• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Fuzzy Controlled Antenna Network Proposal for Small Satellite Applications

    2022-11-11 10:44:02ChafaaHamrouni
    Computers Materials&Continua 2022年9期

    Chafaa Hamrouni

    Taif University-Khurma Univ.,College-Department of Computer Sciences,Khurma,2935,Kingdom of Saudi Arabia

    Abstract: This research contributes to small satellite system development based on electromagnetic modeling and an integrated meta-materials antenna networks design for multimedia transmission contents.It includes an adaptive nonsingular mode tracking control design for small satellites systems using fuzzy waveless antenna networks.By analyzing and modeling based on electromagnetic methods, propagation properties of guided waves from metallic structures with simple or complex forms charge partially or entirely by anisotropic materials such as metamaterials.We propose a system control rule to omit uncertainties,including the inevitable approximation errors resulting from the finite number of fuzzy signal power value basis functions in antenna networks.Moreover, both the stability and the tracking performance of the closed-loop robotic system are experimentally validated.The research lies within the scope of the improvement of speed, effectiveness, and precision of numerical methods applied to electro-magnetic modeling with complex structures,essentially rectangular metallic waveguides filled with isotropic or anisotropic metamaterials.Three axes of our research are presented: waveguides, filters, and antennas.The proposed controller does not require prior knowledge about the dynamics of the fuzzy system controller for antenna networks or the offline learning phase.In addition, this work contributes to solving the problem of non-visibility stations to ensure data transmission in wireless networks.The proposed solution maximizes inter-connection by using a fuzzy controlled antenna network, and the novelty guarantees nonlimited interconnection in wireless networks compared to traditional methods.

    Keywords:Metamaterials;ferrites;complex modes;discontinuities;antennas;ultra-wide band;MATLAB;advanced design system

    1 Introduction

    Human reasoning can be based on inaccurate or incomplete data,while computers only process exact data.The theory of logic was introduced by Zadeh in 1963 to solve part of the problem and touch the fuzzy approaches of the meadow [1].This section deals with concepts related to the proposed fuzzy control system, whose objective is to integrate it on board the picosatellite [2].Fuzzy logic is born from the observation that most phenomena cannot be represented by Boolean variables that only use “0” or “1” to describe things.To answer this type of question, such as “Can a power of 0.6 W be considered low or high?”and “Is not she weak or really high but just average?”[3], fuzzy logic considers the belonging notion of an object to a set, replacing the Boolean function with a function with continuous values between 0 and 1.The development of multimedia system technology is mainly based on the innovation of hardware and software systems, so system interconnection should be carefully studied.The challenges for the development of multimedia technology mainly rely on the development of communication networks, especially wireless networks [4].We contribute to developing antenna technologies and improving their efficiency.Our contribution in this context is to propose a new fuzzy controlled antenna network proposal for small satellite applications.This idea is added to maximize wireless interconnection duration,as well as stations for multimedia transmission contents.The work aims to find a solution for antennas related to multimedia center interconnection with targets.Traditional centers are characterized by a limited visibility angle that affects the amount of multimedia transmission data.Then,we use a simulation tool based on MATLAB script functional programming[5],where MATLAB is one of the most widely used high-level programming languages for scientific and engineering computations.

    2 Elements of the Fuzzy Logic Rule

    The interest of fuzzy logic lies in its ability to simplify the realization and use of computer applications.It allows the replacement of mathematical models by models based on verbal descriptions[6,7].Regarding the control of any process, fuzzy logic allows a founding approach compared to the conventional automatic.In automatic, in general, we try to model the process through a certain number of differential equations.It is very user-friendly and does not need practically formal programming knowledge.We learn MATLAB programming aspects and commands from scientists and engineers with formal programming training and spend significant time programming to solve our real-world problems.The MATLAB seminar covers the functional and script programming of the MATLAB language.We use specific expectations to recognize MATLAB commands,scripts,and functions.Then, we create and run a MATLAB function.Next, we read, recognize, and describe MATLAB syntax.Finally, we realize decisions, loops, and matrix operators.We evaluate scopes among multiple files and multiple functions within a file.However, this is difficult for modeling,and sometimes it is impossible to measure the complexity of processes.In a radically different way,a controller does not focus on how to describe the process but on how to control it,just as a human expert follows the rules and introduces some inaccuracies and/or uncertainties[8].The main concepts of fuzzy control are essentially divided into two main parts:1)the sets,fuzzy variables,and associated operators,and 2)the decision-making from a base“If-Then”rule.Thus,different steps of achieving a fuzzy command can be represented in Fig.1.

    Theoretically, an element either does or does not belong to a set.The notion of the ensemble is at the origin of many mathematical theories.The binary variables are defined by two states,“true”or “false”, and the fuzzy variables have a gradation between the value “true”and the value“false”.However,the essential notion does not make it possible to account for simple and frequently encountered situations.It takes into account such situations that the notion of a fuzzy set has been created.The theory of fuzzy sets is based on the notion of partial membership:each element partially or gradually belongs to the fuzzy sets,defined in[9].Mathematically,we can determine the fuzzy set A of the universe X by applying A of X in the interval[0,1].For each elementx∈X,we consider the value of μA(x),such as:

    The functionμArepresents the membership function set A.

    Figure 1:Main diagram of fuzzy controller system

    2.1 Membership Functions

    The muddling capacity can be utilized to safeguard the area security of individuals while speaking with local-based services for discovering areas of its advantage.The confusion is the defect of purposeful corruption of spatial data quality.The defect recorded in writing may be imprecision,error, and unclearness.Imprecision is the absence of particularity in data.Error is the absence of correspondence among data and reality, while unclearness in data identifies with limited cases.The defect can be utilized for confusion capacity to safeguard the area security.The fundamental security quality of jumbling is the property of reversibility, which makes it hard for an enemy to figure out the muddled informational index.Confusion can additionally give staggered information security dependent on different requests of end clients.Anonymization-based systems have the issue of verification and personalization, while the muddling system improves the assurance level of area security.A muddling system does not rely upon focal regulators to manage protection strategies,making it reasonable for appropriated conditions.The structure security investigation perspective expresses that a muddling system is produced to give more significant levels of area security insurance.It is a troublesome undertaking to amass a higher number of clients in a concerned territory without standing.We use obscurity capacity to safeguard the area protection and establish a relationship between the truth degree of the fuzzy variable and the corresponding input quantity.When talking about fuzzification,the values taken to trace the membership function in Fig.2 are the experimental results of the system to be controlled: this is the opinion of the expert.In our study, the most used membership functions,trapezoidal and triangular functions,are used.

    Figure 2:Membership functions.(a)Trapezoidal function form.1,(b)Trapezoidal function form.2,(c)Triangular function

    The use of membership functions defines the system control for deciding on how it operates.This point is essential for system result analysis and future tasks, such as maintenance.The small satellite antennas operate in real time, but the selection of the suitable antenna is accomplished by the optimized membership function adopted in the system.A fuzzy controller is a universal tool for decision-making when values are similar.The small satellite application of machine learning and deep learning techniques for antenna network optimization represents the latest research trend.But the data and measurement values are huge to store.This algorithm presents minuses time for decisionmaking and omits all steps for deep learning techniques,as well as machine learning,which necessitates memory hardware and operating time.

    2.2 The Trapezoidal Function

    The equation of the curve is in the form1:

    The equation of the curve is in the form2:

    The equation of the Triangular function is as follows:

    These fuzzy intervals (Tab.1)define the number of fuzzy variables associated with an input quantity.These intervals are given by an expert following his experiments on a controlled system.In the case of adjustment, three to five intervals are sufficient.As the antennas are intended to be mounted on the faces of the pico satellite, i.e., an antenna on each side, a fuzzy controller with six inputs and six outputs has been provided.This choice has been adopted for a purpose.We maximize the probability of having at least one antenna opposite the earth station.The inputs X, Y, Z, T, W,and U go through different phases in the controller:fuzzification,inference,and defuzzification.The outputs are SX,SY,SZ,ST,SW,and SU.These elements are characterized by symbols presented in Tab.1.

    Table 1: Existing location privacy techniques

    2.3 Rules of Inference and Operators

    2.3.1 Rules of Inference

    These rules are used to connect fuzzy input variables to fuzzy output variables using different operators.They must be defined by a system control expert according to his experience(expert role)and stored in a control unit.

    -Combination of rules:The set of rules is in the form of an enumeration type.If condition.1 and/or condition.2, then Action on the outputs.The combination of these different rules is done using an OR operator.The justification of the operator choice is based on the practice of the current language.So an enumeration is understood in the sense of“If....Then”or“Si... Then”.

    - Operators: The inference rules use the operators (Tab.2)“And”, “Or”, and “Not”, which apply to the fuzzy variables.In the case of binary logic,these operators are defined in a simple and unambiguous way.In the case of fuzzy logic,the definition of these operators is no longer univocal,and the relations presented in Tab.2 are most often used[10].

    Table 2: Used fuzzy operators

    The minimum and maximum operations have the advantage of simplicity when calculating.However,they favor one of the two variables.Product operations and average values are more complex to calculate but produce a result that considers the values of two variables,see Fig.3.

    Figure 3:Graphics of operators.(a)Operator NOT,(b)Operator NOT,(c)Operator AND

    Operator Not

    A NOT operator is called“complement”,“negation”,or“inverse”:

    a-Mechanism of Inference and Defuzzification

    Different rules of inference produce a value.These different values must be combined according to a mechanism in order to obtain the(possible)output variable(s).Then the fuzzy variable(s)of output must be converted into a control variable (voltage, torque, etc.)in order to be applied to adjust the system.This last stage is called defuzzification[11].

    b-Inference Mechanisms

    The inference mechanism calculates the fuzzy subset μ(x0)relative to the control of the system.In the fuzzy logic controller,inference intervenes the operators“AND”and“OR”.The AND operator applies to variables within a rule, while the OR operator binds different rules.One of the following methods is generally used for the adjustment by fuzzy logic:the Max-Min inference method,the Max-Prod inference method,and the Sum-Prod inference method.In the following,we will use the Max-Min inference method.

    c-The Max-Min Inference Method

    At the condition level, this method realizes the operator OR by the maximum formation and the operator AND by the minimum formation.The conclusion in each rule, introduced by THEN,links the condition’s membership factor with the output variable’s membership function by the AND operator,realizing in the present case by the minimum formation.Finally,an OR operator that binds the different rules is realized by the maximum formation[12].In the previous example,the inference is as shown in Fig.4.

    Figure 4:The max-min inference method

    d-Defuzzification

    The inference engine provides a resulting membership function for the output variable.It is,therefore,fuzzy information.Since the controller requires a precise control signal at its input[13,14],it is necessary to transform this fuzzy information into specific information,which is called defuzzification[15].There are several methods for calculating the representative value of an output set,and the main ones of which are:

    -Defuzzification by calculating the center of gravity.

    -Defuzzification by calculation of the maximum

    The Center of the Gravity Method

    The most used defuzzification method determines the gravity center of the resulting membership function μRES(z).It is used when fuzzy intervals of the output contain multiple values.In this context,it is sufficient to calculate the abscissa z by the following formula:

    The Maximum Method

    This is the simplest met.

    This is the simplest method avoiding the heavy calculation of the center of the gravity method.

    This is the simplest method avoiding the heavy calculation of the center of the gravity method.For the output signal z*,the abscissa of the maximum value of the resulting membership function μRES(z)is chosen.This method is widely used when the fuzzy intervals of the output are discrete.The tools provided by fuzzy logic allow modeling phenomena that can come closer to human reasoning in a certain sense.Going beyond all or nothing of computers introduces flexibility,making the power of fuzzy tools in many fields.

    2.3.2 The Fuzzy Controller with Six Inputs and Six Outputs

    There is a fuzzy controller with six inputs and six outputs in Fig.5.The inputs X, Y, Z, T, W,and U go through different phases in the controller:fuzzification,inference,and defuzzification.The outputs are SX,SY,SZ,ST,SW,and SU.

    Figure 5:The structure of the fuzzy controller with six inputs and six outputs

    Fig.5 represents the central point for problem-solving related to small satellite applications and antennas.Signals representing data from multimedia transmission content will be quantified and evaluated.

    a-Inputs and Outputs

    ? X:an input variable,a power varies between 0.002 and 2 W.

    ? Y:an input variable,a power varies between 0.002 and 2 W.

    ? Z:an input variable,a power varies between 0.002 and 2 W.

    ? T:an input variable,a power varies between 0.002 and 2 W.

    ? W:an input variable,a power varies between 0.002 and 2 W.

    ? U:an input variable,a power varies between 0.002 and 2 W.

    ? SX:an output variable,defining the choice of X,either“0”or“1”.

    ? SY:an output variable,defining the choice of Y,either“0”or“1”.

    ? SZ:an output variable,defining the choice of Z,either“0”or“1”.

    ? ST:an output variable,defining the choice of T,either“0”or“1”.

    ? SW:an output variable,defining the choice of W,either“0”or“1”.

    ? SU:an output variable,defining the choice of U,either“0”or“1”.

    b-Fuzzification

    At the Fuzzification phase in our case,the system performs various steps in the turnstile.It must wait for the response of FEED_BACK to restart the input stream processing and the fuzzification simulation results of Input variables.This step calculates the membership degree of each input value to the fuzzy sets,assigning n values of μ for each variable(n:the number of system rules).This task is done simultaneously.

    Combination of rules:calculating the result μ of each rule.This task is done successively.

    Inference:grouping the result μ according to the rules.

    In the phase of defuzzification, we calculate the Maximum output value and choose the most important output as the final output of the system.Then,we send a FEED_BACK to the fuzzification stage to restart the process.For a classic model of the fuzzy controller,after the definition of inputs and outputs and the code implementation in its kernel,it is impossible to change the operation of the controller.The results of the simulation phase of output variables are shown in Fig.6.

    Figure 6:The membership feature editor(simulation)

    At the moment t in the system operation,one or more ports fail,or the power is zero.The system does not work,and it goes into the waiting phase for six inputs as presented in Fig.7,resulting in an unreliable system.

    c-Input Fuzzification Variables

    Figure 7:The fuzzification graph of input variables(simulation).(a)Input variable fuzzification x,(b)Input variable fuzzification y,(c)Input variable fuzzification z,(aa)Variable fuzzification of input t,(bb)Fuzzification variable of input w,(cc)Fuzzification variable of input u

    d-Output Fuzzification

    Outputs values are“0”or“1”in Fig.8.

    Figure 8:Fuzzification of outputs SX,SY,SZ,ST,SW,and SU

    e-Rules of Inference

    The base of fuzzy controller rules is built according to the following algorithm:

    ? The choice is made on the highest power;

    ? If the powers are equal and achieve maximum,we choose the first maximum.(if X=Y=Z=T=W=U,then choose X).

    f-Inputs and Outputs

    Surface of decision

    For each output,there are 15 decision surfaces with respect to inputs in Fig.9.In total,we have 15*6=90 surfaces.

    Figure 9:The rule editor:six inputs and six outputs(simulation)

    For the Output SX

    Fig.10 represents decision-making based on system output evaluation.For each output,we have 15 decisions represented by surfaces.All decisions are made based on input evaluation.We have 90 surfaces that mean 90 decisions.For each output, there are 15 decision surfaces with respect to the inputs.In total,we have 15*6=90 surfaces.

    3 Four-Element Case Study

    We make an example of calculation for the controller with six inputs and six outputs in Tab.3.We take six values:x0=0.234 W,y0=0.324 W,z0=0.356 W,t0=0.298 W,w0=0 W,and u0=0 W.

    Figure 10: Decision surfaces (simulation).(a.1)Decision surface of sx with respect to x and y, (a.2)Decision surface of sx with respect to x and z,(a.3)Decision surface of sx with respect to x and t,(a.4)Decision surface of sx with respect to x and w, (a.5)Decision surface of sx with respect to x and u,(a.6)Decision surface of sx with respect to y and z,(a.7)Decision surface of sx with respect to y and,(a.8)Decision surface of sx with respect to z and t

    3.1 Fuzzification

    Table 3: Table of the six inputs fuzzification

    3.2 The Inference Step

    μB(output variable)=where B ∈{SX0, SX1, SY0, SY1, SZ0, SZ1, ST0, ST1, SW0, SW1,SU0,SU1}

    For each rule, we determineμBr(output variable)as the membership degree variable B in each rules where r=1..15625

    μBr(output variable) = minAε{VL,L,M,H,VH}(μA(xo),μA(yo),μA(zo),μA(to),μA(wo)

    μB(output variable)=max(μBr(output variable))

    3.3 Defuzzification

    μres(output variable)=max(μB(output variable))

    The value of the output is the projection of μB(output variable)is maximum μres(output variable)on B,where μB(output variable)is maximized.

    4 Application Cases

    We studied our research for a basic network composed of two antennas.Using the methodology,it is necessary to pass through three main steps.Then,we found the following results.

    4.1 Fuzzification

    The fuzzy control system with four inputs X,Y,Z,and T is simulated with selected outputs SX,SY, SZ, and ST.The variables X, Y, Z, and T are simulated with MATLAB, and input values are defined in the interval:VL,L,M,H,or VH.It depends on the position of the antenna and the signal received power.The research results show that the fuzzified output variables SX,SY,SZ,and ST XX respectively for the input X,Y,Z,and T.

    Experimentally:

    For a given power value for x0=0.701 W and y0=0.802 W,the fuzzy controller is operated at the switch on the corresponding output.A comparison with the simulated result is shown:

    Fuzzification stage: Inputs(watts): x0=0.701 W and y0=0.802 W, outputs(watts)SX and SY can be seen in Tab.4.

    Table 4: The fuzzification table of two entries

    4.2 Inference Step

    μA(variable input):with A among{VL,L,M,H,VH}

    μB(variable output):with B among{SX0,SX1,SY0,SY1}.

    For each rule,μBr is determinated/μBr(variable output)=membership degree of variable output in each rule(where r=1,25).μBr(output)=minA among{VL,L,M,H,VH}(μA(x0),μA(y0)).

    μB(variable output)=max(μBr(variable output)).

    4.3 Defuzzification Step

    μres (variable output)= max(μB (variable output)).The output value is the projection of μres(variable output)of B,where μB(variable output)is maximum.

    Results:port Y is selected.

    After validation of the results by simulations,we also modeled the system.For this,we developed the mathematical modeling by the Petri network of the antenna system.The management of radiating elements is based on selecting the antenna equipped with the received signal power of maximum values.We have noticed that considering the number of steps that the system must perform is important,it can affect the response time and cause a system-level heavier.Similarly,a large number of instructions generates a complexity of the system,leading to a risk of malfunction further system faults.For this,we have developed an algorithm that ensures a reduction of instructions and alleges the program.

    5 Basic Rules Used for the Algorithm

    (6-input and 6-output network)

    Algorithm Base_rule 6

    Pour chaque variable, on a 5 intervalles fous (VL, V, M, H et VH).La combinaison des comparaisons nous donne règle sous la forme:

    If(X is VL)and(Y is V)and(Z is M)and(T is VH)and(W is H)and(U is VL)then(SX=SX0)and(SY=SY0)and(SZ=SZ0)and(ST=ST1)and(SW=SW0)and(SU=SU0).

    It is important to mention the rule number of the system must perform without using this algorithm.Experimentally, for a controller with six inputs and six outputs, we obtain a base of 56rules=15625 rules.

    6 Conclusion

    We hear more and more often about fuzzy logic as a method offering outstanding performance,allowing complex systems to be managed intuitively.Nevertheless,like other methods,fuzzy logic has several advantages but also disadvantages.Fuzzy logic makes it possible to reason without numerical variables on linguistic variables,that is,on qualitative variables(large,small,medium,far,close,strong,etc.).Reasoning on these linguistic variables will make it possible to manipulate knowledge in natural language.

    We have to enter the system rules of inference expressed in natural language.Fuzzy logic makes it possible to control complex systems not necessarily modeled in an “intuitive”way.Nevertheless,this method has various disadvantages.First of all, expressing one’s knowledge in the form of rules in natural language (and therefore qualitative)does not prove that the system will have an optimal behavior.All the settings that the programmer must enter into the system are done in a completely adhoc way.This method cannot guarantee that the system is stable,accurate,or optimal,or even it cannot ensure that the rules entered by the programmer are not contradictory.It is an ad-hoc method based on the knowledge that a human can acquire on a system.Performance is therefore measured a posteriori and cannot be calculated a priori.The settings are done by trial/error.We can say that fuzzy logic has the advantage of being intuitive and operating many different systems with solid human expertise.Nevertheless, keep in mind that fuzzy logic is impossible to predict the performance of a system.If the settings are fine, the performance will be at the rendezvous.But if there is a lack of precision in the settings, the performance will surely leave to be desired.In fuzzy logic, it is the developer who makes the quality of the method.The prototyping phases with industrial constraints will contribute to adjustment production that affects product price and competitiveness.

    Acknowledgement:The author would like to acknowledge the Dean of the Khurma University College and the Taif University Department of Scientific Research in the Kingdom of Saudi Arabia for motivation to accomplish the research work.The author thanks TopEdit (www.topeditsci.com)for its linguistic assistance during the preparation of this manuscript.

    Funding Statement:The author declare no specific funding was received for this work.

    Conflicts of Interest:The author declare that they have no conflicts of interest to report regarding the present research work.

    他把我摸到了高潮在线观看| 两性夫妻黄色片| 国产高清激情床上av| 99re在线观看精品视频| 九九久久精品国产亚洲av麻豆 | 久久精品夜夜夜夜夜久久蜜豆| 国产三级在线视频| 欧美日本亚洲视频在线播放| 亚洲国产看品久久| 国产爱豆传媒在线观看| 黄色 视频免费看| 国内少妇人妻偷人精品xxx网站 | 熟女人妻精品中文字幕| 狂野欧美激情性xxxx| 国产成人欧美在线观看| 香蕉久久夜色| 成人三级黄色视频| 欧美日韩乱码在线| 首页视频小说图片口味搜索| 亚洲欧美日韩东京热| 国产男靠女视频免费网站| 久久久成人免费电影| 51午夜福利影视在线观看| 夜夜夜夜夜久久久久| 淫妇啪啪啪对白视频| 变态另类成人亚洲欧美熟女| 精品国产美女av久久久久小说| 男女之事视频高清在线观看| 国产精品久久电影中文字幕| 精品福利观看| 免费电影在线观看免费观看| 18禁美女被吸乳视频| 97超级碰碰碰精品色视频在线观看| 国产成人av激情在线播放| av天堂中文字幕网| 国产精品av视频在线免费观看| 制服丝袜大香蕉在线| 两人在一起打扑克的视频| 色综合婷婷激情| 国产三级中文精品| 综合色av麻豆| 成年女人毛片免费观看观看9| 又黄又粗又硬又大视频| 少妇人妻一区二区三区视频| 91av网站免费观看| 国产成人欧美在线观看| 国产精品1区2区在线观看.| 国产又色又爽无遮挡免费看| 俺也久久电影网| 欧美中文综合在线视频| 一二三四在线观看免费中文在| 久久精品aⅴ一区二区三区四区| 两个人视频免费观看高清| 精品午夜福利视频在线观看一区| 欧美绝顶高潮抽搐喷水| 国产久久久一区二区三区| 亚洲最大成人中文| 男女做爰动态图高潮gif福利片| 天天躁日日操中文字幕| 日本三级黄在线观看| 欧美日韩瑟瑟在线播放| 男人舔女人下体高潮全视频| 亚洲aⅴ乱码一区二区在线播放| 少妇的丰满在线观看| 亚洲最大成人中文| 色吧在线观看| 好男人在线观看高清免费视频| 国产综合懂色| 国产亚洲精品久久久久久毛片| 久久99热这里只有精品18| 亚洲国产欧美一区二区综合| 国产成人av激情在线播放| 三级国产精品欧美在线观看 | 99热精品在线国产| 久久欧美精品欧美久久欧美| 99国产精品一区二区蜜桃av| 欧美大码av| 在线观看66精品国产| 日韩欧美一区二区三区在线观看| 香蕉国产在线看| 高潮久久久久久久久久久不卡| 亚洲国产高清在线一区二区三| 日本精品一区二区三区蜜桃| 国产美女午夜福利| 亚洲无线观看免费| 午夜a级毛片| 老鸭窝网址在线观看| 日本三级黄在线观看| 黑人巨大精品欧美一区二区mp4| 色综合亚洲欧美另类图片| 中国美女看黄片| 男女那种视频在线观看| 12—13女人毛片做爰片一| 亚洲av日韩精品久久久久久密| 麻豆成人午夜福利视频| 午夜精品一区二区三区免费看| 老汉色∧v一级毛片| av中文乱码字幕在线| 88av欧美| 成年人黄色毛片网站| 亚洲一区高清亚洲精品| 在线观看免费视频日本深夜| 岛国视频午夜一区免费看| 在线观看日韩欧美| 757午夜福利合集在线观看| 午夜福利在线观看免费完整高清在 | 夜夜夜夜夜久久久久| 亚洲va日本ⅴa欧美va伊人久久| 欧美一区二区精品小视频在线| 成年女人永久免费观看视频| 国产成人欧美在线观看| 亚洲熟女毛片儿| 国产黄a三级三级三级人| 日韩有码中文字幕| 欧美不卡视频在线免费观看| 哪里可以看免费的av片| 亚洲精品456在线播放app | 国产成人aa在线观看| 小蜜桃在线观看免费完整版高清| 一区福利在线观看| 高清毛片免费观看视频网站| 国产伦精品一区二区三区四那| 日韩免费av在线播放| 偷拍熟女少妇极品色| 免费看日本二区| 亚洲欧美精品综合一区二区三区| 国产av不卡久久| 国产成人av教育| 黑人操中国人逼视频| 欧美av亚洲av综合av国产av| 91久久精品国产一区二区成人 | 亚洲国产日韩欧美精品在线观看 | 老鸭窝网址在线观看| 国产高清三级在线| 在线视频色国产色| tocl精华| 亚洲国产日韩欧美精品在线观看 | 国产精品 国内视频| 九色国产91popny在线| 免费在线观看影片大全网站| 两个人视频免费观看高清| 蜜桃久久精品国产亚洲av| 午夜福利在线观看免费完整高清在 | www.自偷自拍.com| 91久久精品国产一区二区成人 | 久久久久免费精品人妻一区二区| 久久天堂一区二区三区四区| 97超级碰碰碰精品色视频在线观看| 国产精品国产高清国产av| 亚洲,欧美精品.| 日本一二三区视频观看| av国产免费在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲在线自拍视频| 啦啦啦免费观看视频1| 嫩草影院入口| 在线观看舔阴道视频| 啦啦啦免费观看视频1| 亚洲五月婷婷丁香| 亚洲成av人片在线播放无| 国内揄拍国产精品人妻在线| 成人性生交大片免费视频hd| 国产精品98久久久久久宅男小说| 亚洲熟妇中文字幕五十中出| e午夜精品久久久久久久| 天天一区二区日本电影三级| 国产私拍福利视频在线观看| 成年免费大片在线观看| av福利片在线观看| a级毛片a级免费在线| 久久久久国产一级毛片高清牌| 中文亚洲av片在线观看爽| 成人特级av手机在线观看| 成年免费大片在线观看| 三级国产精品欧美在线观看 | 欧美xxxx黑人xx丫x性爽| 99精品在免费线老司机午夜| 黄色女人牲交| 国产欧美日韩一区二区精品| 欧美日本视频| 久久国产乱子伦精品免费另类| www.www免费av| 日韩欧美在线乱码| 精华霜和精华液先用哪个| 给我免费播放毛片高清在线观看| 欧美激情久久久久久爽电影| 深夜精品福利| www.精华液| 久久久久久九九精品二区国产| 国产精品女同一区二区软件 | 久久久久久大精品| 亚洲欧美日韩高清专用| 国产精品一区二区精品视频观看| 久久中文字幕一级| 美女被艹到高潮喷水动态| 国产真人三级小视频在线观看| 俺也久久电影网| 国产亚洲精品av在线| av欧美777| 日韩有码中文字幕| 亚洲 欧美 日韩 在线 免费| 亚洲国产精品成人综合色| 久久久久久久久免费视频了| 热99在线观看视频| 久久久国产成人精品二区| 动漫黄色视频在线观看| 18禁美女被吸乳视频| 久久久久久久久免费视频了| 亚洲美女视频黄频| 毛片女人毛片| 国产精品亚洲美女久久久| 日韩欧美三级三区| 首页视频小说图片口味搜索| 又粗又爽又猛毛片免费看| 中亚洲国语对白在线视频| 亚洲国产高清在线一区二区三| 久久中文看片网| 亚洲一区高清亚洲精品| 亚洲 国产 在线| 久久精品91无色码中文字幕| 757午夜福利合集在线观看| 哪里可以看免费的av片| 国产aⅴ精品一区二区三区波| 91字幕亚洲| 99久久无色码亚洲精品果冻| 国产伦精品一区二区三区四那| 精品国产三级普通话版| 美女高潮的动态| 国产极品精品免费视频能看的| 国内毛片毛片毛片毛片毛片| 真实男女啪啪啪动态图| 国产一区二区在线观看日韩 | 久久久久国产一级毛片高清牌| av在线蜜桃| 日韩av在线大香蕉| 欧美乱码精品一区二区三区| 亚洲熟妇熟女久久| 黄色丝袜av网址大全| 成人av一区二区三区在线看| 中国美女看黄片| 一本综合久久免费| 淫秽高清视频在线观看| 国产探花在线观看一区二区| 99久久精品热视频| 色av中文字幕| 亚洲国产精品999在线| 十八禁人妻一区二区| 日韩国内少妇激情av| 女生性感内裤真人,穿戴方法视频| 国产精品 欧美亚洲| 国产三级中文精品| 操出白浆在线播放| 我的老师免费观看完整版| 男女视频在线观看网站免费| 国产亚洲精品一区二区www| 欧美黄色片欧美黄色片| 伦理电影免费视频| 热99在线观看视频| 欧美极品一区二区三区四区| 999久久久国产精品视频| cao死你这个sao货| 少妇熟女aⅴ在线视频| 亚洲av日韩精品久久久久久密| 久久午夜综合久久蜜桃| 在线观看一区二区三区| 精品无人区乱码1区二区| 亚洲专区字幕在线| 久久久国产精品麻豆| 欧洲精品卡2卡3卡4卡5卡区| 国产一区二区在线观看日韩 | 国内久久婷婷六月综合欲色啪| 人人妻人人澡欧美一区二区| 一级作爱视频免费观看| 中文亚洲av片在线观看爽| 最近视频中文字幕2019在线8| 精品久久蜜臀av无| 亚洲午夜理论影院| 中出人妻视频一区二区| 老司机午夜福利在线观看视频| 悠悠久久av| 亚洲中文av在线| 久久天躁狠狠躁夜夜2o2o| 两个人看的免费小视频| 日韩人妻高清精品专区| 国产成人精品久久二区二区91| aaaaa片日本免费| 在线观看舔阴道视频| 丰满的人妻完整版| 香蕉国产在线看| 91在线观看av| 99re在线观看精品视频| 一个人观看的视频www高清免费观看 | 少妇人妻一区二区三区视频| 午夜免费观看网址| 久久这里只有精品19| 欧美不卡视频在线免费观看| 国产三级黄色录像| 国产视频内射| 手机成人av网站| 99精品欧美一区二区三区四区| 欧美日韩福利视频一区二区| 一个人看视频在线观看www免费 | 国产精品精品国产色婷婷| 久久伊人香网站| 一区二区三区高清视频在线| 亚洲九九香蕉| 最新美女视频免费是黄的| 一级毛片精品| 国产又色又爽无遮挡免费看| 三级毛片av免费| 亚洲中文字幕日韩| 亚洲国产欧洲综合997久久,| 午夜激情欧美在线| 天堂av国产一区二区熟女人妻| 国产精品香港三级国产av潘金莲| a级毛片在线看网站| 色综合欧美亚洲国产小说| 亚洲精品在线美女| 国产精品一区二区三区四区久久| 在线观看免费午夜福利视频| 一个人看视频在线观看www免费 | 成年女人毛片免费观看观看9| 亚洲色图av天堂| 国产高清激情床上av| 青草久久国产| 久久久久国产精品人妻aⅴ院| 全区人妻精品视频| 国产私拍福利视频在线观看| 一级作爱视频免费观看| xxx96com| 午夜福利高清视频| 91老司机精品| 成人av一区二区三区在线看| 欧美黑人欧美精品刺激| 精品熟女少妇八av免费久了| 99视频精品全部免费 在线 | 国产熟女xx| 18禁美女被吸乳视频| 91老司机精品| 999久久久国产精品视频| 亚洲精品粉嫩美女一区| 国产成人精品久久二区二区91| 美女被艹到高潮喷水动态| 日韩成人在线观看一区二区三区| 国产欧美日韩精品亚洲av| 国产激情久久老熟女| 精品国产亚洲在线| 综合色av麻豆| xxxwww97欧美| 白带黄色成豆腐渣| 国产精品,欧美在线| 亚洲色图 男人天堂 中文字幕| 国产激情久久老熟女| 欧美日韩综合久久久久久 | 欧美三级亚洲精品| 国产精品亚洲美女久久久| 精品人妻1区二区| 黄频高清免费视频| 窝窝影院91人妻| 在线免费观看的www视频| 成人三级做爰电影| 国产一级毛片七仙女欲春2| 最近最新中文字幕大全免费视频| 久久午夜综合久久蜜桃| av中文乱码字幕在线| 青草久久国产| 久久久久免费精品人妻一区二区| av欧美777| 国产成人一区二区三区免费视频网站| 黄色日韩在线| 国产一区二区在线av高清观看| 性欧美人与动物交配| 精品人妻1区二区| 床上黄色一级片| 久久久色成人| 欧美乱色亚洲激情| 国产人伦9x9x在线观看| 亚洲色图av天堂| 黄频高清免费视频| 中文字幕高清在线视频| 欧美午夜高清在线| 国产97色在线日韩免费| 精品福利观看| 国产精品爽爽va在线观看网站| 国产激情久久老熟女| 国产一级毛片七仙女欲春2| 最近最新免费中文字幕在线| 欧美日韩瑟瑟在线播放| 亚洲精品国产精品久久久不卡| av片东京热男人的天堂| 小说图片视频综合网站| 久久99热这里只有精品18| 特大巨黑吊av在线直播| 久久久久久九九精品二区国产| 成人午夜高清在线视频| 精品久久久久久久人妻蜜臀av| 黑人欧美特级aaaaaa片| 淫妇啪啪啪对白视频| 国产高清视频在线播放一区| 桃红色精品国产亚洲av| 日韩国内少妇激情av| 国产不卡一卡二| 国产精华一区二区三区| 91在线观看av| 久久99热这里只有精品18| a在线观看视频网站| 欧美中文日本在线观看视频| 一级黄色大片毛片| 国产三级黄色录像| 国产人伦9x9x在线观看| 日本与韩国留学比较| 国产精品爽爽va在线观看网站| www.熟女人妻精品国产| 男人舔女人的私密视频| cao死你这个sao货| 高潮久久久久久久久久久不卡| 精品国产三级普通话版| 99热6这里只有精品| 国产精品一区二区三区四区免费观看 | 成人av一区二区三区在线看| 国产精品日韩av在线免费观看| 亚洲片人在线观看| 91久久精品国产一区二区成人 | 丰满的人妻完整版| 99精品久久久久人妻精品| 超碰成人久久| 国产高清视频在线观看网站| 特大巨黑吊av在线直播| 婷婷精品国产亚洲av在线| 91在线精品国自产拍蜜月 | 国产精品野战在线观看| 好男人电影高清在线观看| 性色av乱码一区二区三区2| 天堂网av新在线| 亚洲电影在线观看av| 欧美日韩乱码在线| 国产精品野战在线观看| 99久久精品热视频| 午夜精品久久久久久毛片777| av黄色大香蕉| 少妇熟女aⅴ在线视频| 欧美色欧美亚洲另类二区| 国产精品99久久99久久久不卡| 狂野欧美激情性xxxx| 一级a爱片免费观看的视频| 很黄的视频免费| 美女被艹到高潮喷水动态| 成人三级黄色视频| 久久久色成人| 午夜日韩欧美国产| 日本 av在线| 国产成人精品久久二区二区91| 国产单亲对白刺激| 真实男女啪啪啪动态图| 最新中文字幕久久久久 | 精品一区二区三区视频在线 | 黄色日韩在线| 欧美在线一区亚洲| 亚洲专区字幕在线| 国产av不卡久久| 黄色丝袜av网址大全| 国产主播在线观看一区二区| 亚洲人成电影免费在线| 国产成人精品久久二区二区免费| 综合色av麻豆| 免费一级毛片在线播放高清视频| 亚洲精品美女久久av网站| 国产综合懂色| 1024香蕉在线观看| 亚洲天堂国产精品一区在线| 美女黄网站色视频| 日本一本二区三区精品| АⅤ资源中文在线天堂| 精品99又大又爽又粗少妇毛片 | 成人高潮视频无遮挡免费网站| 狠狠狠狠99中文字幕| 亚洲国产欧美网| 久久久久久国产a免费观看| 欧美中文综合在线视频| 岛国在线观看网站| 亚洲精品美女久久av网站| 国产欧美日韩精品一区二区| 变态另类丝袜制服| 日日夜夜操网爽| 亚洲av日韩精品久久久久久密| 中文资源天堂在线| 九九久久精品国产亚洲av麻豆 | 国产极品精品免费视频能看的| 亚洲av成人av| 99热这里只有是精品50| 午夜福利欧美成人| 国产亚洲欧美98| 在线视频色国产色| 99久国产av精品| 亚洲一区二区三区色噜噜| 国内揄拍国产精品人妻在线| 亚洲国产中文字幕在线视频| 久久精品国产亚洲av香蕉五月| 级片在线观看| 在线永久观看黄色视频| 久久午夜综合久久蜜桃| 波多野结衣高清作品| 国产在线精品亚洲第一网站| a级毛片a级免费在线| 国内久久婷婷六月综合欲色啪| 日韩 欧美 亚洲 中文字幕| 久久九九热精品免费| 日本免费一区二区三区高清不卡| 性色avwww在线观看| 亚洲av五月六月丁香网| 亚洲九九香蕉| 日韩国内少妇激情av| 午夜福利免费观看在线| 欧美乱码精品一区二区三区| 叶爱在线成人免费视频播放| 99riav亚洲国产免费| 少妇的丰满在线观看| 村上凉子中文字幕在线| 国产淫片久久久久久久久 | 狂野欧美白嫩少妇大欣赏| 欧美成人免费av一区二区三区| 中文字幕久久专区| 国产私拍福利视频在线观看| 久久久久久久久免费视频了| 19禁男女啪啪无遮挡网站| 亚洲av成人一区二区三| or卡值多少钱| 亚洲专区字幕在线| 免费大片18禁| 欧美日韩瑟瑟在线播放| 天天躁日日操中文字幕| 午夜两性在线视频| 欧美日韩福利视频一区二区| 无遮挡黄片免费观看| 免费在线观看亚洲国产| 久久人人精品亚洲av| 亚洲精品乱码久久久v下载方式 | 久久这里只有精品中国| www.熟女人妻精品国产| 免费高清视频大片| 韩国av一区二区三区四区| 香蕉丝袜av| 亚洲欧美精品综合一区二区三区| 性色avwww在线观看| 午夜视频精品福利| 狂野欧美白嫩少妇大欣赏| 又粗又爽又猛毛片免费看| 成年女人毛片免费观看观看9| 热99在线观看视频| 国产在线精品亚洲第一网站| 国产一区二区在线av高清观看| 亚洲一区二区三区不卡视频| 亚洲aⅴ乱码一区二区在线播放| 欧美绝顶高潮抽搐喷水| 99riav亚洲国产免费| 亚洲 国产 在线| 很黄的视频免费| 国产精品久久久av美女十八| 熟女少妇亚洲综合色aaa.| 美女高潮喷水抽搐中文字幕| 成人精品一区二区免费| 免费大片18禁| 欧美日韩综合久久久久久 | 99久久国产精品久久久| 日韩精品青青久久久久久| 性欧美人与动物交配| 欧美午夜高清在线| 成人精品一区二区免费| 国产黄色小视频在线观看| 亚洲国产精品合色在线| 一边摸一边抽搐一进一小说| 全区人妻精品视频| 丝袜人妻中文字幕| 男人舔奶头视频| 欧美日韩亚洲国产一区二区在线观看| 国产主播在线观看一区二区| svipshipincom国产片| 色综合亚洲欧美另类图片| 啦啦啦观看免费观看视频高清| 欧美一区二区国产精品久久精品| 国产伦一二天堂av在线观看| 欧美性猛交黑人性爽| 国产亚洲精品av在线| 欧美zozozo另类| 国语自产精品视频在线第100页| 老鸭窝网址在线观看| 一级黄色大片毛片| 无人区码免费观看不卡| 一区福利在线观看| 亚洲第一电影网av| 日韩欧美一区二区三区在线观看| 一级毛片精品| 亚洲黑人精品在线| 国产高潮美女av| 性欧美人与动物交配| 亚洲,欧美精品.| 搡老熟女国产l中国老女人| 在线观看午夜福利视频| 久久久久亚洲av毛片大全| 黄色丝袜av网址大全| 淫秽高清视频在线观看| 国产乱人伦免费视频| 国产淫片久久久久久久久 | 法律面前人人平等表现在哪些方面| 亚洲av美国av| 99国产精品99久久久久| 欧美成人性av电影在线观看| 三级男女做爰猛烈吃奶摸视频| 99精品久久久久人妻精品| 色噜噜av男人的天堂激情| 窝窝影院91人妻| 99国产精品一区二区蜜桃av| 国产精品综合久久久久久久免费| 午夜福利成人在线免费观看| 国产精品久久久久久精品电影|