• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evolutionary Algorithsm with Machine Learning Based Epileptic Seizure Detection Model

    2022-11-11 10:45:02ManarAhmedHamzaNohaNegmShahaAlOtaibiAmelAlhussanMesferAlDuhayyimFuadAliMohammedAlYarimiMohammedRizwanullahandIshfaqYaseen
    Computers Materials&Continua 2022年9期

    Manar Ahmed Hamza,Noha Negm,Shaha Al-Otaibi,Amel A.Alhussan,Mesfer Al Duhayyim,Fuad Ali Mohammed Al-Yarimi,Mohammed Rizwanullah and Ishfaq Yaseen

    1Department of Computer and Self Development,Preparatory Year Deanship,Prince Sattam bin Abdulaziz University,16278,AlKharj,Saudi Arabia

    2Department of Computer Science,College of Science and Arts,King Khalid University,Mahayil,Asir,62529,Saudi Arabia

    3Department of Information Systems,College of Computer and Information Sciences,Princess Nourah Bint Abdulrahman University,Riyadh,11671,Saudi Arabia

    4Department of Computer Sciences,College of Computer and Information Sciences,Princess Nourah Bint Abdulrahman University,Riyadh,11671,Saudi Arabia

    5Department of Natural and Applied Sciences,College of Community-Aflaj,Prince Sattam bin Abdulaziz University,16278,Saudi Arabia

    Abstract: Machine learning(ML)becomes a familiar topic among decision makers in several domains, particularly healthcare.Effective design of ML models assists to detect and classify the occurrence of diseases using healthcare data.Besides, the parameter tuning of the ML models is also essential to accomplish effective classification results.This article develops a novel red colobuses monkey optimization with kernel extreme learning machine(RCMO-KELM)technique for epileptic seizure detection and classification.The proposed RCMO-KELM technique initially extracts the chaotic, time,and frequency domain features in the actual EEG signals.In addition,the minmax normalization approach is employed for the pre-processing of the EEG signals.Moreover, KELM model is used for the detection and classification of epileptic seizures utilizing EEG signal.Furthermore,the RCMO technique was utilized for the optimal parameter tuning of the KELM technique in such a way that the overall detection outcomes can be considerably enhanced.The experimental result analysis of the RCMO-KELM technique has been examined using benchmark dataset and the results are inspected under several aspects.The comparative result analysis reported the better outcomes of the RCMO-KELM technique over the recent approaches with the accuy of 0.956.

    Keywords:Epileptic seizures;eeg signals;machine learning;kelm;parameter tuning;rcmo algorithm

    1 Introduction

    Machine Learning(ML)method is a subarea of artificial intelligence(AI)technique,where the term represents the capacity of information technology (IT)system to independently find solutions to the problem by recognizing patterns in data bases.The ML method allows IT systems to identify patterns on the basis of current datasets and algorithms and develop satisfactory solution concepts.Thus,in ML method,artificial knowledge is created on an experience basis[1].In ML,mathematical and statistical models are utilized for learning datasets.There are two major schemes i.e., symbolic and sub-symbolic models.During symbolic system, e.g., propositional system where the knowledge content, that is the induced rules and they are explicitly characterized, while sub-symbolic system is artificial neuronal network [2].It works on the principles of human brain, where the knowledge content is implicitly characterized.The key problems of ML for big data are high speed of streaming data,largescale of data,different types of data,incomplete and uncertain data.The three major kinds of ML are reinforcement,supervised,and unsupervised learning.

    Epilepsy is a common brain disorder, represented as recurring seizure [3].Around 50 million people worldwide suffer from epilepsy, and 80% of them are in developing nations.Yearly, over 2 million new cases of epilepsy are detected across the world.Electroencephalogram (EEG)signal is extensively employed for detecting epilepsy by recording the brain’s electrical activities directly [4].Generally, seizure happens unpredictably and infrequently, an automatic diagnosis scheme which is capable of classifying epileptic EEG signal from normal one is extremely useful in making diagnosis.In this method,the recorded EEG signal is the input,whereas the classification of EEG signal is the output.In general,two stages are included in an automatic diagnoses method:(i)the feature extraction from EEG input signal and(ii)the classification of feature extraction for seizure diagnosis[5].Various classification technique has been employed for the automatic diagnosis of seizure.Generally, the experiment result shows that EEG signal contains useful feature for the diagnosis of seizure event and that most automatic seizure diagnosis system is very efficient[6].

    The major problem in the automated diagnosis of epileptic seizures is selecting the distinguishing feature to differentiate among distinct phases(involving ictal,pre-ictal)[7].But,in the earlier studies,initially,time-frequency,several time,frequency,and statistical features are extracted,later,the optimal discriminator feature is chosen manually or utilizing traditional feature selection(FS)method that is a time-consuming process that demands higher computation difficulty because of higher dimension and are computationally intensive and are typically not strong [8].Moreover, the optimal feature in one case/subject mayn’t be regarded as optimal for other ones.Thus,a generalized model which learns the appropriate feature corresponds to all the cases/subjects is important.

    Kaur et al.[9], proposed a secure and smart medical data scheme with advanced security and ML mechanisms for handling big data in healthcare field.The novelty lies in the integration of data security layer and optimum storage utilized for maintaining privacy and security.Distinct methods such as activity monitoring, masking encryption, dynamic data encryption, end point validation,and granular access control were integrated.Abdelaziz et al.[10] presented an approach for HCS based cloud environments with Parallel (PPSO)to enhance the selection of virtual machine (VM).Additionally,a new method for chronic kidney disease(CKD)prediction and detection is presented for measuring the efficiency of these VM models.The predictive method of CKD is performed by two successive methods,that is,logistic regression(LR)and neural network(NN).

    Nilashi et al.[11] a prediction model has been developed for the diagnosis of heart disease with ML method.Then, the presented model is designed by supervised and unsupervised learning models.Particularly,the study is based on principal component analysis(PCA),Self-Organizing Map,Fuzzy support vector machine(FSVM),and two imputation methods for missing value imputation.Moreover,employing the incremental FSVM and PCA to incremental learning of the information for reducing the computational time of disease prediction.

    Dinh et al.[12] estimate the capability of ML methods in diagnosing at-risk patients with laboratory results and find key parameters within the data that contributed to these diseases amongst the patients.With distinct feature sets and time-frames for the laboratory data,various ML methods have been estimated on the classification accuracy.Elhoseny et al.[13]presented an automatic heart disease(HD)diagnosis(AHDD)which incorporates a binary convolutional neural network(CNN)with multiagent feature wrapper(MAFW)method.The agent instructs the genetic algorithm(GA)to implement a global searching on HD feature and adjusts the weight at the time of early classification.

    This article develops a novel red colobuses monkey optimization with kernel extreme learning machine(RCMO-KELM)technique for epileptic seizure detection and classification.The proposed RCMO-KELM technique initially extracts the features from the actual EEG signals and the min-max normalization approach is employed for the pre-processing.In addition,KELM model is used for the detection and classification of epileptic seizures utilizing EEG signals.Also, the RCMO technique was employed to the optimal parameter tuning of KELM model in such a way that the overall detection outcomes can be considerably enhanced.The experimental result analysis of the RCMOKELM technique has been examined using benchmark dataset and the results are inspected under several aspects.

    2 The Proposed Model

    In this article,a novel RCMO-KELM technique has been developed for epileptic seizure detection and classification.The proposed RCMO-KELM technique initially extracts the chaotic, time, and frequency domain features in the actual EEG signal.Besides,the RCMO-KELM technique involves several stages of operations namely feature extraction,min-max normalization based preprocessing,KELM based classification, and RCMO based parameter tuning.Fig.1 demonstrates the overall process of RCMO-KELM technique.

    Figure 1:Overall process of RCMO-KELM technique

    2.1 Feature Extraction

    The proposed RCMO-KELM technique initially extracts the chaotic,time,and frequency domain features from the actual EEG signal.During all the raw EEG signals, there are 178 points.For extracting important data in these EEG signals,31 distinct features are removed in these EEG signals to all the classes.These features are skewness,maximal value,clearance factor,minimal value,sample entropy,average value,shape factor,kurtosis,median,mod,fast Fourier transform(FFT)coefficients(first 15 values),approximate entropy,and Auto-Regressive(AR)coefficients(first 5 values).

    2.2 Pre-processing

    The procedure of normalized to raw input is an enhanced result of creating the data that is suitable to train.This approach rescales the resultant or feature in one range of values to a novel range of values.Most frequently,the feature was being rescaled to lie from the range ofzeroto one or from-l to 1.This rescale was accomplished frequently with utilize of linear interpretation equation as:

    where(ymax-ymin) = 0; if(xmax-xmin) = 0 to a feature, it defines the continuous rate for that feature from the data.When the value of feature was detected with constant value from the data,it supposes that unconcerned as it doesn’t provide some data to NN.When the min-max normalized was implemented, all the features lie from the novel range of values that turn remain similar.The normalized utilizing min-max is the advantage of maintaining every connection from the data exactly.

    2.3 KELM Based Classification

    Information on the ELM utilized by IPEELM technique.The ELM utilizes a Single hidden layer feedforward neural network (SLFN)with learning speed greater than typical feedforward network learning techniques(BP).Because of their simplicity,remarkable performance,and impressive efficiency on generalized,the ELM was executed from a variety of domains namely data classification,computer vision,control and robotics,bioinformatics,and system identification[14].

    The resultant of SLFN containingLamount of hidden nodes are demonstrated in Eq.(2);

    whereaiandbiimplies the learning parameter of hidden nodesβisignifies the weight linking theithhidden to resultant nodes.G(ai,bi,x) refers to the resultant of hidden nodes in terms of inputχ.Usually, the additive hidden node with activation function (AF)hasg(x) :R→R.At time,G(ai,bi,x)was provided as;

    Eq.(4)is expressed as:

    where

    H(a1,...,aL,b1,...,bL,x1,...,xN)

    His named as hidden state resultant matrix of SLFN; thei-thcolumn ofHisjthhidden nodes resultant in terms of inputx1,x2,...,xN.h(x) =G(a1,b1,x),...,g(aL,bL,x) is termed as hidden state feature map.Theithrow ofHsignifies the hidden state feature map interms ofithinputxi:h(xi).It is demonstrated that interpolation ability viewpoint when the AFghas infinitely differentiable from some interval the hidden state parameters are arbitrarily created [15].Fig.2 depicts the framework of KELM.

    Figure 2:KELM structure

    Activation functions (AF):The ELM defines a solution on unified learning structure to SLFN.The AF is also named as Transfer Function (TF)defines the result of node because of a provided input or group of inputs.Specifically,AFs were utilized for restricting and limiting the resultant value to particular finite value range.With respect to this calculation, AF is a vital play.At this point, it is examining the performances of AFs and implements them experimentally.This technique utilizes 4 distinct AFs.All the processors from the parallel calculation environment utilize or choose one of these AFs arbitrarily under the optimized procedure.This AFs utilized by IPE-ELM technique are:

    Sigmoid function:is a mathematical process containing a characteristic “S”-shaped curve or sigmoid curve.During these conditions,sigmoidal function signifies to special case of logistic function,determined as the equation:

    wherenrefers the weighted sum of inputs.Its range is amongst zero and one.It can be simple for understanding and applying however it has main challenge.Primary,it is avanishing gradient problemthat means in specific cases,the gradient is vanishingly small,efficiently preventing the weight from altering its value.Secondary,its resultant is not zero centered.It generates gradient upgrades that get carried away from distinct directions.

    Hyperbolic Tangent function:Its mathematic equation as:

    Its outcome is zero centered as their range was amongst-1 to 1,for instance,-1<o(jì)utput <1.Therefore,the optimization was simpler under this technique practically.It can be sometimes desired onSigmoidfunction.However,it also undergoesvanishing gradient problems.

    Sine function:Although,one of the AFs utilized from SLFN or deep neural network(DNN)are non-periodic,it is also utilized periodic functions likesineandcosine.

    Whether a NN model withsineactivation, the whole solutions are repeating periodically and the system is training to some resultant classes.The NN with one hidden state is estimated some function,provided the AF was improving and is set(with min and max)where Thesinefunction could not improve function and input tosinefunction which has extremely lower and extremely higher are producing the similar outcome.

    Cosine function:is utilized to compare withsinefunction however it could not be a regularly utilized AF.Its outcomes are experimental because of their periodic naturew.r.t.sinefunctions.

    ForNtrained instance(xi,ti) ∈Rd×Rm,whileridenotes theithclass vector coded as{-1,1}m,and thereby ELM usingG(w,b,x)activation function can be arithmetically expressed byHβ=T,

    Now,βis evaluated as: ?β=H?T,whereasH?signifies the Moore Penrose generalized inverse of matrixH,H?=(HTH)-1HTifHTHdenotes non-singular orH?=HT(HHT)-1whenHHTis nonsingular.Usual, the spectral analysis case,N <L.To enhance the stability of ELM,is evaluated as:whereasCrepresents a normalized coefficient.A kernel matrix for ELM is determined by:=HHT,,later the output function of ELM is formulated by[16]:

    In which

    It is notable that the computations of Eqs.(13)and (14)does not need to directly estimate the hidden functionh(x) through kernel conversion that brings several benefits: (1)the oscillation of hidden neuron output matrix of ELM is resolved, also the arbitrariness is a major problem in chemometrics.(2)the amount of hidden nodes does not need to be stated.Thus,the computational time of kernel matrix for KELM would be much lesser when compared to the searching time of hidden node number in ELM,when the amount of trained samples is smaller i.e.,normal situations in spectroscopy-related chemometrics.

    2.4 RCMO Based Parameter Tuning

    At the final stage,the RCMO algorithm is utilized for the optimal parameter tuning of the KELM model in such a way that the overall detection outcomes can be considerably enhanced.The RCMO algorithm is stimulated by the characteristics of red monkeys.The RCMO algorithmic program was simulating the red monkey performance.In order to modeling,these connections,all clusters from the monkey region units needed maneuvering on the search region.While it is referred that earlier,during this case,it can be separated to teams,all the teams of monkeys are consumed one male,and no needed the male was leader,but the stronger monkey could not from the scope of convention vision.Besides,it could not be several connections amongst male Cercopithecus mitis and young ones[17].The young male has to come out fast because of territorial aspects connected with Cercopithecus mitis that best performing,as it enters problems with dominant male in another family.When it is defeated that male,it can be leader from the family and proposal place to live,food supply,and socialized to the young males.

    The place upgrade considering each one of the red monkeys from the set was dependent upon the place of an optimum red monkey of group; as performance is delineating with the subsequent equation:

    where,

    ?PBZ implies the monkey body power(an arbitrary number amongst-5 and 5);

    ?PAZ refers the monkey battle power(an arbitrarily selected number among zero and one);

    ?WleaderZ signifies the leader weight;

    ?WiZ stands for the monkey weight(arbitrary numbers from the range of four and six);

    ?XZ denotes the place of red monkey;

    ?XbestZ indicates the place of leaders.Conversely,randdefines the some number amongst zero and one.

    For updating the place compared with the children of red monkeys, the next formulas are employed as:

    where,

    ?PBchimplies the rate of power of the child body;

    ? PAch has demonstrated the child fighting rate of power;

    ?WchleaderZ defining the weight of the child of leaders

    ?WchiZ signifying the child weight in which every weight is indicated to being arbitrary numbers from the range of four and six;

    ?XchZ denotes the place of children;

    ?XchbestZ indicates the place of leader child’s,and

    ? “rand” refers an arbitrary number from the range of zero and one.Moreover, this place is transformed from every iteration.

    It can be worth declaring that every parameter of RCMO is fixed also to be experimental or based on the issues in nature that are resolved[18].The RCMO was considered as some parameters which generate it simple for executing;the RCMO is also balancing amongst exploitation as well as exploration stages,creating it appropriate for solving several optimized problems.

    3 Experimental Validation

    The performance validation of the RCMO-KELM technique takes place using the Epileptic Seizure Recognition Data Set from the UCI repository[19].The dataset comprises 5 class labels namely eyes open, eyes closed, with tumor region, healthy brain, and epileptic seizure in the dataset.The dataset holds a set of 11500 instances.Tab.1 offers the classification result analysis of the RCMOKELM technique under a distinct number of hidden layers (NHL)and runs.Fig.3 portrays the classification results obtained by the RCMO-KELM technique under run-1 with distinct NHLs.With NHLs of 10, the RCMO-KELM technique has obtainedprecnof 0.9462,recalof 0.9509,accuyof 0.9472, andFscoreof 0.9469.Concurrently, with NHLs of 30, the RCMO-KELM methodology has reachedprecnof 0.9353,recalof 0.9223,accuyof 0.9301,andFscoreof 0.9375.

    Table 1: Result analysis of RCMO-KELM technique with distinct runs

    Table 1:Continued

    Figure 3:Result analysis of RCMO-KELM technique under run-1

    Fig.4 depicts the classification outcomes attained by the RCMO-KELM system under run-2 with several NHLs.With NHLs of 10,the RCMO-KELM approach has obtainedprecnof 0.9592,recalof 0.9508,accuyof 0.9520,andFscoreof 0.9553.Likewise,with NHLs of 30,the RCMO-KELM approach has gainedprecnof 0.9550,recalof 0.9448,accuyof 0.9450,andFscoreof 0.9371.

    Fig.5 portrays the classification results reached by the RCMO-KELM method under run-3 with various NHLs.With NHLs of 10,the RCMO-KELM algorithm has achievedprecnof 0.9680,recalof 0.9547,accuyof 0.9657,andFscoreof 0.9506.Eventually,with NHLs of 30,the RCMO-KELM method has obtainedprecnof 0.9490,recalof 0.9670,accuyof 0.9656,andFscoreof 0.9308.

    Figure 4:Result analysis of RCMO-KELM technique under run-2

    Figure 5:Result analysis of RCMO-KELM technique under run-3

    Fig.6 illustrates the classification results gained by the RCMO-KELM method under run-4 with several NHLs.With NHLs of 10,the RCMO-KELM approach has obtainedprecnof 0.9663,recalof 0.9652,accuyof 0.9552,andFscoreof 0.9488.Finally,with NHLs of 30,the RCMO-KELM approach has reachedprecnof 0.9666,recalof 0.9532,accuyof 0.9554,andFscoreof 0.9434.

    Figure 6:Result analysis of RCMO-KELM technique under run-4

    Tab.2 and Fig.7 investigate the overall average result analysis of the RCMO-KELM technique under distinct runs.The results reported the enhanced outcomes of the RCMO-KELM technique under every run.For sample,with run1,the RCMO-KELM system has attainedprecnof 0.9363,recalof 0.9365,accuyof 0.9373,andFscoreof 0.9456.In addition,with run2,the RCMO-KELM approach has reachedprecnof 0.9519,recalof 0.9543,accuyof 0.9542,andFscoreof 0.9445.Moreover,with run3,the RCMO-KELM system has gainedprecnof 0.9588,recalof 0.9574,accuyof 0.9577, andFscoreof 0.9470.Finally, with run4, the RCMO-KELM methodology has obtainedprecnof 0.9583,recalof 0.9529,accuyof 0.9560,andFscoreof 0.9410.

    Table 2: Average result analysis of RCMO-KELM technique with different measures

    Fig.8 provides the accuracy and loss graph analysis of the RCMO-KELM technique on the test dataset.The results show that the accuracy value tends to increase and loss value tends to decrease with an increase in epoch count.It is also observed that the training loss is low and validation accuracy is high on the test dataset.

    Figure 7:Average analysis of RCMO-KELM technique with different measures

    Figure 8: (Continued)

    Figure 8:Accuracy and loss graph analysis of RCMO-KELM technique

    Finally, an extensive comparative study of the RCMO-KELM technique has been made with recent methods interms ofaccuyin Tab.3 and Fig.9 [20].The results reported that the MADNLSVM,WN-LSVM,ZSN-LSVM,and MNN-LSVM techniques have obtained loweraccuyof 0.767,0.769,0.771,and 0.772 respectively.Followed by,the ZSN-CSVM,WN-CSVM,MADN-CSVM,and MNN-CSVM techniques have reached moderately closeraccuyvalues of 0.823,0.824,0.824,and 0.825 respectively.However,the RCMO-KELM technique has accomplished maximumaccuyof 0.956.From the result analysis,it is ensured that the RCMO-KELM technique outperformed the other techniques on the test dataset applied.

    Table 3:Comparative analysis of RCMO-KELM technique with recent methods in terms of accuracy

    Figure 9:Accuracy analysis of RCMO-KELM technique with recent algorithms

    4 Conclusion

    In this article,a novel RCMO-KELM technique has been developed for epileptic seizure detection and classification.The proposed RCMO-KELM technique initially extracts the chaotic, time, and frequency domain features in the actual EEG signal.Besides,the RCMO-KELM technique involves several stages of operations namely feature extraction,min-max normalization based preprocessing,KELM based classification,and RCMO based parameter tuning.The RCMO technique was utilized for the optimal parameter tuning of the KELM method in such a way that the overall detection outcomes can be considerably enhanced.The experimental result analysis of the RCMO-KELM technique has been examined using benchmark dataset and the results are inspected under several aspects.The comparative result analysis reported the better outcomes of the RCMO-KELM technique over the recent approaches withaccuyof 0.956.In future,hybrid DL models can be included to enhance the overall performance.

    Funding Statement:The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP2/42/43).Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R136),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲av免费高清在线观看| 成人二区视频| 99热网站在线观看| 日本熟妇午夜| 久久精品夜色国产| 男人舔女人下体高潮全视频| 亚洲人成网站高清观看| 男女视频在线观看网站免费| 免费看a级黄色片| 老女人水多毛片| 亚洲高清免费不卡视频| 国产精品国产三级国产av玫瑰| 国产熟女欧美一区二区| a级毛色黄片| 亚洲国产欧美人成| 99热精品在线国产| 男插女下体视频免费在线播放| 在线免费观看的www视频| 国产极品精品免费视频能看的| 在线播放国产精品三级| 成人无遮挡网站| 久久精品国产清高在天天线| 女同久久另类99精品国产91| 久久人妻av系列| 简卡轻食公司| 日韩强制内射视频| 国产真实伦视频高清在线观看| 欧美+日韩+精品| 欧美成人免费av一区二区三区| 欧美成人a在线观看| 国产精品,欧美在线| 老熟妇乱子伦视频在线观看| 成人高潮视频无遮挡免费网站| 可以在线观看毛片的网站| 亚洲国产精品成人久久小说 | 国产av不卡久久| 人体艺术视频欧美日本| 欧美成人免费av一区二区三区| 久久综合国产亚洲精品| 日产精品乱码卡一卡2卡三| 亚洲在线自拍视频| 嫩草影院新地址| 日韩精品青青久久久久久| 老师上课跳d突然被开到最大视频| 狂野欧美白嫩少妇大欣赏| 色噜噜av男人的天堂激情| 日韩制服骚丝袜av| 婷婷色综合大香蕉| 久久中文看片网| 长腿黑丝高跟| а√天堂www在线а√下载| 欧美成人一区二区免费高清观看| 男人和女人高潮做爰伦理| 又爽又黄无遮挡网站| 中文字幕人妻熟人妻熟丝袜美| 婷婷色av中文字幕| 99热全是精品| 美女cb高潮喷水在线观看| av在线播放精品| 久久综合国产亚洲精品| АⅤ资源中文在线天堂| 身体一侧抽搐| 日韩成人伦理影院| 内地一区二区视频在线| 熟女人妻精品中文字幕| 亚洲av免费高清在线观看| 国产亚洲欧美98| 高清在线视频一区二区三区 | 男人和女人高潮做爰伦理| 午夜福利在线观看吧| 亚洲va在线va天堂va国产| 毛片女人毛片| 男插女下体视频免费在线播放| 性色avwww在线观看| 91在线精品国自产拍蜜月| 综合色丁香网| 亚洲最大成人av| 国产国拍精品亚洲av在线观看| 亚洲欧美精品专区久久| 熟妇人妻久久中文字幕3abv| 极品教师在线视频| 成熟少妇高潮喷水视频| 青春草国产在线视频 | 给我免费播放毛片高清在线观看| 国产精品女同一区二区软件| 欧美精品国产亚洲| 亚洲自拍偷在线| 在线观看免费视频日本深夜| 中文资源天堂在线| 成人综合一区亚洲| 久久草成人影院| 亚洲最大成人手机在线| 最近中文字幕高清免费大全6| 最新中文字幕久久久久| 亚洲av中文av极速乱| 欧美最新免费一区二区三区| a级一级毛片免费在线观看| 简卡轻食公司| 卡戴珊不雅视频在线播放| 男女边吃奶边做爰视频| 欧美又色又爽又黄视频| 永久网站在线| 人体艺术视频欧美日本| 中文亚洲av片在线观看爽| kizo精华| kizo精华| 国产日韩欧美在线精品| 免费看av在线观看网站| 一本一本综合久久| 女人十人毛片免费观看3o分钟| 天堂√8在线中文| 草草在线视频免费看| 日日啪夜夜撸| 亚洲国产精品合色在线| 精品国内亚洲2022精品成人| 成人鲁丝片一二三区免费| 熟女人妻精品中文字幕| 午夜老司机福利剧场| 亚洲内射少妇av| 日本与韩国留学比较| 国产一级毛片七仙女欲春2| 成人三级黄色视频| 永久网站在线| 亚洲一区二区三区色噜噜| 在线观看免费视频日本深夜| 色综合色国产| 亚洲,欧美,日韩| 中文字幕av在线有码专区| 精品久久久久久久久久免费视频| 国产91av在线免费观看| 91精品国产九色| 蜜桃亚洲精品一区二区三区| av女优亚洲男人天堂| 最近2019中文字幕mv第一页| 三级毛片av免费| 国产久久久一区二区三区| 久久人妻av系列| 青春草视频在线免费观看| 99热这里只有精品一区| 少妇熟女欧美另类| 一进一出抽搐动态| 亚洲欧美日韩高清专用| av视频在线观看入口| 听说在线观看完整版免费高清| 久久人人爽人人爽人人片va| 免费电影在线观看免费观看| 男人舔女人下体高潮全视频| 国产真实伦视频高清在线观看| 2021天堂中文幕一二区在线观| 国产一级毛片七仙女欲春2| 女同久久另类99精品国产91| 亚洲色图av天堂| kizo精华| 精品国内亚洲2022精品成人| 亚洲在线自拍视频| 日本在线视频免费播放| 蜜桃亚洲精品一区二区三区| 日韩一区二区三区影片| 久久精品夜色国产| 欧美xxxx性猛交bbbb| 亚洲国产色片| 美女内射精品一级片tv| 国产高清有码在线观看视频| 一级毛片久久久久久久久女| 97在线视频观看| 麻豆国产97在线/欧美| 亚洲国产欧美在线一区| 美女国产视频在线观看| 美女国产视频在线观看| 高清日韩中文字幕在线| 最新中文字幕久久久久| 丰满的人妻完整版| 免费av毛片视频| 亚洲自偷自拍三级| 久久精品影院6| 国产亚洲91精品色在线| 精品久久久久久久久av| 国产av不卡久久| 亚洲国产欧美在线一区| 亚洲精品粉嫩美女一区| 欧美性猛交黑人性爽| 男女边吃奶边做爰视频| 综合色av麻豆| 欧美日韩乱码在线| 一区二区三区四区激情视频 | 久99久视频精品免费| 国产人妻一区二区三区在| 三级毛片av免费| 三级毛片av免费| 青春草国产在线视频 | 最近最新中文字幕大全电影3| 色尼玛亚洲综合影院| 国产又黄又爽又无遮挡在线| 黄色欧美视频在线观看| 日韩一区二区视频免费看| 亚洲三级黄色毛片| 日韩在线高清观看一区二区三区| 欧美变态另类bdsm刘玥| 欧美日本视频| 色5月婷婷丁香| 看免费成人av毛片| h日本视频在线播放| 女同久久另类99精品国产91| 国产极品精品免费视频能看的| 欧美一区二区精品小视频在线| 日韩人妻高清精品专区| 蜜臀久久99精品久久宅男| 日本色播在线视频| 久久精品国产亚洲av香蕉五月| 一区福利在线观看| 99久久中文字幕三级久久日本| 丰满人妻一区二区三区视频av| 男女边吃奶边做爰视频| 青春草亚洲视频在线观看| 亚洲七黄色美女视频| 最后的刺客免费高清国语| 亚洲av免费高清在线观看| 最近的中文字幕免费完整| 国产精品蜜桃在线观看 | 精品久久久噜噜| 午夜视频国产福利| 日韩国内少妇激情av| 人人妻人人澡人人爽人人夜夜 | 亚洲欧美日韩无卡精品| 国产精品av视频在线免费观看| 国产大屁股一区二区在线视频| 青青草视频在线视频观看| 国产精品久久久久久av不卡| 99久国产av精品国产电影| 男人和女人高潮做爰伦理| 99热6这里只有精品| 国产精品久久久久久久久免| 性欧美人与动物交配| 久久精品国产亚洲av天美| 联通29元200g的流量卡| 亚洲无线观看免费| 变态另类成人亚洲欧美熟女| 一区二区三区高清视频在线| 午夜福利在线在线| 欧美日韩精品成人综合77777| 精品一区二区免费观看| 男女边吃奶边做爰视频| 狠狠狠狠99中文字幕| 午夜免费激情av| 亚洲人与动物交配视频| 欧美高清性xxxxhd video| 啦啦啦观看免费观看视频高清| 国产伦在线观看视频一区| 国语自产精品视频在线第100页| 国产一级毛片七仙女欲春2| 波多野结衣高清无吗| 少妇丰满av| 亚洲内射少妇av| 国产高清有码在线观看视频| 日本一二三区视频观看| 少妇人妻精品综合一区二区 | 亚洲欧美日韩高清在线视频| 91精品一卡2卡3卡4卡| 岛国毛片在线播放| 99久久久亚洲精品蜜臀av| 亚洲欧美日韩无卡精品| 国产精品免费一区二区三区在线| 日韩强制内射视频| videossex国产| 久久精品夜色国产| 亚洲第一电影网av| 小蜜桃在线观看免费完整版高清| 免费av观看视频| 波野结衣二区三区在线| 日韩人妻高清精品专区| 3wmmmm亚洲av在线观看| 亚洲精品粉嫩美女一区| 欧美在线一区亚洲| 亚洲av免费高清在线观看| 极品教师在线视频| 欧美最黄视频在线播放免费| www.av在线官网国产| 日韩欧美 国产精品| 男女下面进入的视频免费午夜| 国产成人精品婷婷| 91久久精品国产一区二区三区| 69av精品久久久久久| 国产精品蜜桃在线观看 | 日本熟妇午夜| 国产爱豆传媒在线观看| 久久亚洲精品不卡| 亚洲欧洲日产国产| 久久韩国三级中文字幕| 国产亚洲欧美98| 欧美最黄视频在线播放免费| 日韩,欧美,国产一区二区三区 | 国产白丝娇喘喷水9色精品| 波多野结衣高清无吗| 亚洲一级一片aⅴ在线观看| 国产黄色小视频在线观看| 国产一级毛片七仙女欲春2| 免费av观看视频| 亚洲人成网站在线播放欧美日韩| 欧美日本亚洲视频在线播放| 亚洲国产欧美在线一区| 一个人免费在线观看电影| 久久九九热精品免费| 免费黄网站久久成人精品| 看黄色毛片网站| 插逼视频在线观看| 久久99精品国语久久久| 亚洲熟妇中文字幕五十中出| 国产成人福利小说| 免费看美女性在线毛片视频| av女优亚洲男人天堂| 乱码一卡2卡4卡精品| 国产精品99久久久久久久久| 久久久久久九九精品二区国产| 久久精品国产清高在天天线| 日本av手机在线免费观看| 乱系列少妇在线播放| 久久久a久久爽久久v久久| 成年版毛片免费区| 91av网一区二区| 国产视频首页在线观看| 久久九九热精品免费| 在线播放国产精品三级| 亚洲最大成人中文| 国产乱人视频| 亚洲熟妇中文字幕五十中出| 禁无遮挡网站| 国产精品久久电影中文字幕| 欧美+日韩+精品| 在线观看av片永久免费下载| 长腿黑丝高跟| 精品欧美国产一区二区三| 国产综合懂色| 99视频精品全部免费 在线| 热99在线观看视频| 亚洲av熟女| 观看免费一级毛片| 免费观看在线日韩| 26uuu在线亚洲综合色| 校园人妻丝袜中文字幕| 热99re8久久精品国产| 真实男女啪啪啪动态图| 欧美日韩综合久久久久久| 亚洲欧洲国产日韩| 免费看美女性在线毛片视频| 亚洲欧美中文字幕日韩二区| 又黄又爽又刺激的免费视频.| 欧美最新免费一区二区三区| 亚洲自拍偷在线| 乱人视频在线观看| 精品无人区乱码1区二区| 久久这里有精品视频免费| 亚洲欧美精品自产自拍| 91麻豆精品激情在线观看国产| 免费人成视频x8x8入口观看| 国产日本99.免费观看| 久久久欧美国产精品| 精品人妻偷拍中文字幕| 亚洲国产欧美人成| 一进一出抽搐动态| 可以在线观看毛片的网站| 12—13女人毛片做爰片一| 国产男人的电影天堂91| 好男人在线观看高清免费视频| 日韩欧美国产在线观看| 精品不卡国产一区二区三区| 丰满的人妻完整版| 一边摸一边抽搐一进一小说| 亚洲第一电影网av| av福利片在线观看| 91麻豆精品激情在线观看国产| 成人午夜高清在线视频| 女人被狂操c到高潮| 91狼人影院| av天堂在线播放| 亚洲精品国产成人久久av| 三级毛片av免费| 亚洲成av人片在线播放无| av在线观看视频网站免费| 青青草视频在线视频观看| 一级av片app| 成人高潮视频无遮挡免费网站| 国产不卡一卡二| 男女视频在线观看网站免费| 亚洲精品乱码久久久v下载方式| 国产黄片美女视频| 国产成人91sexporn| 插阴视频在线观看视频| 国产大屁股一区二区在线视频| 亚洲国产高清在线一区二区三| 国产精品人妻久久久影院| 亚洲国产色片| 赤兔流量卡办理| 99国产极品粉嫩在线观看| 美女xxoo啪啪120秒动态图| 91精品国产九色| 伦理电影大哥的女人| 精品国产三级普通话版| 亚洲精品久久国产高清桃花| 午夜久久久久精精品| 国内精品美女久久久久久| 99在线人妻在线中文字幕| 热99re8久久精品国产| 尾随美女入室| 3wmmmm亚洲av在线观看| 嫩草影院入口| 国产高清三级在线| 国产精品综合久久久久久久免费| 欧美性感艳星| 蜜桃亚洲精品一区二区三区| 网址你懂的国产日韩在线| 高清日韩中文字幕在线| 好男人在线观看高清免费视频| 成人欧美大片| 国产亚洲5aaaaa淫片| 国产黄片视频在线免费观看| 日本在线视频免费播放| 精品熟女少妇av免费看| АⅤ资源中文在线天堂| 久久久久性生活片| 黄色配什么色好看| 亚洲人成网站在线播放欧美日韩| 亚洲综合色惰| 麻豆国产av国片精品| 波多野结衣巨乳人妻| 国产av在哪里看| 欧美zozozo另类| 最近最新中文字幕大全电影3| 欧美精品一区二区大全| av在线天堂中文字幕| 国产亚洲av嫩草精品影院| 精品久久久久久久人妻蜜臀av| 亚洲欧美精品专区久久| 天天躁日日操中文字幕| 亚洲在线自拍视频| 国产精品久久久久久亚洲av鲁大| 国产黄片视频在线免费观看| 高清在线视频一区二区三区 | 亚洲成a人片在线一区二区| 人妻制服诱惑在线中文字幕| 日日撸夜夜添| 校园人妻丝袜中文字幕| 极品教师在线视频| 成人特级黄色片久久久久久久| 男女边吃奶边做爰视频| 国产单亲对白刺激| 亚洲人成网站在线播放欧美日韩| 极品教师在线视频| 在线观看免费视频日本深夜| 精品久久久久久久久av| 嘟嘟电影网在线观看| 欧美三级亚洲精品| 床上黄色一级片| 一级av片app| 亚洲欧美精品自产自拍| 国产精品女同一区二区软件| 中文精品一卡2卡3卡4更新| 九色成人免费人妻av| 国产精品伦人一区二区| 熟女电影av网| 欧美性猛交╳xxx乱大交人| 精品久久久久久久久久久久久| 一区二区三区高清视频在线| 日日干狠狠操夜夜爽| 亚洲在线观看片| 国产精品福利在线免费观看| 亚洲va在线va天堂va国产| 日韩成人伦理影院| 99久久精品热视频| 午夜激情福利司机影院| 一个人看的www免费观看视频| 一级毛片电影观看 | 久久久久久大精品| 亚洲美女搞黄在线观看| 日韩av不卡免费在线播放| 夜夜爽天天搞| 午夜视频国产福利| 日韩欧美一区二区三区在线观看| 国产中年淑女户外野战色| 在线观看66精品国产| 久久久精品94久久精品| 欧美极品一区二区三区四区| ponron亚洲| 色播亚洲综合网| 国产在线男女| 久久久久久伊人网av| 色视频www国产| 永久网站在线| av视频在线观看入口| av专区在线播放| 日韩制服骚丝袜av| a级毛色黄片| 国产极品精品免费视频能看的| 天美传媒精品一区二区| 免费观看精品视频网站| 国内揄拍国产精品人妻在线| 三级毛片av免费| 国产亚洲精品久久久久久毛片| 免费看美女性在线毛片视频| 亚洲欧美日韩高清在线视频| 色噜噜av男人的天堂激情| 国产黄色视频一区二区在线观看 | 91狼人影院| 亚洲国产欧美在线一区| 精品99又大又爽又粗少妇毛片| 亚洲精品亚洲一区二区| 午夜免费激情av| 成人高潮视频无遮挡免费网站| 亚洲国产欧美人成| 高清在线视频一区二区三区 | 青春草视频在线免费观看| 精品国产三级普通话版| 久久人人爽人人片av| 久久精品91蜜桃| 女人十人毛片免费观看3o分钟| 赤兔流量卡办理| 亚洲18禁久久av| 高清毛片免费看| 91av网一区二区| 一级黄片播放器| 1000部很黄的大片| 97热精品久久久久久| 天天一区二区日本电影三级| 一级毛片电影观看 | 男女视频在线观看网站免费| 久久亚洲国产成人精品v| 又粗又硬又长又爽又黄的视频 | 国产成人freesex在线| 91久久精品国产一区二区三区| 亚洲在线自拍视频| 国产精品久久久久久精品电影| 91精品国产九色| 2022亚洲国产成人精品| 1024手机看黄色片| 精品不卡国产一区二区三区| 丝袜美腿在线中文| 国产精品99久久久久久久久| 欧美性猛交黑人性爽| 久久久精品大字幕| 日日撸夜夜添| 国产精品久久电影中文字幕| 91aial.com中文字幕在线观看| 热99re8久久精品国产| 三级国产精品欧美在线观看| 一边摸一边抽搐一进一小说| 成年版毛片免费区| 一区二区三区免费毛片| 美女脱内裤让男人舔精品视频 | 麻豆精品久久久久久蜜桃| 少妇熟女aⅴ在线视频| 精品一区二区三区视频在线| 小说图片视频综合网站| 亚洲欧美清纯卡通| av福利片在线观看| av视频在线观看入口| 亚洲性久久影院| 国产一区二区三区在线臀色熟女| 99热精品在线国产| 黑人高潮一二区| 一本精品99久久精品77| 搡女人真爽免费视频火全软件| 一级av片app| 亚洲真实伦在线观看| 热99re8久久精品国产| 国产精品综合久久久久久久免费| 久久九九热精品免费| 国产熟女欧美一区二区| 好男人视频免费观看在线| 少妇高潮的动态图| av视频在线观看入口| 人妻制服诱惑在线中文字幕| 一级毛片久久久久久久久女| 在线播放无遮挡| 亚洲最大成人av| 国产精品人妻久久久久久| 国产一区二区亚洲精品在线观看| 亚洲在线自拍视频| 爱豆传媒免费全集在线观看| 国产综合懂色| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 最好的美女福利视频网| 人妻系列 视频| 蜜臀久久99精品久久宅男| 中文字幕精品亚洲无线码一区| 大型黄色视频在线免费观看| 午夜爱爱视频在线播放| 男的添女的下面高潮视频| 99久国产av精品国产电影| 身体一侧抽搐| 精品一区二区三区视频在线| 91久久精品电影网| 国产中年淑女户外野战色| 国产精品福利在线免费观看| 非洲黑人性xxxx精品又粗又长| 国产三级中文精品| 国产69精品久久久久777片| 黄片无遮挡物在线观看| 性欧美人与动物交配| 亚洲欧美日韩无卡精品| 晚上一个人看的免费电影| 美女大奶头视频| 精品日产1卡2卡| 亚洲美女视频黄频| 中文在线观看免费www的网站| 丰满人妻一区二区三区视频av| 国产精品麻豆人妻色哟哟久久 | 久久精品国产亚洲av天美| 久久99热这里只有精品18| 中文字幕人妻熟人妻熟丝袜美| 久久中文看片网| 日本一本二区三区精品| 天堂√8在线中文| 亚洲人成网站在线观看播放| 乱人视频在线观看| 一个人看视频在线观看www免费| 亚洲av熟女|