| 三级毛片av免费| 成人国产一区最新在线观看| 国产日本99.免费观看| 人人妻人人澡欧美一区二区| 欧美一级毛片孕妇| 男女做爰动态图高潮gif福利片| 国产单亲对白刺激| 国产高清激情床上av| 久久伊人香网站| 香蕉av资源在线| 国产av一区在线观看免费| 国产欧美日韩一区二区三| 成年女人毛片免费观看观看9| 搞女人的毛片| 久久精品国产清高在天天线| 夜夜夜夜夜久久久久| 国产亚洲av高清不卡| 啪啪无遮挡十八禁网站| 一区二区三区激情视频| 免费在线观看黄色视频的| 亚洲 国产 在线| 99热6这里只有精品| 又粗又爽又猛毛片免费看| 欧美zozozo另类| 亚洲欧美精品综合一区二区三区| 黄片大片在线免费观看| 成人av一区二区三区在线看| 99久久精品国产亚洲精品| 午夜影院日韩av| 欧美成人免费av一区二区三区| 两个人的视频大全免费| 99久久精品国产亚洲精品| 国产精品久久久av美女十八| 日本在线视频免费播放| 十八禁网站免费在线| 日日夜夜操网爽| 久久精品综合一区二区三区| 国产免费男女视频| 国产精品久久视频播放| 人妻夜夜爽99麻豆av| 黄色片一级片一级黄色片| 亚洲真实伦在线观看| 欧美丝袜亚洲另类 | 亚洲国产精品999在线| 精品日产1卡2卡| 久久国产乱子伦精品免费另类| 中出人妻视频一区二区| 男女做爰动态图高潮gif福利片| 精品久久久久久久久久久久久| 久久精品国产清高在天天线| 亚洲精品av麻豆狂野| 俄罗斯特黄特色一大片| 成人国产综合亚洲| 青草久久国产| 日本免费一区二区三区高清不卡| 国内精品久久久久久久电影| 亚洲成人中文字幕在线播放| 欧美国产日韩亚洲一区| 男女床上黄色一级片免费看| 精品高清国产在线一区| 性色av乱码一区二区三区2| 成人国产综合亚洲| 两性夫妻黄色片| 一边摸一边做爽爽视频免费| 女警被强在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 日本三级黄在线观看| 亚洲18禁久久av| 成人精品一区二区免费| 成人午夜高清在线视频| 亚洲成人免费电影在线观看| 国产成人一区二区三区免费视频网站| 最好的美女福利视频网| 欧美国产日韩亚洲一区| 老汉色av国产亚洲站长工具| 韩国av一区二区三区四区| 搡老妇女老女人老熟妇| 三级男女做爰猛烈吃奶摸视频| 两性夫妻黄色片| 国产精品影院久久| 成熟少妇高潮喷水视频| 国产高清视频在线观看网站| 好看av亚洲va欧美ⅴa在| 制服丝袜大香蕉在线| 老司机在亚洲福利影院| 制服诱惑二区| 久久久国产欧美日韩av| 色尼玛亚洲综合影院| 哪里可以看免费的av片| 欧美 亚洲 国产 日韩一| 亚洲国产精品成人综合色| 亚洲精品一卡2卡三卡4卡5卡| 久久九九热精品免费| 日本五十路高清| 色av中文字幕| 亚洲精品美女久久久久99蜜臀| 午夜日韩欧美国产| 一级片免费观看大全| 国产一级毛片七仙女欲春2| 中文字幕精品亚洲无线码一区| 色噜噜av男人的天堂激情| 一本精品99久久精品77| 九九热线精品视视频播放| 天天一区二区日本电影三级| 久久九九热精品免费| 神马国产精品三级电影在线观看 | 国产精品一区二区三区四区久久| 一级毛片精品| 亚洲国产精品成人综合色| 国产99白浆流出| 在线看三级毛片| www日本黄色视频网| 99热这里只有是精品50| 一个人免费在线观看的高清视频| 欧美精品亚洲一区二区| 久久午夜亚洲精品久久| 亚洲国产精品999在线| 国产高清videossex| 久久久久久久午夜电影| 亚洲欧美日韩东京热| 亚洲成av人片免费观看| 国产三级在线视频| 成人18禁高潮啪啪吃奶动态图| 亚洲av日韩精品久久久久久密| 欧美性长视频在线观看| 亚洲色图 男人天堂 中文字幕| 国产精品 欧美亚洲| 五月伊人婷婷丁香| 美女扒开内裤让男人捅视频| 中文字幕人妻丝袜一区二区| netflix在线观看网站| 欧美性猛交╳xxx乱大交人| 久久久久国产精品人妻aⅴ院| 91av网站免费观看| 黑人操中国人逼视频| 亚洲一码二码三码区别大吗| 99久久久亚洲精品蜜臀av| 国内精品久久久久久久电影| 国产欧美日韩一区二区三| 窝窝影院91人妻| 久久久久久大精品| 色综合婷婷激情| 听说在线观看完整版免费高清| 国产精品99久久99久久久不卡| 日本一二三区视频观看| 久久精品91蜜桃| 别揉我奶头~嗯~啊~动态视频| 男女午夜视频在线观看| 国产成人啪精品午夜网站| 国产亚洲欧美在线一区二区| www日本在线高清视频| 制服诱惑二区| 久久人人精品亚洲av| xxx96com| 91成年电影在线观看| 日本成人三级电影网站| 18禁裸乳无遮挡免费网站照片| 欧美+亚洲+日韩+国产| 久久伊人香网站| 黄色视频不卡| 国语自产精品视频在线第100页| 好男人在线观看高清免费视频| av国产免费在线观看| 久久久久久久久免费视频了| 日本免费a在线| 国产亚洲精品久久久久久毛片| 成年免费大片在线观看| 国产高清激情床上av| 麻豆一二三区av精品| 一个人观看的视频www高清免费观看 | 欧美中文日本在线观看视频| 免费电影在线观看免费观看| 亚洲中文日韩欧美视频| 色精品久久人妻99蜜桃| 18禁观看日本| 精品久久久久久久久久久久久| 欧美一区二区国产精品久久精品 | 舔av片在线| 婷婷精品国产亚洲av| 国内精品久久久久久久电影| 国产精品av视频在线免费观看| 亚洲av成人一区二区三| 在线观看午夜福利视频| 最好的美女福利视频网| svipshipincom国产片| 成在线人永久免费视频| 日韩中文字幕欧美一区二区| 精品久久蜜臀av无| 亚洲熟妇熟女久久| 黄色成人免费大全| 热99re8久久精品国产| 一进一出好大好爽视频| 夜夜躁狠狠躁天天躁| 亚洲国产精品成人综合色| 好男人电影高清在线观看| 中文在线观看免费www的网站 | 国产成人精品久久二区二区免费| 日韩大码丰满熟妇| 美女大奶头视频| 久久 成人 亚洲| 国产成人影院久久av| 97人妻精品一区二区三区麻豆| 久久 成人 亚洲| 十八禁人妻一区二区| 亚洲国产精品999在线| 日日摸夜夜添夜夜添小说| 久久天躁狠狠躁夜夜2o2o| 亚洲乱码一区二区免费版| 精品第一国产精品| 99国产精品一区二区蜜桃av|