孫昊,莫彥,李光永,張彥群,龔時(shí)宏
地下滴灌加氣技術(shù)研究進(jìn)展
孫昊1,莫彥2*,李光永1,張彥群2,龔時(shí)宏2
(1.中國農(nóng)業(yè)大學(xué),北京 100091;2.中國水利水電科學(xué)研究院 水利研究所,北京 100048)
地下滴灌加氣技術(shù)是通過對(duì)地下滴灌管網(wǎng)加氣來改善根區(qū)土壤通氣條件,避免低氧脅迫對(duì)作物造成不利影響,促進(jìn)作物增產(chǎn)提質(zhì)的一種新型灌溉技術(shù)。明確不同條件下地下滴灌加氣技術(shù)的實(shí)施效果,確定適宜的加氣灌溉模式與配套設(shè)備是推動(dòng)該技術(shù)規(guī)?;瘧?yīng)用的關(guān)鍵。通過總結(jié)近年來地下滴灌加氣技術(shù)的相關(guān)研究進(jìn)展與成果,全面總結(jié)了作物生長適宜的根區(qū)土壤氧氣條件以及地下滴灌加氣技術(shù)對(duì)土壤環(huán)境與作物生長的改善效果,并重點(diǎn)探討了加氣模式與加氣設(shè)備的應(yīng)用現(xiàn)狀、存在的問題和發(fā)展趨勢(shì)。目前,地下滴灌加氣技術(shù)在作物產(chǎn)量與品質(zhì)提升方面效果顯著,但仍存在需進(jìn)一步研究和解決的問題,首先是作物需按時(shí)、按需加氣,其次需要從“氣源-灌溉系統(tǒng)-土壤環(huán)境-作物生長”全過程提升加氣綜合利用效率并研發(fā)實(shí)用、高效的地下滴灌專用加氣設(shè)備。
地下滴灌;加氣灌溉;氧氣量閾值;加氣模式;加氣設(shè)備
土壤孔隙中的氧氣是植物根系、土壤微生物與動(dòng)物呼吸作用的重要氧氣來源[1],與水、肥、熱、光共同構(gòu)成作物生長的主要影響因素[2]。土壤黏粒量高、地下水埋深淺、洪澇災(zāi)害等自然因素和農(nóng)業(yè)機(jī)械碾壓、過度灌溉施肥等人為因素均會(huì)導(dǎo)致土壤氧氣量降低[3],出現(xiàn)低氧脅迫現(xiàn)象,對(duì)作物產(chǎn)生一系列的生理危害,根系對(duì)土壤中水分與養(yǎng)分吸收能力下降[4],進(jìn)而造成葉片變黃脫落加快、新葉形成受阻、植物生長態(tài)勢(shì)和生長速率減緩、干物質(zhì)減少、果實(shí)品質(zhì)低劣等現(xiàn)象[5]。加氣灌溉能優(yōu)化土壤三相比例,改善土壤微生物活性、酶活性、氧化還原反應(yīng)等土壤微環(huán)境,提高土壤生產(chǎn)力。
地下滴灌(SDI)作為加氣灌溉的最適宜載體,可直接向根區(qū)輸送水氣混合液或微型氣泡實(shí)現(xiàn)增氧。大量研究證實(shí)SDI加氣能有效改善土壤環(huán)境,提高作物產(chǎn)量與品質(zhì)[6]。然而,目前針對(duì)SDI加氣的技術(shù)參數(shù)與加氣效果的研究結(jié)果并不一致,制約了加氣技術(shù)模式的提出和應(yīng)用?;诖?,本文通過梳理主要作物根區(qū)適宜氧氣量范圍,總結(jié)SDI加氣效果、加氣模式和加氣設(shè)備的應(yīng)用與優(yōu)化等多方面的研究成果,挖掘該研究領(lǐng)域存在的關(guān)鍵問題,提出急需進(jìn)一步研究的方向,旨在解決SDI加氣技術(shù)存在的問題,為推動(dòng)SDI技術(shù)規(guī)?;l(fā)展提供支撐。
土壤氧氣主要由氣態(tài)氧(C)和液態(tài)溶解氧(DO)組成[7],二者通常隨土層深度的增加而減少[8]。目前,關(guān)于C和DO的適宜取值范圍研究大多圍繞蔬菜和瓜果等經(jīng)濟(jì)作物開展,一般要求根區(qū)的值不能低于15%,蔬菜適宜的DO范圍為10~20 mg/L,果樹適宜的DO范圍為2~10 mg/L。
對(duì)于大豆、煙草、番茄、甜瓜等作物,當(dāng)值<0.5%時(shí),作物根系的抗氧化酶將產(chǎn)生應(yīng)激反應(yīng),導(dǎo)致根系受損甚至生長停滯[9]。當(dāng)值<10%,園林植物根系將會(huì)無法正常生長[10]。紀(jì)拓等[11]借助還原性鐵粉來控制甜茶幼苗根區(qū)土壤的氧氣量,當(dāng)值=15.9%時(shí),幼苗根系生長受到抑制;當(dāng)值<12%時(shí),幼苗無法存活。盡管土壤DO量較低,但由于土壤溶液通常以膜狀的形式包裹在植株根系和土壤顆粒表面,土壤液態(tài)溶解氧更容易被根系吸收利用[12]。當(dāng)DO量為0.5~2.0 mg/L時(shí),番茄根系的有氧呼吸將受阻或中斷,根系活力減弱,生長速度減緩;當(dāng)DO量為7.0~8.0 mg/L時(shí),番茄根系活力最大,相比DO量為1.2~6.4 mg/L條件下的番茄根系活力顯著提高了84.3%[13],但過高的氧氣質(zhì)量濃度(DO量為40 mg/L)又會(huì)造成番茄根系發(fā)育不良,DO量為30 mg/L是水培番茄生長的上限質(zhì)量濃度[14]。黃瓜具有較好的耐低氧性[13],但在低氧(DO量為0.9~1.1 mg/L)脅迫下,黃瓜葉面積指數(shù)為對(duì)照(DO量為8.0 mg/L)的63.8%,其鮮物質(zhì)量、干物質(zhì)量分別降低36.1%和40.4%[15]。當(dāng)使用微咸水加氧滴灌時(shí),小白菜的凈光合速率和地上部鮮物質(zhì)量最大值對(duì)應(yīng)的DO量為18.5 mg/L[16]。對(duì)于盆栽枸杞和無花果,適宜的根區(qū)DO量分別為4 mg/L和6.0 mg/L[17]。蘋果砧木幼苗在根區(qū)DO量為1.5~2.0 mg/L的低氧脅迫下會(huì)停止生長[18]。不同作物以及生長階段對(duì)土壤氧氣量的響應(yīng)程度不同,基于作物適宜生長所需氧氣量范圍制定科學(xué)合理的SDI加氧灌溉制度至關(guān)重要。
目前,絕大多數(shù)研究主要采用土壤氧氣量、氧氣擴(kuò)散率等物理指標(biāo)以及土壤微生物、酶活性等生態(tài)指標(biāo)來定量表征SDI加氣技術(shù)對(duì)土壤環(huán)境的改善作用。此外,還有學(xué)者通過研究作物生理、產(chǎn)量、品質(zhì)和水分利用效率等方面的響應(yīng)來分析SDI加氣技術(shù)的應(yīng)用效果。
加氣灌溉對(duì)土壤值提升幅度較小,對(duì)于塿土和壤土,加氣灌溉后土壤全生育期的值平均提升幅度為1.5%~2.7%[19-20],在加氣時(shí)和加氣后的有限時(shí)間內(nèi)有一定幅度的增加[21],然而對(duì)于土壤呼吸速率(),在SDI加氣后顯著提升25.2%~38.8%[19-20]。當(dāng)灌水定額較大(蒸發(fā)皿系數(shù)p=0.9)時(shí),SDI加氣技術(shù)能增強(qiáng)土壤供氧能力,土壤氧氣擴(kuò)散率()和氧化還原電位()比不加氣處理分別提高了14.9%和9.7%[22]。
作物根區(qū)是“土壤-根系-土壤微生物與酶”等因素相互作用下的復(fù)雜系統(tǒng)。其中,土壤微生物是土壤養(yǎng)分轉(zhuǎn)化和生化反應(yīng)的重要推動(dòng)力,土壤硝化反應(yīng)、速效磷合成等過程均受微生物影響,而土壤微生物群落構(gòu)成和種群數(shù)量與土壤氧氣量相關(guān),加氣處理可提高0~15 cm土層的微生物數(shù)量,提高有機(jī)肥使用效率,用于表征土壤微生物多樣性的Shannon指數(shù)提高了4.2%,生物種類增加了6~7種[23]。加氣灌溉可通過增加硝化細(xì)菌數(shù)量、減少反硝化細(xì)菌數(shù)量來促進(jìn)土壤硝化反應(yīng)[24],硝態(tài)氮平均生成速率提高了41.4%[25],硝態(tài)氮量可增加18.6%~101.4%[21]。除了硝態(tài)氮,加氣灌溉還能提高7.0%~31.1%的土壤速效磷合成速率[26],促進(jìn)溫室果蔬對(duì)土壤鉀元素的吸收[20],并能降低秸稈還田后土壤中有毒還原性物質(zhì)Fe2+和Mn2+量[27]。
土壤酶主要來源于土壤微生物、作物根系和植株殘?bào)w的分解、土壤動(dòng)物的排泄物等,土壤脲酶和磷酸酶活性一般作為評(píng)價(jià)土壤肥力的參考指標(biāo)[28]。相比于不加氣處理,加氣滴灌后滴頭下方0~20 cm土層的土壤脲酶與磷酸酶活性能提高1.0%~27.0%[29],過氧化氫酶活性能提高11.9%[30]。此外,周云鵬[31]研究結(jié)果表明,加氣滴灌能提升102.0%~133.0%的脲酶量。
SDI加氣技術(shù)主要通過促進(jìn)作物根系生長來改善地上部分生物量的積累,提高作物株高和莖粗。SDI加氣技術(shù)對(duì)大豆、鷹嘴豆、南瓜等作物的總根長、總根表面積、總根體積和根系活力均有顯著的提高作用[32]。其中,番茄的根系長度增加了5.6%~7.5%,根系活力提高了7.6%~17.5%[33]。在黃瓜發(fā)芽過程中,經(jīng)過早、中、晚3次加氣灌溉后,其發(fā)芽速率高峰值比不加氣處理顯著提高了27.5%[34]。循環(huán)曝氣處理后的小白菜干物質(zhì)、光合速率、氣孔導(dǎo)度與蒸騰速率分別顯著提高了42.0%、868.6%、157.1%和55.6%[35]。文丘里加氣灌溉處理后,西瓜的葉、莖干質(zhì)量分別增加了7.5%~50.3%和34.8%~64.7%[36]。在SDI微納米氣泡加氣條件下,春玉米株高和莖粗分別增加了4.3%~11.5%和8.4%~29.7%[29]。
綜合考慮成本投入、加氧效果和經(jīng)濟(jì)效益,SDI加氣技術(shù)主要應(yīng)用在番茄[19]、黃瓜[20]、小白菜[35]、西瓜[36]、甜瓜[37]、辣椒[38]、菠蘿[39]等溫室果蔬上,少量應(yīng)用在苜蓿[26]、水稻[27]、玉米[40]、小麥[41]和馬鈴薯[42]等糧食作物上。對(duì)于溫室果蔬,SDI加氣后作物的產(chǎn)量和水分利用效率分別提高了3.6%~66.4%和5.9%~60.0%;對(duì)于大田糧食作物,SDI加氣后作物的產(chǎn)量和水分利用效率分別提高了5.2%~29.2%和5.2%~20.5%(表1—表3)。維生素C、可溶性固形物、可溶性糖量等是衡量果蔬品質(zhì)的重要指標(biāo),在水肥調(diào)節(jié)的基礎(chǔ)上,加氣灌溉能進(jìn)一步改善果蔬品質(zhì),西瓜的酸糖比能顯著提高11.2%~54.4%,番茄維生素C和可溶性固形物量分別增加10.4%~44.0%和1.0%~3.9%(表1—表3)。
SDI加氣模式主要包含加氣深度、加氣頻率、加氣時(shí)間和加氣量。目前,學(xué)者們主要圍繞加氣頻率和加氣量優(yōu)選方面開展研究,加氣時(shí)間較為固定,一般隨灌溉過程同步加氣。
3.1.1 加氣深度
加氣深度由滴灌帶(管)埋深決定,在根區(qū)附近加氣能更有效地緩解低氧脅迫問題[26],但受深埋SDI存在作物出苗難、滴灌帶(管)損壞不易更換[43]等問題限制,在調(diào)查的全部文獻(xiàn)中,92.9%的滴灌帶(管)埋深范圍是10~20 cm,屬于淺埋滴灌。較淺的加氣深度會(huì)造成嚴(yán)重的土壤氧氣逸散現(xiàn)象,使得氧氣利用效率低,結(jié)合水分因素影響,10 cm加氣深度的甜瓜產(chǎn)量比25 cm加氣深度降低9.5%[44]。
3.1.2 加氣頻率
過低的加氣頻率會(huì)造成土壤氧氣量不能長期保持在適宜范圍,而過高的加氣頻率會(huì)擾動(dòng)土壤,不利于作物根系穩(wěn)定,還會(huì)減少土壤真菌、放線菌等微生物量[37]。利用文丘里射流器或微納米氣泡發(fā)生機(jī)加氣時(shí),加氣頻率通常與灌水頻率一致,通常為1/3~6 d/次;利用空氣壓縮機(jī)或氣泵加氣時(shí),學(xué)者們通常采用1/3~3 d/次的加氣頻率(表1—表3)。大田糧食作物適宜的加氣頻率一般為5 d/次[26],溫室番茄[19]、西瓜[36]和甜瓜[45]等果蔬的加氣頻率為2~3 d/次,也有學(xué)者推薦番茄的加氣頻率為6 d/次[46]。
表1 以空氣壓縮機(jī)或氣泵為地下滴灌加氣設(shè)備的加氣效果總結(jié)
注 Pt:土壤孔隙度;-:缺少參數(shù);(!):最優(yōu)處理。土壤環(huán)境、產(chǎn)量及水分利用效率列表數(shù)據(jù)表示為加氧處理與不加氧處理相比的增加/減少比例,單位均為%。
表2 以文丘里射流器為地下滴灌加氣設(shè)備的加氣效果總結(jié)
注 Pt:土壤孔隙度;-:缺少參數(shù);SRR:土壤呼吸速率。土壤環(huán)境、產(chǎn)量及水分利用效率列表數(shù)據(jù)表示為加氧處理與不加氧處理相比的增加/減少比例,單位均為%。
表3 以微納米氣泡發(fā)生器為地下滴灌加氣設(shè)備的加氣效果總結(jié)
注 Pt:土壤孔隙度;-:缺少參數(shù);SRR:土壤呼吸速率;(!):最優(yōu)處理。土壤環(huán)境、產(chǎn)量及水分利用效率列表數(shù)據(jù)表示為加氧處理與不加氧處理相比的增加/減少比例,單位均為%。
3.1.3加氣時(shí)間
水中溶氧量隨溫度降低而增加,為提高灌溉水中溶解氧量上限并加快溶氧速率,SDI加氣時(shí)間一般較為固定,通常為08:00—09:00或17:00—19:00[36]。當(dāng)使用空氣壓縮機(jī)將空氣或純氧注入根區(qū)土壤時(shí),劉杰等[36]和Bhattarai等[46]建議在灌水或降水后單獨(dú)進(jìn)行,含水率較高的土壤可減少氧氣逸散,提高氧氣在根區(qū)土壤中的存留時(shí)間。
3.1.4加氣量
目前,加氣灌溉的單次加氣量一般按照以下5種方法實(shí)施:①50%Pt(Pt為土壤孔隙度);②注入體積(0.1~0.3 L/次);③注入時(shí)長(20~30 min/次);④灌溉水溶解氧質(zhì)量濃度×灌水定額,溶解氧質(zhì)量濃度取1.8~40 mg/L;⑤摻氣比×灌水定額,摻氣比取12%~50%(表1—表3)。其中,方法①和方法③多適用于空氣壓縮機(jī)或氣泵,方法②和方法⑤多適用于文丘里射流器,方法④適用于微納米氣泡發(fā)生機(jī)。除此之外,還有學(xué)者采用濃度為0.03%的H2O2作為氧源來加氧[2]。
在調(diào)查的所有文獻(xiàn)中,使用空氣壓縮機(jī)或氣泵、文丘里射流器、微納米氣泡發(fā)生機(jī)以及化學(xué)加氧法的加氣方式各占28.6%、37.1%、25.7%和8.6%,作物產(chǎn)量提升幅度分別為4.5%~66.4%、3.9%~56.5%、3.6%~31.6%和19.7%~38.7%,使用空氣壓縮機(jī)或氣泵、文丘里射流器和微納米氣泡發(fā)生機(jī)的試驗(yàn)中水分利用效率分別提高了11.2%~60.0%、5.9%~30.5%、5.2%~20.1%。雖然文丘里射流器使用比例較大,但由于該設(shè)備產(chǎn)生氣泡尺寸較大,易發(fā)生“煙囪效應(yīng)”[47-48],且加氣效率較低,曝氣比率為12%[38],故其產(chǎn)量和水分利用效率的提升幅度小于空氣壓縮機(jī)和氣泵。微納米氣泡因其強(qiáng)穩(wěn)定性和高傳質(zhì)率可減少氣泡間的相互作用,改善水氣分布均勻性和穩(wěn)定性,灌溉水中的溶解氧質(zhì)量濃度在加氣停止后降至初始值時(shí)間可由文丘里射流器的15~30 min延長至6 h[49],當(dāng)以純氧作為氣源時(shí),灌溉水溶解氧質(zhì)量濃度可比以空氣為氣源時(shí)提高250%~400%,達(dá)到35~40 mg/L[29],但微納米氣泡發(fā)生機(jī)存在造價(jià)過高、運(yùn)維麻煩等問題。在灌溉水中添加適量的過氧化物如雙氧水等可促進(jìn)作物生長,但存在運(yùn)輸儲(chǔ)存不便,長期使用污染土壤環(huán)境等問題[50]。
加氣設(shè)備的性能優(yōu)化是提升加氣效果的重要途徑。Wang等[50]通過測(cè)試指出MAZZEI型號(hào)文丘里裝置具有注氣流量大和性能穩(wěn)定等優(yōu)點(diǎn),適合作為SDI加氣設(shè)備。有學(xué)者通過對(duì)微氣泡釋放器的喉部直徑、湍流腔厚度和出口角度等結(jié)構(gòu)參數(shù)進(jìn)行優(yōu)化,提高了微納米氣泡機(jī)加氣效率[51]。還有學(xué)者通過優(yōu)化灌溉管路布設(shè)與添加表面活性劑來提高微氣泡曝氣的摻氣比例、氧傳質(zhì)效率、滴灌帶水氣傳輸均勻性[52]。
SDI加氣技術(shù)已經(jīng)進(jìn)行較多的研究,但由于氣泡形成與輸送過程形態(tài)變化復(fù)雜、土壤結(jié)構(gòu)空間變異性大、作物根區(qū)氧氣難以定量表征等問題,地下滴灌加氣技術(shù)大多停留在小范圍試驗(yàn)規(guī)模,且主要關(guān)注溫室果蔬作物,仍存在諸多問題需要深入研究。
1)完善不同作物根區(qū)需氧量體系,按時(shí)按需加氣。不同地域和土壤,加氣模式有區(qū)別,需以作物根區(qū)適宜需氧量為根據(jù),尤其需要針對(duì)適宜SDI技術(shù)的大田糧食作物、果樹以及苜蓿、灌木等多年生植物,結(jié)合作物根區(qū)氧氣量測(cè)定傳感器,提出加氣技術(shù)參數(shù)與土壤環(huán)境參數(shù)及作物生長指標(biāo)的量化關(guān)系,構(gòu)建高效的土壤氧氣監(jiān)測(cè)系統(tǒng)和科學(xué)的加氣制度。
2)關(guān)注氣體輸送全過程,提升加氣效率?!皻庠?灌溉系統(tǒng)-土壤環(huán)境-作物生長”是SDI加氣技術(shù)中氣體運(yùn)動(dòng)的完整過程,目前研究主要關(guān)注后2個(gè)環(huán)節(jié),忽略了氣體在首部和供水管網(wǎng)中的運(yùn)動(dòng)變化過程,需圍繞全鏈條的氣體輸送過程開展氣泡形態(tài)變化研究、灌溉水溶解氧質(zhì)量濃度監(jiān)測(cè)、水氣傳輸均勻性評(píng)價(jià)等,提升氣體綜合利用效率。
3)研發(fā)加氣專用設(shè)備。目前使用的加氣設(shè)備大多是對(duì)別的行業(yè)設(shè)備加以改造利用,針對(duì)SDI系統(tǒng)管網(wǎng)布置特點(diǎn),構(gòu)建科學(xué)的產(chǎn)品研發(fā)理論體系,研發(fā)性能穩(wěn)定、實(shí)用性強(qiáng)、專業(yè)的SDI加氣設(shè)備與系統(tǒng)是未來研究的重要方面。
[1] 韓廣軒, 周廣勝, 許振柱. 中國農(nóng)田生態(tài)系統(tǒng)土壤呼吸作用研究與展望[J]. 植物生態(tài)學(xué)報(bào), 2008(3): 204-218.
HAN Guangxuan, ZHOU Guangsheng, XU Zhenzhu. Research and prospects for soil respiration of farm and ecosystems in China[J]. Journal of Plant Ecology, 2008(3): 204-218.
[2] BENNOAH Ilan, FRIEDMAN S. Aeration of clayey soils by injecting air through subsurface drippers: Lysimetric and field experiments[J]. Agricultural Water Management, 2016, 176: 222-233.
[3] DU Yadan, NIU Wenquan, GU Xiaobo, et al. Crop yield and water use efficiency under aerated irrigation: A meta-analysis[J]. Agricultural Water Management, 2018, 210: 158-164.
[4] GREENWAY Hank, ARMSTRONG William, COLMER Timothy. Conditions leading to high CO2(> 5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism[J]. Annals of Botany, 2006, 98(1): 9-32.
[5] DREW Michael. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 223-250.
[6] NIU Wenquan, FAN Wentao, PER Saud, et al. Effect of post-irrigation aeration on growth and quality of greenhouse cucumber[J]. Pedosphere, 2013, 23(6): 790-798.
[7] 范愛武, 劉偉, 李光正. 土壤中熱、濕、氣及溶質(zhì)耦合遷移的數(shù)學(xué)模型[J]. 華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2005(9): 59-61.
FAN Aiwu, LIU Wei, LI Guangzheng. Modeling for simultaneous transfer of heat, moisture, gas and solute in soil with plants growing[J]. Journal of Nuclear Agricultural Sciences, 2005(9): 59-61.
[8] 沈維, 胡德勇, 姚幫松, 等. 土壤耕作層含氧量對(duì)黃瓜葉片生長特性的影響[J]. 灌溉排水學(xué)報(bào), 2017, 36(4): 47-52.
SHEN Wei, HU Deyong, YAO Bangsong, et al. Impact of oxygen content in the horizon on growth of cucumber leaves[J]. Journal of Irrigation and Drainage, 2017, 36(4): 47-52.
[9] URRESTARAZU Mazuela. Effect of slow-release oxygen supply by fertigation on horticultural crops under soilless culture[J]. Scientia Horticulturae, 2005, 106(4), 484-490.
[10] 李玉和. 城市土壤形成特點(diǎn)肥力評(píng)價(jià)及利用與管理[J]. 中國園林, 1997(3): 20-23.
LI Yuhe. Evaluation, utilization and management of urban soil fertility[J]. Chinese Landscape Architecture, 1997(3): 20-23.
[11] 紀(jì)拓, 楊洪強(qiáng). 根區(qū)控氧對(duì)平邑甜茶幼苗根系及根/冠比的影響[J]. 植物生理學(xué)報(bào), 2018, 54(6): 999-1 004.
JI Tuo, YANG Hongqiang. Effects of oxygen control in root-zone on the roots and the ratio of root to shoot of Malus hupehensis seedlings[J]. Plant Physiology Journal, 2018, 54(6): 999-1 004.
[12] WOLF B. The fertile triangle: The interrelationship of air, water, and nutrients in maximizing soil productivity[M].Binghamton: Food Products Press, 1999.
[13] 郭世榮. 營養(yǎng)液溶氧濃度對(duì)黃瓜和番茄根系呼吸強(qiáng)度的影響[J]. 園藝學(xué)報(bào), 2000(2): 141-142.
GUO Shirong. Effect of dissolved oxygen concentrations in nutrient solution on the respiratory intensity of cucumber and tomato roots[J]. Acta Horticulturae Sinica, 2000(2): 141-142.
[14] ZHENG Youbin, WANG Linping, DIXON Mike.An upper limit for elevated root zone dissolved oxygen concentration for tomato[J]. Scientia Horticulturae, 2007, 113(2): 162-165.
[15] 陸曉民, 孫錦, 郭世榮, 等. 油菜素內(nèi)酯對(duì)低氧脅迫黃瓜幼苗根系有氧呼吸同工酶表達(dá)的影響[J]. 生態(tài)學(xué)雜志, 2012, 31(12): 3 070-3 074.
LU Xiaomin, SUN Jin, GUO Shirong, et al. Effects of brassinolide on the isozyme expressions of aerobic respiration enzymes in cucumber seedling roots under hypoxia stress[J]. Chinese Journal of Ecology, 2012, 31(12): 3 070-3 074.
[16] 孫燕, 王怡琛, 王全九. 增氧微咸水對(duì)小白菜光響應(yīng)特征及產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2020, 36(9): 116-123.
SUN Yan, WANG Yichen, WANG Quanjiu. Effects of oxygenated brackish water on light response characteristics and yield of pakchoi [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(9): 116-123.
[17] 盧芳. 增氧灌溉對(duì)兩種盆栽果樹營養(yǎng)生長與果實(shí)品質(zhì)的影響[D]. 銀川: 寧夏大學(xué), 2014.
LU Fang. Effect of aerated irrigation on vegetative growth and fruit quality of two potted fruit trees[D]. Yinchuan: Ningxia University, 2014.
[18] 白團(tuán)輝, 馬鋒旺, 李翠英, 等. 蘋果砧木幼苗對(duì)根際低氧脅迫的生理響應(yīng)及耐性分析[J]. 中國農(nóng)業(yè)科學(xué), 2008, 41(12): 4 140-4 148.
BAI Tuanhui, MA Fengwang, LI Cuiying, et al. Physiological responses and analysis of tolerance of apple rootstocks to root-zone hypoxia stress[J]. Scientia Agricultura Sinica, 2008, 41(12): 4 140-4 148.
[19] 朱艷, 蔡煥杰, 宋利兵, 等. 加氣灌溉改善溫室番茄根區(qū)土壤通氣性[J].農(nóng)業(yè)工程學(xué)報(bào), 2017, 33(21): 163-172.
ZHU Yan, CAI Huanjie, SONG Libing, et al. Oxygation improving soil aeration around tomato root zone in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(21): 163-172.
[20] 崔冰晶, 牛文全, 杜婭丹, 等. 施氮和加氣灌溉對(duì)黃瓜根區(qū)土壤環(huán)境及產(chǎn)量的影響[J]. 節(jié)水灌溉, 2020(4): 27-32.
CUI Bingjing, NIU Wenquan, DU Yadan, et al. Effects of nitrogen application and aerated irrigation on soil environment and yield in cucumber root area[J]. Water Saving Irrigation, 2020(4): 27-32.
[21] 馬筱建. 不同滴灌方式對(duì)溫室土壤環(huán)境及番茄生長的影響[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2018.
MA Xiaojian. Effect of Different drip irrigation methods on soil environment and growth of tomato in greenhouse[D]. Beijing: Chinese Academy of Agricultural Sciences Dissertation, 2018.
[22] 雷宏軍, 肖哲元, 張振華, 等. 水肥氣耦合滴灌提高溫室番茄土壤通氣性和水氮利用[J]. 灌溉排水學(xué)報(bào), 2020, 39(3): 8-16.
LEI Hongjun, XIAO Zheyuan, ZHANG Zhenhua, et al. Integrating drip fertigation with soil aeration to improve water and nitrogen use efficiency of greenhouse tomato[J]. Journal of Irrigation and Drainage, 2020, 39(3): 8-16.
[23] 張立成, 胡德勇, 楊敬林, 等. 增氧條件下施用有機(jī)肥對(duì)水稻土壤微生物的影響[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2018, 46(11): 55-62.
ZHANG Licheng, HU Deyong, YANG Jinglin, et al. Effect of organic fertilizer on paddy soil microorganism under aerobic conditions[J]. Journal of Northwest A&F University (Natrual Science Edition), 2018, 46(11): 55-62.
[24] 商子惠. 加氣條件下溫室番茄產(chǎn)量與溫室氣體排放的水肥調(diào)控效應(yīng)[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2020.
SHANG Zihui. Water and fertilizer regulation effect of greenhouse tomato yield and greenhouse gases emission under aerated condition[D]. Yangling: Northwest Agriculture and Forestry University, 2020.
[25] 曲植, 李銘江, 王全九, 等. 培養(yǎng)條件下微納米增氧水添加對(duì)新疆砂壤土硝化作用的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2020, 36(22): 189-196.
QU Zhi, LI Mingjiang, WANG Quanjiu, et al. Effects of micro-nano oxygenated water addition on nitrification of Xinjiang sandy loam soil under controlled conditions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(22): 189-196.
[26] 曹雪松, 鄭和祥, 王軍, 等. 微納米氣泡水地下滴灌對(duì)紫花苜蓿根際土壤養(yǎng)分和產(chǎn)量的影響[J]. 灌溉排水學(xué)報(bào), 2020, 39(7): 24-30.
CAO Xuesong, ZHENG Hexiang, WANG Jun, et al. Effects of subsurface drip irrigation with micro-nano bubble water on rhizosphere soil nutrients and yield of Alfalfa[J]. Journal of Irrigation and Drainage, 2020, 39(7): 24-30.
[27] 李江, 潘艷川, 繳錫云, 等. 加氣灌溉對(duì)麥秸稈還田后土壤還原性與水稻生長的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2021, 52(9): 250-259.
LI Jiang, PAN Yanchuan, JIAO Xiyun, et al. Effects of aerated irrigation rice growth and soil reducibility under wheat straw returning conditions[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(9): 250-259.
[28] 邱莉萍, 劉軍, 王益權(quán), 等. 土壤酶活性與土壤肥力的關(guān)系研究[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2004(3): 277-280.
QIU Liping, LIU Jun, WANG Yiquan, et al. Research on relationship between soil enzyme activities and soil fertility[J]. Plant Nutrition and Fertilizer Science, 2004 (3): 277-280.
[29] 劉秀娟. 微納米氣加氧滴灌對(duì)春玉米生長及土壤環(huán)境健康的影響[D].北京: 中國農(nóng)業(yè)大學(xué), 2014.
LIU Xiujuan. Effects of oxygenation of subsurface drip irrigation with micro nano gas on corn growth and soil health[D]. Beijing: China Agricultural University, 2014.
[30] ZHANG Qian, DU Yadan, CUI Bingjing, et al. Aerated irrigation offsets the negative effects of nitrogen reduction on crop growth and water-nitrogen utilization [J]. Journal of Cleaner Production, 2021, 3: 313.
[31] 周云鵬. 溫室蔬菜微納米氣泡水加氧灌溉效應(yīng)和模式研究[D]. 北京: 中國農(nóng)業(yè)大學(xué), 2015.
ZHOU Yunpeng. Effect and mode of micro/nano bubble oxygation irrigation on greenhouse vegetables[D]. Beijing: China Agricultural University, 2015.
[32] BHATTARAI Sruya, MIDMORE Pendergast. Yield, water-use efficiencies and root distribution of soybean, chickpea and pumpkin under different subsurface drip irrigation depths and oxygation treatments in vertisols[J]. Irrigation Science, 2008, 26(5): 439-450.
[33] 楊文龍, 劉福勝, 劉恬恬, 等. 加氣灌溉不同施肥水平對(duì)溫室番茄影響效應(yīng)研究[J]. 節(jié)水灌溉, 2019(7): 49-55.
YANG Wenlong, LIU Fusheng, LIU Tiantian, et al. Effects of different fertilization levels on greenhouse tomato under aerated irrigation[J]. Water Saving Irrigation, 2019(7): 49-55.
[34] 胡德勇, 廖健程, 陳哲, 等. 控制灌溉增氧對(duì)超級(jí)稻生理生化特性及水分利用效率的影響[J]. 排灌機(jī)械工程學(xué)報(bào), 2020, 38(5): 500-505, 516.
HU Deyong, LIAO Jiancheng, CHEN Zhe, et al. Effects of controlled irrigation and oxygenation on physiological and biochemical characteristics and water use efficiency of super rice[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(5): 500-505, 516.
[35] 臧明, 雷宏軍, BHATTARAI Sruya, 等. 不同增氧滴灌方式對(duì)蔬菜生長生理指標(biāo)的影響[J]. 排灌機(jī)械工程學(xué)報(bào), 2020, 38(3): 310-317.
ZANG Ming, LEI Hongjun, BHATTARAI Sruya, et al. Effects of oxygation techniques on growth and physiology of vegetable under subsurface drip irrigation[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(3): 310-317.
[36] 劉杰, 蔡煥杰, 張敏, 等. 根區(qū)加氣對(duì)溫室小型西瓜形態(tài)指標(biāo)和產(chǎn)量及品質(zhì)的影響[J]. 節(jié)水灌溉, 2010(11): 24-27.
LIU Jie, CAI Huanjie, ZHANG Min, et al. Effect of airjection irrigation on growth and yield of mini watermelon in greenhouse[J]. Water Saving Irrigation, 2010(11): 24-27.
[37] 李元. 加氣灌溉對(duì)大棚甜瓜和番茄生長的影響及其機(jī)理研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2016.
LI Yuan. Effect of rhizosphere aeration on growth and its physiological mechanism of muskmelon and tomato[D]. Yangling: Northwest Agriculture & Forestry University, 2016.
[38] 王瑩. 曝氣滴灌氧傳質(zhì)特性及其對(duì)辣椒生長和根區(qū)土壤環(huán)境的影響[D]. 煙臺(tái): 魯東大學(xué), 2019.
WANG Ying. Oxygen mass transfer characteristics of aeration drip irrigation and its effects on pepper growth and soil environment in root zone[D]. Yantai: Ludong University, 2019.
[39] 陳新明, DHUNGEL Jay, BHATTARAI Surya, 等. 加氧灌溉對(duì)菠蘿根區(qū)土壤呼吸和生理特性的影響[J]. 排灌機(jī)械工程學(xué)報(bào), 2010, 28(6): 543-547.
CHEN Xinming, DHUNGEL Jay, BHATTARAI Surya, et al. Impact of oxygation on soil respiration and crop physiological characteristics in pineapple[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28(6): 543-547.
[40] ABUARAB Mohamed, MOSTAFA Ehab, IBRAHIM Mohamed. Effect of air injection under subsurface drip irrigation on yield and water use efficiency of corn in a sandy clay loam soil[J]. Journal of Advanced Research, 2013, 4(6): 493-499.
[41] 劉鑫, 劉智遠(yuǎn), 雷宏軍, 等. 不同增氧灌溉方式春小麥生長及產(chǎn)量比較[J]. 排灌機(jī)械工程學(xué)報(bào), 2017, 35(9): 813-819.
LIU Xin, LIU Zhiyuan, LEI Hongjun, et al. Comparisons of growth and yield of spring wheat treated with different oxygation techniques[J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(9): 813-819.
[42] 陳濤明, 姚幫松, 肖衛(wèi)華, 等. 增氧灌溉對(duì)馬鈴薯產(chǎn)量及水分利用效率的影響[J]. 中國農(nóng)村水利水電, 2013(8): 70-72.
CHEN Taoming, YAO Bangsong, XIAO Weihua, et al. Effect of aerobics irrigation on potato yield and water use efficiency[J]. China Rural Water and Hydropower, 2013(8): 70-72.
[43] 莫彥, 李光永, 蔡明坤, 等. 基于HYDRUS-2D模型的玉米高出苗率地下滴灌開溝播種參數(shù)優(yōu)選[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2017, 33(17): 105-112.
MO Yan, LI Guangyong, CAI Mingkun, et al. Selection of suitable technical parameters for alternate row/bed planting with high maize emergence under subsurface drip irrigation based on HYDRUS-2D model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(17): 105-112.
[44] 謝恒星, 蔡煥杰, 張振華. 溫室甜瓜加氧灌溉綜合效益評(píng)價(jià)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2010, 41(11): 79-83.
XIE Hengxing, CAI Huanjie, ZHANG Zhenhua. Evaluation of comprehensive benefit in greenhouse muskmelon under aeration irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(11): 79-83.
[45] 溫改娟. 溫室番茄加氣灌溉技術(shù)模式研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2013.
WEN Gaijuan. Research on technology mode of greenhouse tomato under aeration irrigation[D]. Yangling: Northwest Agriculture and Forestry University, 2013.
[46] BHATTARAI Sruya, HUBER Midmore David. Aerated subsurface irrigation water gives growth and yield benefits to Zucchini, vegetable soybean and cotton in heavy clay soils[J]. Annals of Applied Biology, 2004, 144(3): 285-298.
[47] 尹曉霞, 蔡煥杰. 加氣灌溉對(duì)溫室番茄根區(qū)土壤環(huán)境及產(chǎn)量的影響[J]. 灌溉排水學(xué)報(bào), 2014, 33(3): 33-37.
YIN Xiaoxia, CAI Huanjie. Effect of aeration irrigation on soil environment and yield of tomato in greenhouse[J]. Journal of Irrigation and Drainage, 2014, 33(3): 33-37.
[48] 雷宏軍, 臧明, 張振華, 等. 循環(huán)曝氣壓力與活性劑濃度對(duì)滴灌帶水氣傳輸?shù)挠绊慬J]. 農(nóng)業(yè)工程學(xué)報(bào), 2014, 30(22): 63-69.
LEI Hongjun, ZANG Ming, ZHANG Zhenhua, et al. Impact of working pressure and surfactant concentration on air-water transmission in drip irrigation tape under cycle aeration[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(22): 63-69.
[49] 程峰, 姚幫松, 肖衛(wèi)華, 等. 不同增氧滴灌方式對(duì)香芹生長特性的影響[J]. 灌溉排水學(xué)報(bào), 2016, 35(3): 91-94.
CHENG Feng, YAO Bangsong, XIAO Weihua, et al. Effects of different aerobic drip irrigation methods on growth characteristics of parsley[J]. Journal of Irrigation and Drainage, 2016, 35(3): 91-94.
[50] WANG Haitao, WANG Jiandong, LI Guangyong, et al.Performance test of venturi aerators for subsurface drip irrigation[J]. Journal of Irrigation Engineering, 2022, 148(3): 1-8.
[51] 張育斌, 魏正英, 朱新國, 等. 基于微納米氣泡增氧灌溉技術(shù)與設(shè)備分析[J]. 浙江水利科技, 2019, 47(6): 1-5.
ZHANG Yubin, WEI Zhengying, ZHU Xinguo, et al. Analysis of aerated irrigation technology and device based on micro-nano bubble[J]. Zhejiang Hydro Technics, 2019, 47(6): 1-5.
[52] 盧澤華, 蔡煥杰, 王健. 加氣灌溉對(duì)溫室番茄生長及產(chǎn)量的影響[J]. 節(jié)水灌溉, 2011(10): 67-70.
LU Zehua, CAI Huanjie, WANG Jian. Effects of aerated subsurface irrigation on plant growth and yield of greenhouse tomato[J]. Water Saving Irrigation, 2011(10): 67-70.
[53] 張敏, 蔡煥杰, 劉杰, 等. 根系通氣對(duì)溫室甜瓜生長特性的影響[J]. 灌溉排水學(xué)報(bào), 2010, 29(5): 19-22.
ZHANG Min, CAI Huanjie, LIU Jie, et al. Effects of water and gas treatment on muslmen plant growth characteristics in greenhouse[J]. Journal of Irrigation and Drainage, 2010, 29(5): 19-22.
[54] 馮凱. 加氧灌溉作物生長響應(yīng)及水分與養(yǎng)分利用特性[D]. 鄭州: 華北水利水電大學(xué), 2017.
FENG Kai. Study on the crop growth, water and nutrient use efficiency under aerated irrigation[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2017.
[55] 王振華, 陳瀟潔, 呂德生, 等. 水肥耦合對(duì)加氣滴灌加工番茄產(chǎn)量及品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2020, 36(19): 66-75.
WANG Zhenhua, CHEN Xiaojie, LYU Desheng, et al. Effects of water and fertilizer coupling on the yield and quality of processing tomato under aerated drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(19): 66-75.
[56] 杜君, 臧明, 雷宏軍, 等. 不同增氧水平對(duì)夏玉米生長及氮素利用的影響[J]. 核農(nóng)學(xué)報(bào), 2019, 33(3): 600-606.
DU Jun, ZANG Ming, LEI Hongjun, et al. Impacts of different dissolved oxygen levels in aerated irrigation water on summer maize growth and nitrogen utilization[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(3): 600-606.
[57] PENDERGAST Lance, BHATTARAI Surya, MIDMORE David. Benefits of oxygation of subsurface drip-irrigation water for cotton in a vertosol[J]. Crop and Pasture Science, 2013, 64(11-12): 1 171-1 181.
[58] 王天澤. 微納米氣泡水加氧地下滴灌條件下設(shè)施西甜瓜水肥氣協(xié)同調(diào)控模式研究[D]. 北京: 中國農(nóng)業(yè)大學(xué), 2018.
WANG Tianze. Soil of water, fertilizer and gas synergistic controling for greenhouse melon under micro/nanobubble oxygenation with subsurface drip irrigation system[D]. Beijing: China Agricultural University, 2018.
Development in Aerated Subsurface Drip Irrigation: A Review
SUN Hao1, MO Yan2*, LI Guangyong1, ZHANG Yanqun2, GONG Shihong2
(1. China Agricultural University, Beijing 100091, China; 2. China Institute of Water Resources and Hydropower Research Institute of Water Conservancy, Beijing 100048, China)
Aerated subsurface drip irrigation is a new technology developed over the past decades to improve aeration in the root zone by mixing irrigation water with air bubbles to ameliorate the adverse effect of hypoxic on crops and boost crop yield and quality. The key to disseminate aerated subsurface drip irrigation is to understand its efficacy under different soil and cropping conditions to determine the rational aeration rate and the associated equipment. Based on the development in both research and application of subsurface drip irrigation and the associated aeration technologies, we systematically review the suitable aeration levels for improving oxygen in the root zone of crops to improve their growth. In particular, we focus on the development in technologies for mixing the irrigation water with gas bubbles and their application, the existing problems in aerated subsurface drip irrigation, and the potential applications of these technologies. This review aims to help those who are interested in aerated irrigation to understand the present state and research progress in aerated subsurface drip irrigation. Available results indicated that aerated subsurface drip irrigation indeed improves crop yield and quality considerably, but we also highlight the areas which need further research, including when the root zones need aeration, air - irrigation water - soil interaction, as well as how to improve efficiency of irrigated water and oxygen.
subsurface drip irrigation; oxygation; soil oxygen threshold;aerated mode; aerated equipment
孫昊, 莫彥, 李光永, 等. 地下滴灌加氣技術(shù)研究進(jìn)展[J] .灌溉排水學(xué)報(bào), 2022, 41(10): 34-40.
SUN Hao, MO Yan, LI Guangyong, et al.Development in Aerated Subsurface Drip Irrigation: A Review[J]. Journal of Irrigation and Drainage, 2022, 41(10): 34-40.
1672 - 3317(2022)10 - 0034 - 07
TV93
A
10.13522/j.cnki.ggps.2021579
2021-11-23
中國水科院基本科研業(yè)務(wù)費(fèi)項(xiàng)目(ID0145B042021);國家自然科學(xué)基金項(xiàng)目(51909276)
孫昊(1996-),女。碩士研究生,主要從事節(jié)水灌溉與新技術(shù)研究。E-mail: 1214612188@qq.com
莫彥(1988-),男。高級(jí)工程師,主要從事節(jié)水灌溉新技術(shù)與裝備研究。E-mail: moyansdi@163.com
責(zé)任編輯:韓 洋