• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the Filtered Krylov-Like Sequence Method for Solving Non-Symmetric Eigenvalue Problems

    2022-11-05 01:43:44TanXueyuanChengLan

    Tan Xueyuan Cheng Lan

    (1. Jiangsu Key Laboratory for NSLSCS,School of Mathematical Science,Nanjing Normal University,Nanjing 210046,China;2. School of Mathematics and Statistics,Hunan First Normal University,Changsha 410205,China)

    Abstract The filtered Krylov-like sequence method, which integrates the standard Krylov subspace method with the polynomial filtering technique, is efficient for computing several extreme eigenvalues of symmetric matrices.In this paper, we generalize this method to compute the eigenvalues with largest real parts and the corresponding eigenvectors of non-symmetric matrices. The filtered Krylov-like sequence method can be expected to show great superiority and robustness over the standard Krylov subspace methods. Numerical experiments are carried out to show competitiveness of the new method.

    Key words Eigenvalue Eigenvector Filtered Krylov-like subspace Chebyshev polynomial Non-symmetric matrix

    1 Introduction

    Denote by Rnthen-dimensional real vector space,and by Rn×nthen-by-nreal matrix set. The same notations can be carried over to complex vector and matrix spaces. We consider the following standard eigenvalue problem

    whereA ∈Rn×nis a large, sparse and non-symmetric matrix, (λ,x), withλ ∈C andx ∈Cn, is an eigenpair of matrixA. We mainly focus on computing the eigenvalues with largest real parts and the corresponding eigenvectors of matrixA. Here and in the subsequent discussions,‖·‖denotes the Euclidean vector norm.

    In recent decades,a large number of efficient and reliable solvers have been devoted to the symmetric matrix or non-symmetric matrix eigenvalue problems in the standard or generalized cases. The commonly used techniques can be classified in three categories. The first category includes the so-called gradient-type approaches, such as the steepest descent method [6], the conjugate gradient method [2, 28], the locally optimal preconditioned conjugate gradient method [9], to name just a few. The gradient-type methods devise a simple iterative scheme in which the Rayleigh-Ritz procedure is performed in a fixed subspace of finite dimension. The iterative scheme is attractive since it is economical in terms of storage and computation effort. However, the convergences of the gradient-type methods are rather slow, and for this reason some form of preconditioning is often suggested as an acceleration technique. The second class of iteration methods for eigenvalue problems is the Krylov subspace methods [18, 21]consisting of the Lanczos method for symmetric matrix eigenvalue problems and the Arnoldi method for non-symmetric matrix eigenvalue problems. In essence,the classical Krylov subspace method is based on the implementation of the Rayleigh-Ritz procedure by projecting the original matrixAonto a sequence of enlarging Krylov subspaces and the classical Krylov subspace method attains a linear convergence rate locally. Furthermore, as a result of increasing dimension, the Krylov subspace method may suffer from large storage demands and poor numerical properties for loss of orthogonality. Thus, different preconditioning techniques and their improvements have been employed to deal with these breakdowns,we refer to[3,10,26]and the references therein. Finally,the Davidson-type methods such as the Davidson method [4], Jacobi-Davidson method [25] and their variations [13, 16, 17, 24], have received much attention by researchers. At each iteration step of the Davidson-type methods,a corresponding correction equation needs to be solved, bringing elegant convergence rate except for the additional computational costs.

    Polynomial filtering techniques,consisting of matrix-vector products for the entire iteration process,are valuable tools to enhance those components of the wanted parts of the spectrum and weed out the unwanted ones, and have excellent success to obtain superior convergence factor for eigenvalue problems. Currently, the principal polynomial filtering methods are the filtered Lanczos method [1, 5]and the Chebyshev-Davidson method [30, 31] for symmetric matrix eigenvalue problems, and the Arnoldi-Chebyshev method[20,22]for non-symmetric matrix eigenvalue problems.

    In[14], Miao proposed a filtered Krylov-like sequence method for computing extreme eigenvalues and associated eigenvectors of symmetric matrices. The filtered Krylov-like sequence method combines the standard Krylov subspace method with polynomial filtering techniques,which results in a new method that behaves more stable and robust than the standard Krylov subspace method. In this paper, we aim to generalise the filtered Krylov-like sequence method from symmetric matrices to non-symmetric ones,whereas non-symmetric matrix eigrnvalue problems can be arbitrarily difficult since the eigenvalues of non-symmetric matrices are complex. Recall that for symmetric eigenvalue problems,we bring forward an interval containing the undesired eigenvalues in each iteration. Similarly,we should determine in advance a complex plane which contains the undesired eigenvalues for the non-symmetric matrix eigenvalue problems. Stated more rigorously,the complex plane is an ellipse which is expected to be found readily and efficiently but represents a significant challenge. In this paper,we come up with a convenient and useful way to determine an ellipse,which is of vital importance in complex Chebyshev accelerating techniques.

    The paper is organized as follows. In Section 2,we introduce some basic facts about the Chebyshev accelerating technique, and then generalise the filtered Krylov-like sequence method to non-symmetric matrices. In Section 3,we provide a practically useful way,although not optimal,to determine an ellipse.Some numerical examples are carried out in Section 4 to exhibit the advantages of the filtered Krylov-like sequence method,and,in the last section,we end this paper by some concluding remarks.

    2 The Filtered Krylov-Like Sequence Method

    Polynomial filter accelerating techniques have been explored extensively to improve the convergence properties and robustness of the Lanczos/Arnoldi and Davidson methods;see[5,12,20,26,31].

    We begin with some brief introductions on the Chebyshev accelerating techniques,and we refer to[20,21]for more details. Denote by{xi}ni=1the unit eigenvectors of the diagonalizable non-symmetric matrixA,and assume that the approximate eigenvectorxapproximatesx1and admits the eigen-decompositionx=μ1x1+μ2x2+···+μnxn. Then the resulting vectorzm=pm(A)xfiltered by a polynomialpm(λ)of degreemcan be represented as

    In order to ensure that vectorzmconverges to the desired eigenvectorx1, we prefer to seek a polynomialpm(λ) such that every|pm(λi)| (i/= 1) is as small as possible compared with|pm(λ1)|.As a matter of fact,it can be transformed technically to seek a polynomial achieving The performance of the filtered Krylov subspace method depends on the polynomial filterp(t) chosen in advance, thus, in order to gain an efficient polynomial filter, one should call other methods to obtain approximations for both desired and undesired eigenvalues to determine the parameters involved in the polynomial filter,e.g.,the ellipseE(d,c,a)involved in the complex Chebyshev polynomial[20].

    In fact,the filtered Krylov-like sequence method can overcome this drawback,because it can update the polynomial filtersp(j)(t)dynamically using the approximations obtained step by step, which shows great superiority over a fixed polynomial filter. In addition,the filtered Krylov-like sequence method also differs from the existing filtered Krylov subspace methods, e.g., the filtered Lanczos method in [5], in that the former method projects matrixAother thanp(A)(p(t)is the polynomial filter)onto the current approximate subspace to extract the desired eigenpair.

    Next,we present the filtered Krylov-like sequence method for finding eigenvalues with largest real parts,which is also suitable for finding eigenvalues with smallest real parts with minor modifications,of large and sparse non-symmetric matrices.

    Method 2.1 (The Filtered Krylov-Like Sequence Method)

    Step 1 of Method 2.1 presents the initialization procedure in which the filtered Krylov-like sequence method can be expected to be especially effective if the initial vector is constructed approximately well enough. In general, we can not, for reasons of eigenvector information shortage, start with the suitable approximate eigenvector. Alternatively,a random vector can be taken as the initial vector.

    Step 2(b)gives the choices of the best ellipse and the polynomial which are essential in the design of robust eigenvalue algorithms. The determination of the best ellipse will be covered in the later section,and the construction of?-1 polynomial filters in each iteration depends on the application of different problems. A simple choice, which is utilized in our numerical experiments, isp(1)(λ) =λ,p(j)(λ) =pj(λ),j= 2,3,··· ,?-1,wherepj(λ)is the scaled Chebyshev polynomial filter of degreejdefined in(2.3).

    Steps 2 (c)-(f) are the Rayleigh-Ritz process which can be summarized as follows. First, an orthonormal basis for the projection subspace in(2.4)is constructed. Next,the matrixHlof the projection by projecting matrixAonto the orthonormal basis of(2.4)is obtained. Then the desired eigenvalues or eigenvectors can be well approximated from those of the projected matrixHl. A first observation is that we can obtain the orthonormal basis of subspace(2.4)by applying the modified Gram-Schmidt procedure.Note also that loss of orthogonality can be severe if we assign parameterl(here and in what follows,we refer tolas therestartnumber) a large value, thereby performing some form of re-orthogonalization is often used,see reference[18]for details.

    3 Further Discussion

    which leads to the validity of the estimate in(3.1).

    If the imaginary parts of the undesired eigenvalues of matrixAare relatively small,that is,the ellipseE(d,c,a)determined by the Chebyshev iteration is fat,it is beneficial to compute the eigenvalues with the largest real parts. In fact,ifλ1is well separated from the others{λi}ni=2,say,the real or imaginary parts ofλ1is very large, which also indicates that|λ1-d|is relatively large compared witha, we can chose proper parametersaandcto ensure the maximum damping coefficientκas small as possible.

    However,for the case that the imaginary parts of the undesired eigenvalues of matrixAare dominant,if the ellipseE(d,c,a)determined by the Chebyshev iteration is thin, the upper bound ofκin Theorem 3.1 may be very large since|a|>|λ1-d| may hold. This is disadvantageous for us to compute the eigenvalues with the largest real parts but advantageous for us to compute the eigenvalues with the largest imaginary parts. Therefore, for computing the eigenvalues with the largest real parts in this case, in the actual realizations of the proposed method,we prefer to determine an ellipse which is closer to a fat one.We will discuss how to determine the ellipse briefly.

    According to Theorem 3.1, an applicable and effective method, based on the case that the imaginary (real) parts of the undesired eigenvalues of matrixAare dominant, can be carried out for the determination of the best ellipse. Now we present a synopsis of the method. For the detailed discussions,the reader is referred to the recent survey[15]. Let{λi}ni=r+1be those unwanted eigenvalues,x+= maxr+1≤i≤nRe(λi),x-= minr+1≤i≤nRe(λi)andy+= maxr+1≤i≤nIm(λi). Without loss of generality,we assume thatr=1. The algorithm to achieve this result is as follows.

    Algorithm 3.1 (Determine an ellipse)

    1. Inputx+,x-,y+,c,setξ=Re(λ1).

    Note thatλi,r+1≤i ≤nused in Algorithm 3.1 are unknown. In a practical implementation,we may exploit the Ritz values for eigenvalue approximations. To go a little further,a small enough parametercis selected in advance,for instance,c=0.01,and a smaller than 0.01 number does not noticeably affect the algorithm.

    4 Numerical Results

    In this section, we use one example to examine the numerical behavior of the filtered Krylov-like sequence (FKS) method and compare it with the Arnoldi-Chebyshev (AC) method [20],the Chebyshev-Davidson (CD) method, and the inexact rational Krylov sequence (IRKS) method, for computing eigenvalues with largest real parts of non-symmetric matrices. We also exhibit the numerical behavior of the filtered Krylov-like sequence method with the fixed polynomial filters(FKS-F).

    It is worth pointing out that the?- 1 polynomial filters of each iteration in the FSK method are flexible. In our practical implementations,p(1)(t) =t,p(j)(t) =cj(t),j= 2,3,··· ,?-1,wherecj(t)is a complex Chebyshev polynomial of degreejand?is the restart number mentioned earlier. Note also that the framework of the CD method for non-symmetric matrix eigenvalue problems differs slightly from that for symmetric ones in that an interval is replaced by an ellipse. Moreover,for the IRKS method,the Generalized Minimal Residual(GMRES)method is used to solve the inner correction equation and the iteration step is chosen to be equal to the degree of the Chebyshev filter. The experimental results indicate that the FKS method is superior to the other four approaches in terms both of the iteration counts(“IT”)and computing time(“CPU”),and very often in terms of the number of matrix-vector products(“MV”),with the IRKS method being slightly better on a MV aspect.

    Our numerical tests are implemented by making use of the MATLAB(version R2014b)on a personal computer with 2.6 GHz central processing unit(Intel Core i5), 8.00 GB memory, and Macintosh(OS X 10.10 Yosemite)operating system.

    Example 4.1 The test problem is derived from the following two-dimensional partial differential system

    on the unit square[-1,1]×[-1,1]with homogeneous Dirichlet boundary conditions. We denote byNthe number of interior nodes on each side of the square and byh= 1/(N+1) the mesh size, then by finite difference discretization on anN×Ngrid,we obtain the standard non-symmetric matrix eigenvalue problem(1.1). Note that the matrixAresulting from the discretization is of sizen=N2.

    In Example 4.1, we take the four choices of the coefficient functionsω(x,y),γ(x,y),μ(x,y) andν(x,y)as follows:

    Tables 1-4 show the numerical results of applying the five above-mentioned algorithms, to the problem described in Example 4.1 under four different sets of the coefficient functions. Herepandrestartrepresent the Chebyshev polynomial degree (≥2) and the iteration number of Arnoldi process respectively.

    Table 1 Numerical results for Example 4.1 with p=20

    Table 2 Numerical results for Example 4.1 with p=25

    Table 3 Numerical results for Example 4.1 with p=16

    Table 4 Numerical results for Example 4.1 with p=20

    As is shown, the FKS method clearly improves on the first three techniques (AC, CD and FKS-F)in terms of IT, CPU (in seconds) and MV. Note that the FKS method can significantly reduce the computational cost,since in most cases the execution times of the first three algorithms are three to four times higher than that of the FKS method, and when the total number of the matrix-vector products are counted the results of the FKS method are also found to be advantageous. As for the IRKS method wenotice that it can offer better performance than the FKS method with respect to the cost of matrix-vector operations,and the FKS seems to keep one step ahead of the IRKS concerning the total CPU time.

    Figures 1-2 depict the convergence history of the residual norms(RES)of the four different cases under rather arbitrary choices of the polynomial degreepand the restart number. Along the vertical axis and the horizontal axis we have‖r(k)‖and the iteration numbers respectively. We can notice from Figure 1 as well as Figure 2 that the CD and FKS-F methods tend to converge very slowly, and the number of iterations of the FKS method to achieve a 10-8reduction does not exceed 100,which is far below those required for the other four criteria. Figures 3-4 get some insight into the behavior of the matrix-vector operations of the FKS method in the four cases. As the restart number rises the curves of the MV of the FKS method are in a zigzag, exhibiting a non-monotonic behavior with respect to the restart number .Theoretical understanding of the optimal choice of the restart number, however, is still lacking. On the practical side,values of the restart number between 20 to 30 seem to be reliable for the FKS method.

    Figure 2 The pictures of the residual norms with respect to the number of iteration steps for the AC,CD,FKS-F,IRKS and FKS methods of case III (left) with restart= 27, p = 20 and case IV (right) with restart= 29, p = 20,where‘‘--”,‘‘-.”,‘‘.”,‘‘+”and‘‘-”represent the AC,CD,FKS-F,IRKS and FKS methods,respectively

    Figure 3 The pictures of the number of matrix-vector products with respect to the restart numbers for the FKS method of case I(left)and case II(right)

    Figure 4 The pictures of the number of matrix-vector products with respect to the restart numbers for the FKS method of case III(left)and case IV(right)

    5 Concluding Remarks

    In this paper, we generalized the filtered Krylov-like sequence method for computing eigenvalues with largest real parts of non-symmetric matrices. Numerical results showed great superiority of the new method over some state-of-the art methods. Admittedly, although the two parameters?andpaffect the convergence properties of the FKS method to a large extent, their optimal and practical selections are challenging issues to be considered.

    色播亚洲综合网| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩无卡精品| 国产精品久久久久久亚洲av鲁大| 久久精品91蜜桃| 亚洲 欧美 日韩 在线 免费| 精品一区二区三区视频在线观看免费| 三级国产精品欧美在线观看| 国产一级毛片七仙女欲春2| 午夜福利在线观看免费完整高清在 | 嫩草影院新地址| 少妇裸体淫交视频免费看高清| 久久久久久久精品吃奶| 午夜福利在线观看吧| 国产亚洲精品久久久com| bbb黄色大片| aaaaa片日本免费| 99热这里只有精品一区| 又爽又黄a免费视频| 啦啦啦观看免费观看视频高清| 中文字幕av在线有码专区| 看黄色毛片网站| 免费观看精品视频网站| 欧美日本视频| 99久久九九国产精品国产免费| 在线观看66精品国产| 精品一区二区三区视频在线观看免费| 人人妻人人澡欧美一区二区| 国产精品av视频在线免费观看| 五月玫瑰六月丁香| 琪琪午夜伦伦电影理论片6080| 亚洲aⅴ乱码一区二区在线播放| 国产亚洲精品久久久com| aaaaa片日本免费| 欧美中文日本在线观看视频| 国产美女午夜福利| 免费看日本二区| 一本精品99久久精品77| 国产伦精品一区二区三区四那| 色综合婷婷激情| 成人高潮视频无遮挡免费网站| 午夜两性在线视频| ponron亚洲| 最好的美女福利视频网| 国产欧美日韩一区二区三| 少妇的逼好多水| 欧美性猛交╳xxx乱大交人| 91在线精品国自产拍蜜月| 亚洲精品影视一区二区三区av| 日韩高清综合在线| 亚洲人成电影免费在线| 性欧美人与动物交配| 最近最新中文字幕大全电影3| 窝窝影院91人妻| 黄色一级大片看看| 国产亚洲精品久久久久久毛片| 国产精品亚洲一级av第二区| 日韩欧美 国产精品| 最好的美女福利视频网| 国产精品久久久久久精品电影| 天堂动漫精品| 国产欧美日韩精品亚洲av| 欧美性感艳星| 一区二区三区免费毛片| 桃红色精品国产亚洲av| 亚洲人与动物交配视频| 亚洲第一欧美日韩一区二区三区| 中文在线观看免费www的网站| a级一级毛片免费在线观看| 看片在线看免费视频| 赤兔流量卡办理| 国产精品一区二区三区四区免费观看 | 美女黄网站色视频| 久久精品综合一区二区三区| 一个人免费在线观看电影| 99久久无色码亚洲精品果冻| 午夜精品在线福利| 又爽又黄无遮挡网站| 亚洲久久久久久中文字幕| 夜夜躁狠狠躁天天躁| 日日摸夜夜添夜夜添av毛片 | 99久久九九国产精品国产免费| 亚洲一区二区三区色噜噜| 国产男靠女视频免费网站| 热99在线观看视频| 女生性感内裤真人,穿戴方法视频| 欧美xxxx黑人xx丫x性爽| 亚洲成人久久爱视频| 亚洲avbb在线观看| 最近最新中文字幕大全电影3| 成人精品一区二区免费| 亚洲最大成人中文| 午夜福利在线观看免费完整高清在 | 国产熟女xx| 在线观看66精品国产| 欧美又色又爽又黄视频| 久久精品夜夜夜夜夜久久蜜豆| 深夜精品福利| 免费大片18禁| 久久九九热精品免费| 麻豆av噜噜一区二区三区| 日韩欧美在线二视频| 成人欧美大片| 黄色配什么色好看| 欧美日韩黄片免| 男人舔女人下体高潮全视频| 久久久久久久久久黄片| 亚洲av一区综合| 日本一二三区视频观看| 两人在一起打扑克的视频| 国产单亲对白刺激| 男女那种视频在线观看| 在线国产一区二区在线| 国产毛片a区久久久久| 99视频精品全部免费 在线| 欧美不卡视频在线免费观看| 国产高潮美女av| 欧美bdsm另类| 精品久久国产蜜桃| 成人无遮挡网站| 欧美黄色淫秽网站| 国产色爽女视频免费观看| 18+在线观看网站| 熟女电影av网| 精品久久久久久,| 精品午夜福利在线看| 日本免费a在线| 成人性生交大片免费视频hd| 中文字幕免费在线视频6| 国产色婷婷99| 亚洲最大成人中文| 波多野结衣高清无吗| 午夜福利欧美成人| 久久久精品欧美日韩精品| 精品欧美国产一区二区三| 欧美日韩亚洲国产一区二区在线观看| 乱码一卡2卡4卡精品| 天天一区二区日本电影三级| 国产乱人视频| 国产精品一区二区三区四区久久| 久久6这里有精品| 成年免费大片在线观看| 亚洲三级黄色毛片| 日韩国内少妇激情av| 每晚都被弄得嗷嗷叫到高潮| 国产高清激情床上av| 国产精品自产拍在线观看55亚洲| 性色avwww在线观看| 蜜桃亚洲精品一区二区三区| 国产激情偷乱视频一区二区| 波野结衣二区三区在线| 精华霜和精华液先用哪个| 国产亚洲欧美在线一区二区| 亚洲精品久久国产高清桃花| 久久99热6这里只有精品| 亚洲在线自拍视频| 三级男女做爰猛烈吃奶摸视频| 欧美bdsm另类| 欧美性猛交╳xxx乱大交人| 日韩高清综合在线| 国产v大片淫在线免费观看| 亚洲中文日韩欧美视频| 亚洲成人免费电影在线观看| 18禁黄网站禁片免费观看直播| 久久精品综合一区二区三区| 亚洲欧美清纯卡通| 中出人妻视频一区二区| 亚洲av中文字字幕乱码综合| 午夜两性在线视频| 少妇丰满av| 亚洲av一区综合| 精品熟女少妇八av免费久了| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲精品综合一区在线观看| 日本黄大片高清| 国产蜜桃级精品一区二区三区| 日本a在线网址| 非洲黑人性xxxx精品又粗又长| 国产高清三级在线| 日本熟妇午夜| 亚洲精品在线美女| 亚洲美女视频黄频| 欧美日韩乱码在线| 热99re8久久精品国产| 夜夜躁狠狠躁天天躁| 网址你懂的国产日韩在线| 欧美日本亚洲视频在线播放| 麻豆国产97在线/欧美| 在线观看午夜福利视频| 欧美高清性xxxxhd video| 亚洲国产日韩欧美精品在线观看| 国产精品一区二区性色av| 欧美午夜高清在线| 一区二区三区四区激情视频 | 日本三级黄在线观看| 成人一区二区视频在线观看| 夜夜看夜夜爽夜夜摸| 国产伦精品一区二区三区视频9| 老熟妇仑乱视频hdxx| 久久精品国产亚洲av香蕉五月| 免费观看人在逋| 国产中年淑女户外野战色| 免费观看精品视频网站| 在线天堂最新版资源| 久久精品国产亚洲av香蕉五月| 一区二区三区四区激情视频 | 看免费av毛片| 中文亚洲av片在线观看爽| 少妇丰满av| 成人午夜高清在线视频| 午夜激情福利司机影院| 脱女人内裤的视频| 中文亚洲av片在线观看爽| 香蕉av资源在线| 亚洲精品影视一区二区三区av| 免费黄网站久久成人精品 | 丰满乱子伦码专区| 国产淫片久久久久久久久 | 欧美三级亚洲精品| 他把我摸到了高潮在线观看| 欧美成人a在线观看| 校园春色视频在线观看| 日本熟妇午夜| av中文乱码字幕在线| 丰满乱子伦码专区| 精品人妻熟女av久视频| 午夜久久久久精精品| 国产探花极品一区二区| 村上凉子中文字幕在线| 国产精品爽爽va在线观看网站| 99精品久久久久人妻精品| 精品一区二区三区av网在线观看| 亚洲专区国产一区二区| 一区福利在线观看| 一个人观看的视频www高清免费观看| 成人亚洲精品av一区二区| 婷婷亚洲欧美| 国产不卡一卡二| av视频在线观看入口| 一级av片app| 国产午夜精品论理片| 亚洲欧美日韩无卡精品| 偷拍熟女少妇极品色| 热99re8久久精品国产| 国产伦精品一区二区三区四那| 国产乱人视频| 午夜福利免费观看在线| 精品无人区乱码1区二区| 91在线观看av| 久久国产乱子伦精品免费另类| 精品免费久久久久久久清纯| 欧美极品一区二区三区四区| 欧美+日韩+精品| 人人妻人人澡欧美一区二区| 亚洲性夜色夜夜综合| 欧美黄色淫秽网站| 日日摸夜夜添夜夜添av毛片 | 日韩欧美精品v在线| 18禁在线播放成人免费| 美女高潮的动态| 在线观看舔阴道视频| 久久国产乱子伦精品免费另类| 日本a在线网址| 99热这里只有精品一区| 亚洲国产精品合色在线| 午夜免费成人在线视频| a级毛片a级免费在线| 日本撒尿小便嘘嘘汇集6| 亚洲,欧美,日韩| 97人妻精品一区二区三区麻豆| 欧美zozozo另类| 国内久久婷婷六月综合欲色啪| 国产精品国产高清国产av| 国产一区二区在线观看日韩| 欧美zozozo另类| 国产精品永久免费网站| 99视频精品全部免费 在线| 高清日韩中文字幕在线| 在线观看午夜福利视频| 国产在线精品亚洲第一网站| 精品一区二区三区视频在线观看免费| 哪里可以看免费的av片| 午夜精品久久久久久毛片777| 夜夜躁狠狠躁天天躁| 国产精品综合久久久久久久免费| 久久精品影院6| 国产成人aa在线观看| 国产精品人妻久久久久久| 午夜影院日韩av| 两个人视频免费观看高清| 国产成人啪精品午夜网站| 黄色日韩在线| 亚洲av免费在线观看| 国产成人aa在线观看| 午夜日韩欧美国产| 亚洲乱码一区二区免费版| 日韩欧美免费精品| 久久久国产成人精品二区| 成年版毛片免费区| 搡女人真爽免费视频火全软件 | 99久久精品一区二区三区| 成人毛片a级毛片在线播放| 亚洲av日韩精品久久久久久密| 成人鲁丝片一二三区免费| 人妻制服诱惑在线中文字幕| 午夜福利欧美成人| 男人的好看免费观看在线视频| 又爽又黄a免费视频| 人妻夜夜爽99麻豆av| 一个人免费在线观看的高清视频| 老司机午夜福利在线观看视频| 国产白丝娇喘喷水9色精品| 欧美黄色片欧美黄色片| 亚洲欧美日韩高清专用| 看片在线看免费视频| 人人妻人人澡欧美一区二区| 欧美日韩乱码在线| 亚洲不卡免费看| 99视频精品全部免费 在线| 丰满乱子伦码专区| 一卡2卡三卡四卡精品乱码亚洲| 日本熟妇午夜| 中文字幕人成人乱码亚洲影| 18美女黄网站色大片免费观看| 久久国产乱子免费精品| 久久久精品欧美日韩精品| 99久国产av精品| 全区人妻精品视频| 亚洲精品粉嫩美女一区| 最新在线观看一区二区三区| 国产精品乱码一区二三区的特点| 国产精品久久久久久精品电影| 亚洲成人久久爱视频| 一本综合久久免费| av国产免费在线观看| 精品久久久久久久末码| 啦啦啦韩国在线观看视频| 午夜福利在线在线| 欧美zozozo另类| 十八禁国产超污无遮挡网站| 欧美+亚洲+日韩+国产| 亚洲av一区综合| 久久精品国产亚洲av天美| 精品一区二区三区人妻视频| 国产精品爽爽va在线观看网站| 老司机福利观看| 亚洲第一区二区三区不卡| 亚洲av电影在线进入| 免费看日本二区| 夜夜看夜夜爽夜夜摸| 欧美一区二区亚洲| 亚洲天堂国产精品一区在线| 精品一区二区三区人妻视频| 成人特级av手机在线观看| 蜜桃亚洲精品一区二区三区| 午夜两性在线视频| 国产三级黄色录像| 成人亚洲精品av一区二区| 在线观看66精品国产| 亚洲精品粉嫩美女一区| 色综合欧美亚洲国产小说| 亚洲电影在线观看av| 久久久精品欧美日韩精品| 亚洲久久久久久中文字幕| 日韩欧美 国产精品| 亚洲av第一区精品v没综合| 一本精品99久久精品77| 嫩草影视91久久| 色精品久久人妻99蜜桃| 亚洲中文日韩欧美视频| 五月伊人婷婷丁香| 午夜福利在线观看吧| 波多野结衣巨乳人妻| 18禁黄网站禁片免费观看直播| 1024手机看黄色片| 国产精品99久久久久久久久| 亚洲av免费在线观看| 欧美中文日本在线观看视频| 中文亚洲av片在线观看爽| 黄色视频,在线免费观看| 在线播放国产精品三级| 亚洲真实伦在线观看| 18禁裸乳无遮挡免费网站照片| 国产亚洲精品综合一区在线观看| 精品久久久久久久久亚洲 | 亚洲av免费高清在线观看| 欧美日韩国产亚洲二区| 亚洲综合色惰| 亚洲成人久久爱视频| 国产黄片美女视频| 国产一区二区在线av高清观看| 国产精品久久久久久久久免 | 十八禁网站免费在线| 日本撒尿小便嘘嘘汇集6| 一级黄色大片毛片| 听说在线观看完整版免费高清| 国产久久久一区二区三区| 12—13女人毛片做爰片一| 天美传媒精品一区二区| 淫妇啪啪啪对白视频| 国产野战对白在线观看| 欧美成人一区二区免费高清观看| 波多野结衣巨乳人妻| 男女做爰动态图高潮gif福利片| 麻豆国产av国片精品| 757午夜福利合集在线观看| 国产一区二区在线av高清观看| 欧美日韩亚洲国产一区二区在线观看| 成人毛片a级毛片在线播放| 老鸭窝网址在线观看| av专区在线播放| www日本黄色视频网| 国产人妻一区二区三区在| 国产精品乱码一区二三区的特点| 九色成人免费人妻av| 直男gayav资源| 亚洲 国产 在线| 嫩草影院入口| 日日摸夜夜添夜夜添av毛片 | 免费高清视频大片| 亚洲第一欧美日韩一区二区三区| 国产免费一级a男人的天堂| 天天躁日日操中文字幕| 日韩欧美在线乱码| 久久中文看片网| 成熟少妇高潮喷水视频| 日本免费一区二区三区高清不卡| 69av精品久久久久久| 在线播放无遮挡| 深夜精品福利| 内地一区二区视频在线| 欧美又色又爽又黄视频| 午夜精品在线福利| 国产毛片a区久久久久| 中文字幕免费在线视频6| 国内少妇人妻偷人精品xxx网站| 中国美女看黄片| 成人高潮视频无遮挡免费网站| 欧美性猛交黑人性爽| 久久国产精品人妻蜜桃| 久久精品国产自在天天线| 一进一出抽搐动态| 亚洲中文字幕日韩| 69人妻影院| 真人做人爱边吃奶动态| 亚洲,欧美精品.| 欧美另类亚洲清纯唯美| 日本五十路高清| 日韩亚洲欧美综合| av福利片在线观看| а√天堂www在线а√下载| 精品久久久久久久人妻蜜臀av| 亚洲激情在线av| 亚洲精品456在线播放app | 国产欧美日韩精品亚洲av| 欧美黄色片欧美黄色片| 亚洲人成伊人成综合网2020| 免费av不卡在线播放| 91麻豆精品激情在线观看国产| 熟女人妻精品中文字幕| 欧美精品啪啪一区二区三区| 在线免费观看的www视频| 一级黄片播放器| 国语自产精品视频在线第100页| 97超视频在线观看视频| 久久久久性生活片| 日韩精品中文字幕看吧| 亚洲av.av天堂| 别揉我奶头~嗯~啊~动态视频| 少妇熟女aⅴ在线视频| 午夜亚洲福利在线播放| 国产激情偷乱视频一区二区| 高清日韩中文字幕在线| 国产久久久一区二区三区| 18禁黄网站禁片免费观看直播| 很黄的视频免费| 日韩免费av在线播放| 欧美色视频一区免费| 波野结衣二区三区在线| 成人午夜高清在线视频| 国产熟女xx| 欧美一区二区国产精品久久精品| 国产 一区 欧美 日韩| 午夜a级毛片| 精品日产1卡2卡| 久久国产乱子免费精品| 在线免费观看不下载黄p国产 | 国产精品一区二区性色av| 久久性视频一级片| 在线观看66精品国产| 男女视频在线观看网站免费| 欧美不卡视频在线免费观看| 久久6这里有精品| 国产精品98久久久久久宅男小说| 免费搜索国产男女视频| 黄色日韩在线| 欧美成人a在线观看| 亚洲av二区三区四区| 97热精品久久久久久| 国产白丝娇喘喷水9色精品| 夜夜爽天天搞| 伦理电影大哥的女人| 99久久无色码亚洲精品果冻| 激情在线观看视频在线高清| 岛国在线免费视频观看| 欧美绝顶高潮抽搐喷水| 国产一区二区三区在线臀色熟女| 看黄色毛片网站| 中文字幕熟女人妻在线| 中文字幕av在线有码专区| 成人特级av手机在线观看| 波多野结衣巨乳人妻| 淫秽高清视频在线观看| 免费av观看视频| 露出奶头的视频| 精品久久久久久久人妻蜜臀av| 变态另类丝袜制服| 亚洲三级黄色毛片| 哪里可以看免费的av片| 日韩大尺度精品在线看网址| 变态另类丝袜制服| 免费观看精品视频网站| 长腿黑丝高跟| 成人一区二区视频在线观看| АⅤ资源中文在线天堂| 亚洲欧美日韩高清在线视频| 在线免费观看的www视频| 最近最新中文字幕大全电影3| 一进一出好大好爽视频| av黄色大香蕉| 精品一区二区免费观看| 又爽又黄a免费视频| 91麻豆精品激情在线观看国产| 国产日本99.免费观看| 国产三级在线视频| 桃色一区二区三区在线观看| 午夜福利18| 亚洲欧美精品综合久久99| 日韩中字成人| 成熟少妇高潮喷水视频| 在线观看一区二区三区| 人妻久久中文字幕网| 久久国产乱子免费精品| 国产单亲对白刺激| 搡老岳熟女国产| 蜜桃久久精品国产亚洲av| 热99在线观看视频| 国产久久久一区二区三区| 精品一区二区免费观看| 久久久久精品国产欧美久久久| 草草在线视频免费看| 直男gayav资源| 免费av毛片视频| 亚洲av成人精品一区久久| 国内揄拍国产精品人妻在线| bbb黄色大片| 日本黄大片高清| 熟女人妻精品中文字幕| 小说图片视频综合网站| 亚洲av一区综合| 欧美乱色亚洲激情| 国产精品女同一区二区软件 | 黄色配什么色好看| 欧美zozozo另类| 精品福利观看| 高清毛片免费观看视频网站| 动漫黄色视频在线观看| 国产淫片久久久久久久久 | 午夜久久久久精精品| 又粗又爽又猛毛片免费看| 性插视频无遮挡在线免费观看| 婷婷精品国产亚洲av| 一区二区三区免费毛片| 黄色日韩在线| a在线观看视频网站| 动漫黄色视频在线观看| 日韩亚洲欧美综合| 日韩免费av在线播放| bbb黄色大片| 欧美日本亚洲视频在线播放| 人妻久久中文字幕网| 日韩欧美一区二区三区在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 深夜精品福利| 窝窝影院91人妻| 国产精品爽爽va在线观看网站| 91狼人影院| 成人午夜高清在线视频| 欧美最新免费一区二区三区 | 99热这里只有是精品50| 国产av不卡久久| 国产亚洲精品综合一区在线观看| 少妇裸体淫交视频免费看高清| 白带黄色成豆腐渣| 美女cb高潮喷水在线观看| 99久久久亚洲精品蜜臀av| 免费在线观看成人毛片| 深夜a级毛片| 国产精品久久电影中文字幕| 国产精品一及| 国产伦精品一区二区三区四那| 舔av片在线| 亚洲欧美日韩东京热| 精品久久久久久久末码| 成年女人看的毛片在线观看| 亚洲人成电影免费在线| 亚洲真实伦在线观看| 成人亚洲精品av一区二区| 国产精品av视频在线免费观看| 99热这里只有是精品50| 国产精品爽爽va在线观看网站| 欧美绝顶高潮抽搐喷水| 毛片一级片免费看久久久久 | 成人一区二区视频在线观看| 极品教师在线免费播放|