馮振偉 梁積偉 章佩鋒 惠峰 宗浩 常小斌 李漢林 姜柳青 宇振昆 鄭萌
摘 要:在裂縫網(wǎng)絡(luò)系統(tǒng)中,天然裂縫的開啟與閉合、人工誘導(dǎo)縫的產(chǎn)生、壓裂縫的形成等都受到現(xiàn)今應(yīng)力場的影響。為對塔河地區(qū)南部定向井的施工提供科學(xué)依據(jù),通過巖芯觀察和全井壁微電阻率成像測井對塔河南部裂縫發(fā)育特征進行研究,利用鉆井誘導(dǎo)縫方位、偶極聲波測井及井壁崩落法對塔河地區(qū)南部現(xiàn)今地應(yīng)力方向進行探討。結(jié)果表明:塔河地區(qū)南部裂縫以高角度構(gòu)造裂縫為主體,與非構(gòu)造裂縫共同構(gòu)成了錯綜復(fù)雜的裂縫網(wǎng)絡(luò)系統(tǒng);現(xiàn)今應(yīng)力場最大水平主應(yīng)力方位為NE-SW向,優(yōu)勢方位為50°~55°。在現(xiàn)今地應(yīng)力的影響下,當(dāng)天然裂縫與現(xiàn)今應(yīng)力場最大水平主應(yīng)力方向一致時,裂縫開度增大,呈開啟狀態(tài),有效性變好。定向井盡可能地貫穿有效裂縫,鉆井優(yōu)選方位為NW-SE向,研究結(jié)果可為塔河南部定向鉆井提供可靠的地質(zhì)依據(jù)。
關(guān)鍵詞:現(xiàn)今地應(yīng)力;構(gòu)造裂縫;裂縫有效性;誘導(dǎo)縫方位;塔河地區(qū)
中圖分類號:TE 122
文獻標(biāo)志碼:A
文章編號:1672-9315(2022)05-0950-10
DOI:10.13800/j.cnki.xakjdxxb.2022.0514開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID):
Analysis of structural fracture effectiveness of Yijianfang Formation in the southern of Tahe area
FENG Zhenwei,LIANG Jiwei,ZHANG Peifeng,HUI Feng,ZONG Hao,CHANG Xiaobin,LI Hanlin,JIANG Liuqing,YU Zhenkun,ZHENG Meng
(1.School of Earth Sciences and Resources,Chang’an University,Xi’an 710054,China;2.No.4 Oil Production Plant,Changqing Oilfield Company,Yulin 718500,China)
Abstract:In the fracture network system,the opening and closing of natural fractures,the generation of artificially induced fractures and the formation of compressive fractures are affected by the current stress field.In order to provide scientific basis for the construction of directional wells? in the southern of Tahe area,the fracture development characteristics in the southern of Tahe area are examined through core observation and Formation MicroScanner Image.The current in-situ stress direction of the study area is discussed by using drilling induced fracture orientation,Dipole Shear Sonic Imager and borehole wall caving method.The results show that the fractures in the southern of Tahe area are dominated by high-angle structural fractures,which? constitutes an intricate fracture network system together with non-structural fractures.The maximum horizontal principal stress orientation of the present stress field is NE-SW direction,and the optimal orientation is 50°~55°.Under the influence of the present in-situ stress,when the direction of the natural fracture and the maximum horizontal principal stress of the present stress field are the same,the opening of the natural fracture increases,and the fracture is in the open state,and the effectiveness becomes stronger.The construction of directional wells should penetrate effective fractures as much as possible,that is,the preferred drilling orientation is NW-SE.The research results can provide a reliable geological basis for directional drilling in the southern of Tahe area.
Key words:present stress field;structural fracture;fracture effectiveness;orientation of induced fractures;Tahe area
0 引 言塔河地區(qū)在構(gòu)造運動和古巖溶作用的共同影響下,形成了以縫-洞儲集為主、多期成藏改造的油氣藏系統(tǒng),主要的儲集層為中-下奧陶統(tǒng)碳酸鹽巖儲層。張鳳生等綜合運用巖芯、常規(guī)測井、電成像測井和偶極橫波測井等方法準(zhǔn)確的評價塔河地區(qū)奧陶系儲層裂縫的有效性;丁文龍等通過FMI成像測井資料對塔河油田南部地區(qū)中-下奧陶統(tǒng)儲層裂縫及構(gòu)造應(yīng)力場進行了分析,塔河南部裂縫主要為構(gòu)造開啟縫和鉆井誘導(dǎo)縫,現(xiàn)今應(yīng)力場最大主應(yīng)力方向為NE向,古構(gòu)造應(yīng)力場最大水平主應(yīng)力方向為NNE向和NEE向;高玉飛等研究了塔河油田奧陶系儲層裂縫的傾角、走向、長度和充填特征等參數(shù),把裂縫劃分為前加里東、加里東、華力西和印支-燕山等4個期次;赫俊民等基于巖芯、測井和薄片資料對塔河地區(qū)中-下奧陶統(tǒng)天然裂縫發(fā)育特征及影響因素進行研究,把天然裂縫劃分為構(gòu)造裂縫、成巖裂縫和復(fù)合成因裂縫3類,裂縫的發(fā)育程度受到構(gòu)造作用、沉積作用和巖溶作用的控制;劉志遠(yuǎn)等對塔河油田托甫臺地區(qū)奧陶系一間房組裂縫發(fā)育特征進行研究,裂縫主要為高角度裂縫、低角度裂縫、共軛裂縫和誘導(dǎo)裂縫4類,走向主要集中在NEE70°~80°和NW300°~330°,傾角為70°~90°,裂縫發(fā)育明顯受到構(gòu)造作用和斷層的控制;李晉對塔里木盆地奧陶系縫洞型儲層進行研究,探討了油氣藏注水開發(fā)機理;姜林等利用流體包裹體均一溫度的方法對塔里木盆地輪南地區(qū)油氣成藏期次進行了厘定。目前,對于塔河地區(qū)現(xiàn)今應(yīng)力場及裂縫有效性的研究較少?,F(xiàn)今地應(yīng)力的方位通常與裂縫的有效性有著較為密切的關(guān)系,如果先存裂縫與現(xiàn)今應(yīng)力場最大水平主應(yīng)力方向垂直,裂縫在現(xiàn)今地應(yīng)力作用下趨于閉合,開度變小,對儲集空間和滲流通道的貢獻弱,有效性變差。如果現(xiàn)今地應(yīng)力方位與先存裂縫平行,裂縫面受到相對拉張的作用,裂縫開度變大,能夠增加儲集空間和改善滲流條件,有效性較好。因此,現(xiàn)今地應(yīng)力方位的研究具有重要的意義。綜合利用巖芯觀察、全井壁微電阻率成像測井、聲波測井等資料對塔河地區(qū)南部一間房組裂縫發(fā)育特征及現(xiàn)今地應(yīng)力方向進行研究,以期為定向鉆井提供科學(xué)依據(jù)。
1 地質(zhì)背景
1.1 構(gòu)造演化特征塔里木盆地是一個發(fā)育在太古代-早中元古代結(jié)晶基底與變質(zhì)褶皺基底之上的多旋回大型疊合盆地。塔河地區(qū)在大地構(gòu)造位置上位于塔里木盆地北部的沙雅隆起中段阿克庫勒凸起西部邊緣,東西向分別與哈拉哈塘凹陷及草湖凹陷相連,北部為雅克拉斷凸,南部與順托果勒低隆起和滿加爾坳陷相連(圖1),奧陶紀(jì)縫-洞型油氣藏是中國目前發(fā)現(xiàn)的第一個大型古生代海相碳酸鹽巖油氣藏。塔河地區(qū)南部先后經(jīng)歷了加里東中-晚期、海西期、印支-燕山期及喜馬拉雅期等一系列構(gòu)造演化運動,形成了眾多不同級別、多期疊加的斷裂體系。加里東中-晚期(中-晚奧陶世),受到原特提斯洋俯沖消減的影響,塔里木盆地的構(gòu)造體制由大陸伸展環(huán)境轉(zhuǎn)為聚斂擠壓環(huán)境,在南北向擠壓作用下,塔河南部形成了多組“X”形NNE向、NNW向剪切斷裂和近NE向的走滑斷裂。海西早期(中泥盆世晚期),北西-南東向擠壓應(yīng)力不斷增強,塔河地區(qū)發(fā)育多條大規(guī)模逆沖斷層。海西晚期(晚二疊世)塔河地區(qū)處于擠壓背景,早期斷裂發(fā)生左行走滑活動,引發(fā)上覆石炭系張扭變形,形成右階展布的雁列式正斷層。印支—燕山期的構(gòu)造運動相對平靜,并未使得塔河地區(qū)產(chǎn)生較大變形。喜馬拉雅時期,塔河油田的構(gòu)造地貌發(fā)生巨大改變,由早期的北高南低轉(zhuǎn)變?yōu)槟细弑钡偷谋眱A單斜構(gòu)造格局。
1.2 區(qū)域地層與沉積特征
沙雅隆起地區(qū)沉積地層發(fā)育齊全,震旦系-第四系地層自下而上均有發(fā)育。奧陶系地層自下而上發(fā)育有下統(tǒng)蓬萊壩組(Op)、中-下統(tǒng)鷹山組(Oy)、中統(tǒng)一間房組(Oyj)和上統(tǒng)恰爾巴克組(Oq)、良里塔格組(Ol)、桑塔木組(Os)(圖1(c))。塔河地區(qū)奧陶系除上統(tǒng)桑塔木組有較多碎屑巖之外,其它各組均為碳酸鹽巖,但各組的巖石組合和沉積序列含有較大的差異。塔河地區(qū)的沉積體系包括震旦系-泥盆系的海相碳酸鹽巖和碎屑巖沉積、石炭系-下二疊統(tǒng)海相-海陸交互相沉積以及上二疊統(tǒng)-第四系陸相沉積等三套沉積體系。早古生代時期,塔里木盆地在海平面上升的背景下呈現(xiàn)出“西臺東盆”的格局,至奧陶紀(jì),塔河地區(qū)在寒武紀(jì)海侵的基礎(chǔ)上持續(xù)海侵,發(fā)育了一套以碳酸鹽巖臺地-混積陸棚相沉積為主的沉積體系。塔河地區(qū)南部在中-下奧陶統(tǒng)為碳酸鹽巖臺地沉積,主要發(fā)育開闊臺地相,巖性為塊狀砂屑灰?guī)r,粉晶-泥晶灰?guī)r及白云巖;晚奧陶世沉積環(huán)境的水體較深,屬混積陸棚相沉積,巖性主要為灰色泥巖、粉砂巖與灰?guī)r的互層(圖1(c))。
2 裂縫發(fā)育特征
依據(jù)21口勘探井和10口開發(fā)井鉆井和測井資料,17口井取芯資料和13口井成像測井資料,對塔河地區(qū)南部裂縫進行研究,描述裂縫發(fā)育特征。
2.1 巖芯識別裂縫發(fā)育特征
巖芯觀察是識別裂縫發(fā)育特征最為直接有效的方法,通常可以用來識別和描述宏觀裂縫,可識別出裂縫的產(chǎn)狀、張開度、充填程度、形成期次等特征。塔河地區(qū)南部一間房組裂縫類型多樣,既有受構(gòu)造作用產(chǎn)生的構(gòu)造裂縫,又有受非構(gòu)造作用產(chǎn)生的溶蝕縫、壓溶縫等。其中,以高角度構(gòu)造縫占主導(dǎo)地位,主要特點為高角度(裂縫傾角75°~90°),規(guī)模大,開啟程度高,充填物主要為方解石或泥質(zhì),構(gòu)成裂縫網(wǎng)絡(luò)的主體格架。S112-1井發(fā)育一條垂直縫,高度40 cm,切穿巖心直徑,裂縫寬2 cm,方解石充填且充填程度達60%~70%(圖2(a))。S112-2井中取芯發(fā)現(xiàn)一大型直立縫,高度>3 m,寬5~9 mm,方解石充填且充填程度高(圖2(b))。S119-1井中發(fā)育垂直裂縫,縫寬>2 mm,方解石充填(圖2(c),(d))。T759井中發(fā)育兩條裂縫面互相垂直的泥質(zhì)半填充的垂直裂縫(圖2(e))。
塔河地區(qū)南部奧陶系一間房組還發(fā)育有大量的水平裂縫及微裂縫。水平裂縫充填物類型大多為泥質(zhì)充填或方解石充填(圖2(f))。微裂縫大多寬約為5~36 μm,長約為1~5 mm,微裂縫的特征通常表現(xiàn)為前期裂縫被方解石充填,后期形成的裂縫切穿鮞粒、亮晶方解石或前期方解石充填的裂縫(圖2(g),(h)),微裂縫錯綜復(fù)雜,部分微裂縫呈樹枝狀及網(wǎng)絡(luò)狀分布。微裂縫的存在,為儲集層的儲運網(wǎng)絡(luò)提供了最基本的滲濾通道,裂縫間相互連接,最終形成了以微裂縫為基本滲濾單元,微裂縫網(wǎng)絡(luò)連通主干裂縫的儲運系統(tǒng),為儲集層提供了有效的儲運空間。非構(gòu)造裂縫在研究區(qū)發(fā)育規(guī)模較小,但發(fā)育數(shù)量多、分布廣泛,與構(gòu)造裂縫共同構(gòu)成裂縫網(wǎng)絡(luò)系統(tǒng)(圖2(i))。
2.2 測井成像識別裂縫發(fā)育特征
全井壁微電阻率成像測井圖像具有清晰、直觀、分辨率高的特點,可以很好地反映出裂縫在二維剖面上的發(fā)育特征,包括裂縫的傾向、走向、張開程度、孔隙度、充填物性質(zhì)等。標(biāo)準(zhǔn)的裂縫在測井(FMI)圖像上表現(xiàn)為正弦曲線,曲線的最高點與最低點的連線方向指示裂縫的傾向,與該連線垂直的方向為裂縫的走向。在成像測井圖像上裂縫顏色可以反映充填物類型,開啟或被泥質(zhì)充填的裂縫通常表現(xiàn)為暗色(褐黑色)條紋縫,電阻率低(圖3(a)),被方解石等高電阻率礦物充填則表現(xiàn)為亮色(亮黃-白色)條紋縫(圖3(b))。
13口井的FMI測井圖像資料顯示裂縫的充填物類型主要為方解石充填和泥質(zhì)充填。天然裂縫的走向主要為NE-SW向、NW-SE向和近WE向(圖4)。
3 現(xiàn)今地應(yīng)力方向
現(xiàn)今應(yīng)力場最大水平主應(yīng)力方向與裂縫方向的相交關(guān)系,會對裂縫產(chǎn)生不同的影響,定向鉆井過程中,也應(yīng)考慮到應(yīng)力場的方向,盡可能的切穿有效裂縫。依據(jù)聲波測井的快橫波方位、井壁崩落方位和FMI測井所得到的誘導(dǎo)縫方位來綜合研究塔河地區(qū)南部現(xiàn)今應(yīng)力場方向。
3.1 誘導(dǎo)縫方向識別現(xiàn)今地應(yīng)力方向
鉆井誘導(dǎo)縫是在鉆井過程中,由井壁的拉伸破壞引起的,當(dāng)井壁應(yīng)力大于巖石的抗拉強度時形成,受到現(xiàn)今應(yīng)力場的控制,走向與現(xiàn)今應(yīng)力場最大水平主應(yīng)力方向一致。塔河南部誘導(dǎo)縫走向大體上呈北東向50°~55°左右(圖5),少量的誘導(dǎo)縫為北東20°左右,可能與相關(guān)層段內(nèi)斷層的活動性有關(guān)。塔河南部現(xiàn)今最大水平主應(yīng)力方向應(yīng)為北東-南西向。
3.2 聲波測井識別現(xiàn)今地應(yīng)力方向
在聲波測井(DSI)圖上計算出的快橫波優(yōu)勢方位可以指示誘導(dǎo)縫發(fā)育的方向,其方向通常與現(xiàn)今最大水平主應(yīng)力方向一致,因此,快橫波優(yōu)勢方位也可以用來作為一個確定現(xiàn)今應(yīng)力場最大水平主應(yīng)力方向的標(biāo)志。對塔河南部各單井的快橫波優(yōu)勢方位進行研究發(fā)現(xiàn),均為北東向(圖6),優(yōu)選方位為45°~78°。通過聲波測井的快橫波優(yōu)勢方位與現(xiàn)今應(yīng)力場最大水平主應(yīng)力方向的關(guān)系推導(dǎo)可知,塔河地區(qū)南部現(xiàn)今最大水平主應(yīng)力方向為北東向,與FMI測井成像的誘導(dǎo)縫方位所確定的現(xiàn)今最大水平主應(yīng)力方向結(jié)果一致。
3.3 井壁崩落方位識別現(xiàn)今地應(yīng)力方向
井壁崩落主要是由于井壁周圍的應(yīng)力集中造成,當(dāng)井壁處的壓應(yīng)力集中達到或超過巖石剪切破裂所需的應(yīng)力時,產(chǎn)生井壁崩落。應(yīng)力場導(dǎo)致井壁崩落具有明顯的長軸優(yōu)勢方位,由于井壁崩落橢圓的長軸優(yōu)勢方位通常與最小水平主應(yīng)力方向一致,即與最大水平主應(yīng)力方向垂直,可以利用井壁崩落橢圓來確定現(xiàn)今應(yīng)力場最大水平主應(yīng)力方向。通過對塔河地區(qū)南部井壁崩落井段的成像資料進行研究(圖7),認(rèn)為井壁崩落方向大體上為NW-SE向,可以判斷出研究區(qū)現(xiàn)代應(yīng)力場最大水平主應(yīng)力方向為NE-SW向。
塔河地區(qū)南部快橫波方位穩(wěn)定,基本一致,總體為北東向;FMI測井圖像資料顯示,誘導(dǎo)縫走向為北東-南西向,優(yōu)選方位為北東向50°~55°;井壁垮塌崩落的方位大體上呈北西-南東向,現(xiàn)今應(yīng)力場最大水平主應(yīng)力方向與之垂直。塔河地區(qū)現(xiàn)今應(yīng)力場最大水平主應(yīng)力方向為NE-SW向,大致為北東向55°。
4 裂縫有效性
裂縫有效性受充填程度、張開度、構(gòu)造運動、溶蝕作用及現(xiàn)今應(yīng)力場方向與裂縫走向的關(guān)系等因素影響。塔河地區(qū)一間房組裂縫按充填情況可以分為全充填、半充填和未充填裂縫,全充填裂縫為無效裂縫,半充填和未充填裂縫為有效裂縫。統(tǒng)計研究區(qū)一間房組裂縫的充填情況,全充填裂縫占55.37%,半充填裂縫占40.93%,未充填裂縫占3.7%,充填物類型主要為方解石充填和泥質(zhì)充填。
裂縫的有效性還與現(xiàn)今地應(yīng)力方向密切相關(guān),在現(xiàn)今地應(yīng)力的影響下,會對垂直或高角度相交于現(xiàn)今最大水平主應(yīng)力方向的裂縫進行擠壓,減小該方向裂縫的開度,裂縫趨于閉合,有效性變差;而對于與現(xiàn)今最大主應(yīng)力方向平行的裂縫,相應(yīng)的巖石會向裂縫兩側(cè)擠壓,裂縫面受到相對拉張的作用,有利于增加裂縫的開度,裂縫呈開啟狀態(tài),有效性變好。通過對塔河南部天然裂縫的走向與相應(yīng)的裂縫寬度進行統(tǒng)計得知,裂縫開度較大、有效性較好的裂縫走向主要呈北東-南西向,與現(xiàn)今應(yīng)力場最大水平主應(yīng)力方向一致。在定向鉆井過程中,與有效裂縫高角度相交的方位為最佳鉆井方位,即選擇NW向,可以更多地切穿有效裂縫,提高鉆井成功率(圖8)。
5 結(jié) 論
1)塔河南部一間房組裂縫極度發(fā)育,其中以高角度構(gòu)造裂縫占主導(dǎo)地位,構(gòu)成裂縫網(wǎng)絡(luò)的主體,溶蝕縫和壓溶縫規(guī)模相對較小,和構(gòu)造裂縫共同構(gòu)成了復(fù)雜的裂縫網(wǎng)絡(luò)系統(tǒng)。
2)塔河南部現(xiàn)今應(yīng)力場最大水平主應(yīng)力方向呈NE-SW向。
3)NE-SW向裂縫開度增大,呈開啟狀態(tài),有效性較好,側(cè)鉆方向選擇NW-SE向會更多地鉆穿有效裂縫,提高鉆井成功率。
參考文獻(References):
[1]ZHAN Zhaowen,ZOU Yanrong,PAN Changchun,et al.Origin,charging,and mixing of crude oils in the Tahe oilfield,Tarim Basin,China[J].Organic Geochemistry,2017,108:18-29.
[2]李陽,金強,鐘建華,等.塔河油田奧陶系巖溶分帶及縫洞結(jié)構(gòu)特征[J].石油學(xué)報,2016,37(3):289-298.LI Yang,JIN Qiang,ZHONG Jianhua,et al.Karst zonings and fracture-cave structure characteristics of Ordovician reservoirs in Tahe oilfield,Tarim Basin[J].Acta Petrolei Sinica,2016,37(3):289-298.
[3]李陽,侯加根,李永強.碳酸鹽巖縫洞型儲集體特征及分類分級地質(zhì)建模[J].石油勘探與開發(fā),2016,43(4):600-606.LI Yang,HOU Jiagen,LI Yongqiang.Features and hierarchical modeling of carbonate fracture-cavity reservoirs[J].Petroleum Exploration and Development,2016,43(4):600-606.
[4]高玉飛,鐘建華.塔河油田四區(qū)奧陶系儲層裂縫特征及其意義[J].西北地質(zhì),2013,46(2):186-194.GAO Yufei and ZHONG Jianhua.The characters of fractures and its significance of the reservoir in Ordovician in Ordovician the Forth Block of Tahe oilfield[J].Northwestern Geology,2013,46(2):1296-1310.
[5]李陽.塔河油田碳酸鹽巖縫洞型油藏開發(fā)理論及方法[J].石油學(xué)報,2013,34(1):115-121.LI Yang.The theory and method for development of carbonate fractured-cavity reservoirs in Tahe oilfield[J].Acta Petrolei Sinica,2013,34(1):115-121.
[6]商曉飛,段太忠,張文彪,等.斷控巖溶主控的縫洞型碳酸鹽巖內(nèi)部溶蝕相帶表征——以塔河油田10區(qū)奧陶系油藏為例[J].石油學(xué)報,2020,41(3):329-341.SHANG Xiaofei,DUAN Taizhong,ZHANG Wenbiao,et al.Characterization of dissolution facies belt in fracture-cavity carbonate rocks mainly controlled by fault-controlling karst:A case study of Ordovician reservoirs in the Block 10 of Tahe oilfield[J].Acta Petrolei Sinica,2020,41(3):329-341.
[7]張鳳生,司馬立強,趙冉,等.塔河油田儲層裂縫測井識別和有效性評價[J].測井技術(shù),2012,36(3):261-266.ZHANG Fengsheng,SIMA Liqiang,ZHAO Ran,et al.Log identification and effectiveness evaluation on reservoir fractures in Tahe oilfield[J].Well Logging Technology,2012,36(3):261-266.
[8]丁文龍,漆立新,呂海濤,等.利用 FMI資料分析塔河油田南部中-下奧陶統(tǒng)儲層構(gòu)造應(yīng)力場[J].現(xiàn)代地質(zhì),2009,23(5):853-859.DING Wenlong,QI Lixin,LV Haitao,et al.Analysis of the lower-middle ordovician reservoir tectonic stress field using FMI data in the south of Tahe oilfield[J].Geoscience,2009,23(5):853-859.
[9]高玉飛,鐘建華,艾合買提江,等.塔河油田四區(qū)奧陶系裂縫特征及其成因機制研究[J].中國地質(zhì),2009,36(6):1257-1267.GAO Yufei,ZHONG Jianhua,AHMATJAN,et al.Characteristics and formation mechanism of fissures in Ordovician strata of No.4 Block,the Tahe oilfield[J].Geology in China,2009,36(6):1257-1267.
[10]赫俊民,王小垚,孫建芳,等.塔里木盆地塔河地區(qū)中-下奧陶統(tǒng)碳酸鹽巖儲層天然裂縫發(fā)育特征及主控因素[J].石油與天然氣地質(zhì),2019,40(5):1022-1030.HAO Junmin,WANG Xiaoyao,SUN Jianfang,et al.Characteristics and main controlling factors of natural fractures in the Lower-to-Middle Ordovician carbonate reservoirs in Tahe area,Northern Tarim Basin[J].Oil & Gas Geology,2019,40(5):1022-1030.
[11]劉志遠(yuǎn),冒海軍,鄢宇杰,等.塔河油田托甫臺區(qū)塊奧陶系一間房組裂縫分布特征[J].地質(zhì)科技情報,2019,38(5):64-80.LIU Zhiyuan,MAO Haijun,YAN Yujie,et al.Distribution characteristics of fractures in the Ordovician Yijianfang Formation in Tuofutai area,Tahe oilfield[J].Geological Science and Technology Information,2019,38(5):64-80.
[12]李晉,鄭劍鋒,季漢成,等.塔里木盆地奧陶系碳酸鹽巖縫洞型油氣藏注水開發(fā)機理[J].西安科技大學(xué)學(xué)報,2017,37(6):852-859.LI Jin,ZHENG Jianfeng,JI Hancheng,et al.Water injection development mechanism of carbonate fracture-cave reservoir in Ordovician,Tarim Basin[J].Journal of Xi’an University of Science and Technology,2017,37(6):852-859.
[13]姜林,薄冬梅,周波,等.塔里木盆地輪南地區(qū)油氣成藏期次分析[J].西安科技大學(xué)學(xué)報,2015,35(4):444-449.JIANG Lin,BO Dongmei,ZHOU Bo,et al.Hydrocarbon accumulation periods in Lunnan area of Tarim Basin[J].Journal of Xi’an University of Science and Technology,2015,35(4):444-449.
[14]CONNOLLY P,COSGROVE J.Prediction of fracture-induced permeability and fluid flow in the crust using experimental stress data[J].American Association of Petroleum Geologists Bulletin,1999,83(5):757-777.
[15]STEPHEN E,LAUBACH J,OLSON E,et al.Are open fractures necessarily aligned with maximum horizontal stress[J].Earth and Planetary Science Letters,2004,222(1):191-195.
[16]ZENG L B,LI X Y.Fractures in sandstone reservoirs with ultra-low permeability:A case study of the Upper Triassic Yanchang Formation in the Ordos Basin,China[J].American Association of Petroleum Geologists Bulletin,2009,93(4):461-477.
[17]王珂,楊海軍,張惠良,等.超深層致密砂巖儲層構(gòu)造裂縫特征與有效性——以塔里木盆地庫車坳陷克深 8 氣藏為例[J].石油與天然氣地質(zhì),2018,39(4):719-729.WANG Ke,YANG Haijun,ZHANG Huiliang,et al.Characteristics and effectiveness of structural fractures in ultra-deep tight sandstone reservoir:A case study of Keshen 8 gas pool in Kuqa Depression,Tarim Basin[J].Oil and Gas Geology,2018,39(4):719-729.
[18]史今雄,曾聯(lián)波,譚青松,等.沁水盆地南部煤巖儲層天然裂縫有效性及對煤層氣開發(fā)的影響[J].石油與天然氣地質(zhì),2020,41(3):617-626.SHI Jinxiong,ZENG Lianbo,TAN Qingcong,et al.Effectiveness of natural fractures in CBM reservoirs and its influence on CBM development in the southern Qinshui Basin[J].Oil and Gas
Geology,2020,41(3):617-626.
[19]趙向原,胡向陽,曾聯(lián)波,等.四川盆地元壩地區(qū)長興組礁灘相儲層天然裂縫有效性評價[J].天然氣工業(yè),2017,37(2):52-61.ZHAO Xiangyuan,HU Xiangyang,ZENG Lianbo,et al.Evaluation on the effectiveness of natural fractures in reef-flat facies reservoirs of Changxing Fm in Yuanba area,Sichuan Basin[J].Natural Gas Industry,2017,37(2):52-61.
[20]HE B Z,JIAO C L,XU Z Q,et al.The paleotectonic and paleogeography reconstructions of the Tarim Basin and its adjacent areas (NW China) during the late Early and Middle Paleozoic[J].Gondwana Research,2016,30:191-206.
[21]MA X X,SHU L S,SANTOSH M,et al.Paleoproterozoic collisional orogeny in central Tianshan:Assembling the tarim block within the columbia supercontinent[J].Precambrian Research,2013,228:1-19.
[22]LIN C S,YANG H J,LIU J Y,et al.Sequence architecture and depositional evolution of the Ordovician carbonate platform margins in the Tarim Basin and its response to tectonism and sea-level change[J].Basin Research,2011,24:1-24.
[23]TIAN F,JIN Q,LU X B,et al.Multi-layered ordovician paleokarst reservoir detection and spatial delineation:A case study in the Tahe oilfield,Tarim Basin,Western China[J].Marine and Petroleum Geology,2016,69:53-73.
[24]WU J,F(xiàn)AN T L,GAO Z Q,et al.Identification and characteristic analysis of carbonate cap rock:A case study from the Lower-Middle Ordovician Yingshan Formation in Tahe oilfield,Tarim Basin,China[J].Journal of Petroleum Science and Engineering,2018,164:362-381.
[25]康玉柱.中國海相油氣田勘探實例之四:塔里木盆地塔河油田的發(fā)現(xiàn)與勘探[J].海相油氣地質(zhì),2005,10(4):31-38.KANG Yuzhu.Cases of discovery and exploration of marine fields in China (Part 4):Tahe oilfield in Tarim basin[J].Marine Origin Petroleum Geology,2005,10(4):31-38.
[26]王斌,楊毅,曹自成,等.塔河油田中下奧陶統(tǒng)儲層裂縫方解石脈U-Pb同位素年齡及油氣地質(zhì)意義[J].地球科學(xué),2021,46(9):3203-3216.WANG Bin,YANG Yi,CAO Zicheng,et al.U-Pb dating of calcite veins developed in the Middle-Lower Ordovician reservoirs in Tahe oilfield and its petroleum geologic significance in Tahe oilfield[J].Earth Science,2021,46(9):3203-3216.
[27]DENG S,LI H L,ZHANG Z P,et al.Structural characterization of intracratonic strike-slip faults in the central Tarim Basin[J].American Association of Petroleum Geologists Bulletin,2019,103(1):109-137.
[28]張文彪,段太忠,李蒙,等.塔河油田托甫臺區(qū)奧陶系斷溶體構(gòu)型類型及表征方法[J].石油勘探與開發(fā),2021,48(1):1-12.ZHANG Wenbiao,DUAN Taizhong,LI Meng,et al.Architecture characterization of Ordovician fault-controlled paleokarst carbonate reservoirs in Tuoputai,Tahe oilfield,NW China[J].Petroleum Exploration and Development,2021,48(1):1-12.
[29]LI S Z,ZHAO S J,LIU X,et al.Closure of the proto-tethys ocean and early paleozoic amalgamation of microcontinental blocks in east asia[J].Earth-Science Reviews,2018,186:37-75.
[30]WANG Q,LI S Z,ZHAO S J,et al.Early paleozoic tarim orocline:Insights from paleogeography and tectonic evolution in the Tarim Basin[J].Geological Journal,2017,52(1):1-13.
[31]張三,金強,孫建芳,等.塔河地區(qū)奧陶系巖溶斜坡峰丘高地的形成及油氣地質(zhì)意義[J].石油勘探與開發(fā),2021,48(2):303-313.ZHANG San,JIN Qiang,SUN Jianfang,et al.Formation of hoodoo-upland on Ordovician karst slope and its significance in petroleum geology in Tahe area,Tarim Basin,NW China[J].Petroleum Exploration and Development,2021,48(2):303-313.
[32]韓劍發(fā),蘇洲,陳利新,等.塔里木盆地臺盆區(qū)走滑斷裂控儲控藏作用及勘探潛力[J].石油學(xué)報,2019,40(11):186-194.HAN Jianfa,SU Zhou,CHEN Lixin,et al.Reservoir-controlling and accumulation-controlling of strike-slip faults and exploration potential in the platform of Tarim Basin[J].Acta Petrolei Sinica,2019,40(11):186-194.
[33]CHEN Q L,ZHAO Y Q,LI G R,et al.Features and controlling factors of epigenic karstification of the ordovician carbonates in Akekule arch,Tarim Basin[J].Journal of Earth Science,2012,23(4):506-515.
[34]FAN H,SHI J Y,F(xiàn)AN T L,et al.Sedimentary microfacies analysis of carbonate formation based on FMI and conventional logs:A case study from the ordovician in the Tahe oilfield,Tarim Basin,China[J].Journal of Petroleum Science and Engineering,2021,203(1):1-15.
[35]LIU J Y,LIN C S,YANG H J,et al.Three depositional models interpreting the late ordovician deep-water gravity flow systems in the Tarim Basin,Western China[J].Geological Journal,2018,53(5):1-18.
[36]梁積偉,李宗杰,劉昊偉,等.塔里木盆地塔河油田S108井區(qū)奧陶系一間房組裂縫性儲層研究[J].石油實驗地質(zhì),2010,32(5):447-452.LIANG Jiwei,LI Zongjie,LIU Haowei,et al.Characteristics of fracture reservoir of Ordovician Yijianfang Formation in S108 area of Tahe oilfield,Tarim Basin[J].Petroleum Geology & Experiment,2010,32(5):447-452.
[37]郝明強,劉先貴,胡永樂,等.微裂縫性特低滲透油藏儲層特征研究[J].石油學(xué)報,2007,28(5):93-98.HAO Mingqiang,LIU Xiangui,HU Yongle,et al.Reservoir characteristics of micro-fractured ultra-low permeability reservoirs[J].Acta Petrolei Sinica,2007,28(5):93-98.
[38]ZHU G Y,ZOU C N,YANG H J,et al.Hydrocarbon accumulation mechanisms and industrial exploration depth of large-area fracture cavity carbonates in the Tarim Basin,Western China[J].Journal of Petroleum Science and Engineering,2015,133:889-907.
[39]KHOSHBAKHT F,AZIZZADEH M,MEMARIAN H,et al.Comparison of electrical image log with core in a fractured carbonate reservoir[J].Journal of Petroleum Science and Engineering,2012,86:289-296.
[40]TINGAY M,MORLEY C,KING R,et al.Present-day stress field of Southeast Asia[J].Tectonophysics,2010,482(1):92-104.
[41]周倫先.成像測井技術(shù)在車鎮(zhèn)凹陷地應(yīng)力研究中的應(yīng)用[J].新疆石油地質(zhì),2009,30(3):369-372.ZHOU Lunxian.Application of imaging logging to study of terrestrial stress in Chenzhen sag,Shengli oilfield[J].Xinjiang Petroleum? Geology,2009,30(3):369-372.
[42]徐杰,周本剛,計鳳桔,等.中國東部海域及其鄰區(qū)現(xiàn)代構(gòu)造應(yīng)力場研究[J].地學(xué)前緣,2012,19(4):1-7.XU Jie,ZHOU Bengang,JI Fengju,et al.The recent tectonic stress field of offshore of China mainland and adjacent areas[J].Earth Science Frontiers,2012,19(4):1-7.
[43]曾維特,丁文龍,張金川,等.渝東南-黔北地區(qū)下寒武統(tǒng)牛蹄塘組頁巖裂縫有效性研究[J].地學(xué)前緣,2016,23(1):96-106.ZENG Weite,DING Wenlong,ZHANG Jinchuan,et al.Research on the fracture effectiveness of the Lower Cambrian Niutitang shale in the southeastern Chongqing and northern Guizhou areas[J].Earth science Frontiers,2016,23(1):96-106.