顧霖駿 申艷軍 王念秦 宋世杰 聶文杰
摘 要:煤矸石長期堆積是中國部分煤礦區(qū)特別是北方礦區(qū)表層土壤遭受重金屬污染的重要成因。為掌握中國煤矸石長期堆積區(qū)表層土壤中重金屬元素的潛在環(huán)境危害性及污染性特征,采用數(shù)理統(tǒng)計分析方法,研究中國煤炭主產(chǎn)區(qū)煤矸石重金屬含量的地域分布特征;通過重金屬潛在危害評價方法,評價煤矸石源重金屬元素在表層土壤中的遷移性及毒性,明確煤矸石中對環(huán)境潛在危害性突出的重金屬元素;結(jié)合煤矸石堆積地域分布特征,利用重金屬生物有效性原理,分析了這些污染元素在礦區(qū)表層土壤中的空間分布及形態(tài)分布特征。結(jié)果表明:中國煤矸石中Cr,Pb,Zn含量明顯高于其余常見重金屬元素,且西部煤矸石重金屬含量較東部、中部更高;煤矸石中Cd,Zn,Pb對土壤潛在污染程度在中等以上,各重金屬元素對環(huán)境的潛在危害程度E排序為:Cd>Pb>Cu>Zn>As>Cr;煤矸石堆積區(qū)表層土壤中,Cd的遷移性及其形態(tài)分布受外源干擾程度總體高于Pb;東、西部的Cd與東部的Pb對機體處于高暴露風險水平。研究成果可為中國煤矸石堆積區(qū)土壤重金屬污染針對性防治及修復工作提供較好借鑒。
關(guān)鍵詞:煤矸石;潛在危害評價;數(shù)理統(tǒng)計分析;重金屬污染特征;重金屬形態(tài)中圖分類號:TD 167
文獻標志碼:A
文章編號:1672-9315(2022)05-0942-08
DOI:10.13800/j.cnki.xakjdxxb.2022.0513開放科學(資源服務(wù))標識碼(OSID):
Pollution characteristics and potential risk accessment of heavy metals? in soil of coal gangue accumulation areas
GU Linjun,SHEN Yanjun,WANG Nianqin,SONG Shijie,NIE Wenjie
(1.College of Geology and Environment,Xi’an University of Science and Technology,Xi’an 710054,China;2.Geological Research Institute for Coal Green Mining,Xi’an University of Science and Technology,Xi’an 710054,China;3.Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation,Xi’an University of Science and Technology,Xi’an 710054,China)
Abstract:The long-term accumulation of coal gangue is an important cause of heavy metal pollution in the surface soil of some mining areas in China,especially in the northern mining areas.To grasp the potential environmental hazards and pollution characteristics of heavy metal elements in the surface soil of the long-term coal gangue accumulation areas in China,mathematical statistics,heavy metal pollution evaluation and heavy metal speciation analysis methods were comprehensively used.The contents of heavy metals in coal gangue in the main coal producing areas of China were analyzed.According to the geographical distribution characteristics of coal gangue,the mobility and toxicity of common heavy metal elements in coal gangue in the surface soil were evaluated,and the heavy metal elements with outstanding potential harm to the environment in coal gangue were identified.Spatial distribution and morphological distribution characteristics of polluting elements in the surface soil of the mining area were examined.The results show that the content of Cr,Pb and Zn in Chinese coal gangue is significantly higher than that in other common heavy metal elements,and the content of heavy metals in coal gangue in the western China is generally higher than that in? the eastern and central China.In coal gangues in China,the potential pollution degree of Cd,Zn,and Pb to soil is? above the medium level,and the potential hazardous degree(E)of various heavy metal elements to the environment are ranked as follows:Cd>Pb>Cu>Zn>As>Cr.In the surface soil of coal gangue accumulation areas in China,the mobility of Cd and the degree of external interference to its speciation are generally higher than those of Pb.In addition,Cd in the eastern and western China and Pb in the eastern China have a higher exposure risk to the organism.The research results can provide a good reference for the targeted prevention and remediation of soil heavy metal pollution in coal gangue accumulation areas in China.
Key words:coal gangue;potential risk assessment;mathematical statistics method;characteristics of heavy metal pollution;heavy metal speciation
0 引 言煤矸石是中國生產(chǎn)及堆存規(guī)模第一的工業(yè)固體廢棄物,年排放量約占原煤產(chǎn)量的10%~15%,累計積存量高達50~60億t。在“雙碳”戰(zhàn)略背景下,煤矸石資源化利用產(chǎn)業(yè)得到長足發(fā)展,但存在技術(shù)、產(chǎn)業(yè)更新滯后,盈利困難等不足,如何有序降低煤矸石堆存量、實現(xiàn)大宗量循環(huán)利用仍是煤炭行業(yè)綠色低碳轉(zhuǎn)型面臨的重要痛點。煤矸石長期堆積形成高勢能泥流型污染源,內(nèi)部重金屬持續(xù)釋放,經(jīng)運移擴散損毀水土環(huán)境,呈現(xiàn)隱蔽、持久、不可逆等污染特征。煤矸石長期堆積是中國部分煤礦區(qū),特別是北方礦區(qū)表層土壤遭受重金屬污染的重要成因,也是糧食主產(chǎn)區(qū)耕地生態(tài)紅線安全的重要威脅。中國學者高度重視煤矸石堆積區(qū)土壤重金屬污染問題。王興明等采用微核試驗方法對淮南北部礦區(qū)矸石山附近土壤重金屬作了生態(tài)毒性評價;馬驊等分析了不同PH值降水條件對矸石堆重金屬浸出率的影響;叢鑫等對煤矸石堆附近土壤重金屬作了潛在生態(tài)風險評價,認為Ni的生態(tài)損害性最為顯著;王萍等研究了貴州省中西部礦區(qū)矸石堆存造成耕地污染問題,通過土壤重金屬釋放試驗明確了造成污染的首要元素為Cd,在農(nóng)田稻米中具有顯著富集性;王延東等采用土壤基本理化指標測試手段及RAC評價方法,研究了矸石山重金屬在臨近最多風向土壤中的賦存特征與生態(tài)風險性。圍繞煤矸石源重金屬污染問題的研究重點聚焦重金屬含量分布、運移規(guī)律及環(huán)境風險評價方面,但在中國地域分區(qū)格局上,對煤矸石源重金屬的潛在生態(tài)風險及污染特征研究相對較少。采用數(shù)理統(tǒng)計方法分析不同煤炭主產(chǎn)區(qū)煤矸石重金屬含量的地域性分布特征,通過重金屬潛在危害評價方法,評估煤矸石重金屬對環(huán)境的潛在污染程度,明確其中具有顯著生態(tài)損害效應(yīng)的種類,利用生物有效性原理,剖析這些污染元素在煤矸石堆積區(qū)表層土壤中的空間分布及形態(tài)分布特征。
1 中國煤矸石重金屬元素潛在危害評價明確不同煤炭主產(chǎn)區(qū)潛在環(huán)境危害顯著的煤矸石重金屬元素,對于煤矸石源土壤重金屬污染針對性防治至關(guān)重要。
1.1 煤矸石重金屬含量分區(qū)統(tǒng)計步驟
微量元素中Cd,Pb,Cr,Hg與類金屬As毒性高,Zn,Cu,Ni等元素毒性次之,優(yōu)先選擇毒性中等以上的元素;將半數(shù)以上取樣點未測得元素含量的重金屬元素去除。將取樣點按東、中、西部進行分區(qū),對各取樣點煤矸石中6種常見重金屬含量進行分區(qū)統(tǒng)計(表1)。
1.2 煤矸石重金屬含量地域性分布特征中國煤矸石中Cr,Pb,Zn含量明顯高于其余常見重金屬含量(表1)。從煤矸石重金屬含量的地域分布角度看,東部煤矸石富集Zn,中部煤矸石富集Zn,Cr,西部煤矸石富集Cr,西部煤矸石中各重金屬平均含量較東部、中部更高(圖1(a))。將樣本總體平均值/中國土壤背景值稱為潛在富集指數(shù)C,用于表征在中國土壤環(huán)境背景下,若煤矸石中重金屬全部釋放對土壤造成的污染程度。參照單因子污染指數(shù)法對污染系數(shù)的分級標準,中國煤矸石常見重金屬元素中,對土壤潛在污染程度嚴重(C≥3)的有Cd(21.44)和Zn(7.08),潛在污染程度中等(2≤C<3)的是Pb(2.70),其他重金屬元素對土壤潛在污染程度均在輕度以下(C<2)。
1.3 煤矸石重金屬元素潛在危害性評價金屬毒性系數(shù)T可表征水體對重金屬敏感程度及重金屬對機體親和性,引入該指標用于綜合評價土壤重金屬元素的遷移性及毒性水平。將C與T的乘積記為E,用來表示煤矸石樣品中某一重金屬元素對土壤環(huán)境的潛在危害程度。E計算結(jié)果如圖1(b)所示,中國煤矸石中各重金屬元素對環(huán)境的潛在危害性排序為:Cd>Pb>Cu>Zn>As>Cr。
2 中國煤矸石堆積區(qū)土壤重金屬污染特征Cd,Pb濃度超標是導致中國耕地減產(chǎn)的常見原因,考慮到矸石堆中這2種元素對臨近土壤的潛在危害程度較高,掌握中國煤矸石堆積區(qū)表層土壤中Cd,Pb的污染特征對礦區(qū)生態(tài)恢復而言具有突出意義,有必要剖析兩者在礦區(qū)表層土壤中的空間分布及形態(tài)分布特征。
2.1 土壤重金屬含量空間分布特征重金屬主要通過風力搬運、徑流沖刷進行遷移,運移過程中重金屬濃度與到煤矸石堆積中心的水平距離L呈負相關(guān)。影響因素包括:①土壤吸附作用,土壤膠體及離子對重金屬吸附能力總體受到土壤物相組成及理化性質(zhì)的控制,偏移現(xiàn)象與不同空間地理位置土質(zhì)差異存在關(guān)聯(lián)性;②風化遷移作用,風化煤矸石形成大量飄塵,隨風力遷移沉降地表,造成重金屬最大濃度位置沿最大風向發(fā)生偏移;③地形高差作用,煤矸石山為高勢能泥流型堆積體,在水力沖蝕作用下重金屬溶出,通過地下水、徑流向下游遷移,并在沿途低洼地形中易大量沉積,出現(xiàn)重金屬聚集現(xiàn)象。煤矸石中重金屬進入土壤后,主要受黏土膠體吸附積聚于表層,0~40 cm為地面礦業(yè)活動造成表層土壤重金屬累積的主要影響深度,土深范圍內(nèi)重金屬濃度與土壤深度呈負相關(guān)性。40 cm以下重金屬濃度變化規(guī)律各異,與重金屬遷移轉(zhuǎn)化性質(zhì)密切相關(guān),若40 cm深度內(nèi)重金屬可遷移態(tài)含量占比大幅增加,重金屬將向土壤深層(>40 cm)大量富集。高硫煤矸石淋溶水呈酸性,入滲土壤后促使Cd等堿性金屬向弱酸提取態(tài)轉(zhuǎn)化,向下遷移擴散能力加強,進入40~60 cm深度后,因土壤含水率和有機質(zhì)大幅減少,重金屬遷移性降至最低,產(chǎn)生富集現(xiàn)象。在煤矸石堆積區(qū)表層土壤中重金屬富集深度主要為0~40 cm,但在酸性水入滲、礦業(yè)廢水灌溉等因素作用下將突破40 cm。
2.2 土壤重金屬形態(tài)分布特征在對土壤中重金屬形態(tài)進行分級方面,目前國際上尚無統(tǒng)一標準,實際測試中常用萃取方法,主要包括BCR法和Tessier法。以上述萃取方法為樣本選取標準,對中國部分典型煤矸石堆積區(qū)土壤中Cd,Pb化學形態(tài)分布情況進行了統(tǒng)計(表2)。
需要指出:①土壤取樣深度主要為0~20 cm;②土樣重金屬形態(tài)測試采用ICP-OES或ICP-MS方法;③BCR法和Tessier法在重金屬形態(tài)劃分上的對應(yīng)關(guān)系為,S對應(yīng)F和F,S對應(yīng)F,S對應(yīng)F,S對應(yīng)F,故統(tǒng)計數(shù)據(jù)可統(tǒng)一用BCR法表示。
從表2可以看出,在中國煤矸石堆積區(qū)表層土壤中Cd,Pb主要以S形態(tài)存在,平均含量都接近40%,S平均含量都超過20%,但比較S(該形態(tài)遷移性最強)對應(yīng)的平均含量,Cd要比Pb大,說明表層土壤中Cd遷移性總體比Pb大。Cd各形態(tài)變異系數(shù)排序為S(83%)>S(47%)>S(37%)>S(36%),Pb的相應(yīng)排序為S(80%)>S(65%)>S(53%)>S(46%),均介于10%到100%之間,兩者形態(tài)含量分布屬于中等強度變異。變異系數(shù)間接反映表層土壤中重金屬分布的均勻程度,亦或是受到外源干擾的強烈程度,除S外其余形態(tài)變異系數(shù)Pb均高于Cd,說明中國煤矸石堆積區(qū)表層土壤中Cd的形態(tài)分布受外源干擾程度總體高于Pb。
2.3 土壤重金屬生物有效性特征生物有效性是評價重金屬生物毒性的直接依據(jù)。BCR法4種形態(tài)的可給性規(guī)律為:S形態(tài)的重金屬均易被生物體吸收利用;S,S形態(tài)的重金屬需要經(jīng)過一定條件轉(zhuǎn)化后才能被生物體吸收利用,生態(tài)毒性中等;S形態(tài)的重金屬長期穩(wěn)定賦存于沉積物中,難以被生物吸收,生態(tài)毒性最小。對重金屬生物有效性水平進行分級,用C(i=1~4)表示對應(yīng)S形態(tài)重金屬含量占總量的百分比,引入系數(shù)K(C)、K(C+C),K(C)分別表示易利用、可利用、難利用3個等級。以此為分級標準,對表2中各煤礦矸石堆積區(qū)表層土壤中Cd,Pb作生物有效性分析(圖2)。
中國不同煤矸石堆積區(qū)表層土壤中,重金屬的生物有效性存在顯著區(qū)域性差異。在東部,Cd,Pb均存在K>K>K的規(guī)律,表現(xiàn)為生物難利用性;在中部,Cd,Pb均表現(xiàn)為生物可利用性;在西部,Cd,Pb分別表現(xiàn)為生物可利用性和生物難利用性。將重金屬對生物體暴露風險劃分為高(K<0.3)、中(0.3≤K<0.7)、低(K≥0.7)3個等級,基于這一分級標準可判斷東部和西部的Cd及東部的Pb對機體處于高暴露風險水平??傮w上,中國煤矸石堆積區(qū)表層土壤中,Cd,Pb表現(xiàn)為生物難利用性,對機體處于中等暴露風險水平。
3 結(jié) 論
1)中國煤炭主產(chǎn)區(qū)煤矸石中主要重金屬含量存在顯著的空間分布差異性特征,煤矸石中Cr,Pb,Zn含量明顯高于其余常見重金屬元素,東部煤矸石富集Zn,中部煤矸石富集Zn和Cr,西部煤矸石富集Cr,西部煤矸石中重金屬含量總體較東、中部更高。2)煤矸石中Cd,Zn,Pb 3種潛在環(huán)境危害性突出的重金屬元素對土壤潛在污染程度在中等以上,煤矸石中常見重金屬元素對土壤環(huán)境潛在危害程度E大小排序為Cd>Pb>Cu>Zn>As>Cr。3)煤矸石堆積區(qū)表層土壤中重金屬含量呈現(xiàn)水平偏移、豎向局部富集的分布特征。土壤剖面水平方向上重金屬含量最大值相對堆積中心發(fā)生偏移,主要影響因素包括土壤吸附、風化遷移和地形高差。4)煤矸石堆積區(qū)表層土壤中Cd,Pb的生物有效性存在明顯的區(qū)域性分布差異,比較重金屬的遷移性及形態(tài)分布特征所受外源干擾程度大小。
參考文獻(References):
[1]邱繼生,楊占魯,關(guān)虓,等.煤矸石陶粒混凝土微觀孔結(jié)構(gòu)特征及抗壓強度[J].西安科技大學學報,2020,40(1):110-117.
QIU Jisheng,YANG Zhanlu,GUAN Xiao,et al.Microscopic pore structure and compressive strength of coal gangue ceramsite concrete[J].Journal of Xi’an University of Science and Technology,2020,40(1):110-117.
[2]邱繼生,王民煌,關(guān)虓,等.鋼纖維煤矸石混凝土凍融后本構(gòu)關(guān)系試驗研究[J].西安科技大學學報,2018,38(5):743-750.QIU Jisheng,WANG Minhuang,GUAN Xiao,et al.Experimental study on constitutive relationship after freeze-thaw of steel fiber gangue concrete[J].Journal of Xi’an University of Science and Technology,2018,38(5):743-750.
[3]TANG Q,LI L,ZHANG S,et al.Characterization of heavy metals in coal gangue-reclaimed soils from a coal mining area[J].Journal of Geochemical Exploration,2018(MAR.5),186:1-11.
[4]王興明,張瑞良,王運敏,等.淮南某煤礦鄰近農(nóng)田土壤中重金屬的生態(tài)風險研究[J].生態(tài)環(huán)境學報,2016,25(5):877-884.WANG Xingming,ZHANG Ruiliang,WANG Yunmin,et al.Eco-toxicity effect of heavy metals in cropland soils collected from the vicinity of a coal mine in Huainan[J].Ecology and Environmental Sciences,2016,25(5):877-884.
[5]馬驊,任明強,趙賓.煤矸石毒性浸出及周邊土壤環(huán)境影響分析[J].能源環(huán)境保護,2017,31(3):55-57,25.MA Hua,REN Mingqiang,ZHAO Bin.Analysis of coal gangue leaching toxicity and influence on surrounding soil environment[J].Earth and Environment,2017,31(3):55-57,25.
[6]叢鑫,雷旭濤,付玲,等.海州煤礦矸石山周邊土壤重金屬污染特征及生態(tài)風險評價[J].地球與環(huán)境,2017,45(3):329-335.CONG Xin,LEI Xutao,F(xiàn)U Ling,et al.Pollution characteristics and ecological risk assessment of heavy metals in soils around the gangue heap of Haizhou coal mine,China[J].Earth and Environment,2017,45(3):329-335.
[7]王萍,劉靜,朱健,等.貴州省煤礦區(qū)污染農(nóng)田重金屬累積與遷移對生態(tài)環(huán)境的影響[J].湖北農(nóng)業(yè)科學,2019,58(21):68-72.WANG Ping,LIU Jing,ZHU Jian,et al.Influence of accumulation and migration of heavy metals in polluted farmland on ecological environment in coal mining area of Guizhou province[J].Hubei Agricultural Sciences,2019,58(21):68-72.
[8]王延東,李曉光,黎佳茜,等.煤矸石堆存區(qū)周邊土壤重金屬污染特征及風險評價[J].硅酸鹽通報,2021,40(10):3464-3471,3478.WANG Yandong,LI Xiaoguang,LI Jiaxi,et al.Heavy metal pollution characteristics and risk evaluation of soil around coal gangue stockpile area[J].Bulletin of the Chinese Ceramic Society,2021,40(10):3464-3471,3478.
[9]李雪.不同影響因素下熱區(qū)稻菜輪作土壤鎘形態(tài)分布及其生物有效性的研究[D].??冢汉D洗髮W,2018.LI Xue.Study on the form distribution and bioavailability of cadmium in rice-vegetable rotation soil in tropical area under different factors[D].Haikou:Hainan University,2018.
[10]羅成科,畢江濤,肖國舉,等.寧東基地不同工業(yè)園區(qū)周邊土壤重金屬污染特征及其評價[J].生態(tài)環(huán)境學報,2017,26(7):1221-1227.LUO Chengke,BI Jiangtao,XIAO Guoju,et al.Pollution characteristics and assessment of heavy metals in soil of different industry zones of Ningdong base in Ningxia,China[J].Ecology and Environmental Sciences,2017,26(7):1221-1227.
[11]代曉璐.煤矸石有益元素利用及有害元素污染分析[J].西部探礦工程,2019,31(2):151-153.Dai Xiaolu.Utilization of beneficial elements and pollution analysis of harmful elements in coal gangue[J].West-China Exploration Engineering,2019,31(2):151-153.
[12]PENG B,Li X,ZHAO W,et al.Study on the release characteristics of chlorine in coal gangue under leaching conditions of different pH values[J].Fuel,2018,217(APR.1):427-433.
[13]安茂國.兗州煤田煤矸石中敏感性元素動態(tài)淋濾特征及環(huán)境效應(yīng)評價[J].山東國土資源,2019,35(7):51-57.AN Maoguo.Dynamic leaching characteristics and environmental effects assessment of sensitive elements in coal gangue of Yanzhou coalfield[J].Shandong Land and Resources,2019,35(7):51-57.
[14]XU D J,SHI L Q,QU X Y,et al.Leaching behavior of heavy metals from coal gangue under the impact of site Ordovician limestone karst water from Shandong closed coal mines,North China[J].Energy & Fuels,2019,33(10),10016-10028.
[15]HUA C Y,ZHOU G Z,YIN X,et al.Assessment of heavy metal in coal gangue:distribution,leaching characteristic and potential ecological risk[J].Environmental Science and Pollution Research,2018(32):32321-32331.
[16]張敬凱,王春紅,姚文博,等.煤矸石在動態(tài)淋溶條件下重金屬的溶出特性[J].煤炭技術(shù),2018,37(12):323-325.ZHANG Jingkai,WANG Chunhong,YAO Wenbo,et al.Charactertics of heavy metal element dissolution of coal gangue under dynamic leaching condition[J].Coal Technology,2018,37(12):323-325.
[17]秦可敏.大同礦區(qū)煤中有害微量元素的賦存特征及其環(huán)境效應(yīng)[D].徐州:中國礦業(yè)大學,2019.QIN Kemin.Occurrence characteristics of hazardous trace elements in coal and their environmental effects in Datong mining area[D].Xuzhou:China University of Mining and Technology,2019.
[18]蘆根玲,張博,王毅斌,等.屯蘭礦煤矸石綜合治理模式研究[J].現(xiàn)代礦業(yè),2020,36(6):209-212.LU Genling,ZHANG Bo,WANG Yibin,et al.Study on coal gangue comprehensive treatment mode of Tunlan mine[J].Modern Mining,2020,36(6):209-212.
[19]駢煒,張敬凱,王金喜,等.礦區(qū)煤矸石淋溶對周邊地下水環(huán)境污染分析[J].河北工程大學學報(自然科學版),2016,33(3):80-84,108.PIAN Wei,ZHANG Jingkai,WANG Jinxi,et al.Environmental pollution of surrounding groundwater from coal gangue leaching in mining area[J].Journal of Hebei University of Engineering(Natural Science Edition),2016,33(3):80-84,108.
[20]QI W,HUANG Y,HE H,et al.Potential pollution of groundwater by dissolution and release of contaminants due to using gangue for backfilling[J].Mine Water and the Environment,2019,38(2):281-293.
[21]劉旭.淮南潘集采煤沉陷區(qū)重金屬分布賦存及生物累積特征研究[D].合肥:安徽大學,2019.LIU Xu.Chemical forms and bioaccumulation characteristics of heavy metals in subsidence area of Panji coal mining in Huainan,Anhui province,China[D].Hefei:Anhui University,2019.
[22]王旭東.皖北礦區(qū)固體廢棄物堆積地微量元素環(huán)境地球化學研究[D].合肥:中國科學技術(shù)大學,2019.WANG Xudong.Environmental geochemistry of trace element in solid waste dumping area of Wanbei coalfield[D].Hefei:University of Science and Technology of Chinan,2019.
[23]王麗艷,劉光正,王小東,等.江西省主要產(chǎn)煤區(qū)煤矸石堆特性研究[J].南方林業(yè)科學,2015,43(3):43-46.WANG Liyan,LIU Guangzheng,WANG Xiaodong,et al.Research on characteristics of coal gangue piles in main coal-produced region of Jiangxi province[J].South China Forestry Science,2015,43(3):43-46.
[24]廖四海,杜勇立,劉振華,等.煤矸石堆放地周圍土壤中重金屬的污染特性及評價[J].環(huán)境工程,2014,32(8):118-120,126.LIAO Sihai,DU Yongli,LIU Zhenhua,et al.The pollution characteristics and risk assessment of heavy metals in gangue piling site to surrounding soil[J].Environmental Engineering,2014,32(8):118-120,126.
[25]LI W P,SUN Y Q,YAO M,et al.Release activity and potential ecological risk assessment of heavy metals incoal gangue of Hancheng,China[J].International Journal of Energy and Power Engineering,2015,4(5):304-310.
[26]徐暢,張恩,師卓璇,等.甘肅阿干煤矸石的礦物組成與演變[J].礦物巖石,2018,38(2):114-119.XU Chang,ZHANG En,SHI Zhuoxuan,et al.Mineralogical composition and evolution of gangue in Agan area of Gansu province[J].Mineralogy and Petrology,2018,38(2):114-119.
[27]高琦.鄂爾多斯礦區(qū)煤矸石特征研究及綜合利用策略[D].南京:東南大學,2019.GAO Qi.Study on characteristic and comprehensive utilization strategy of coal gangue in Ordos mining area[D].Nanjing:Dongnan University,2019.
[28]YANG L,SONG J,BAI X,et al.Leaching behavior and potential environmental effects of trace elements in coal gangue of an open-cast coal mine area,inner Mongolia,China[J].Minerals,2016,6(2):50.
[29]周辰昕,李小倩,周建偉.廣西合山煤矸石重金屬的淋溶實驗及環(huán)境效應(yīng)[J].水文地質(zhì)工程地質(zhì),2014,41(3):135-141.ZHOU Chenxin,LI Xiaoqian,ZHOU Jianwei.Leaching experiment and environmental effect of heavy metals of coal gangue in Heshan mining area,Guangxi province[J].Hydrogeology & Engineering Geology,2014,41(3):135-141.
[30]孫亞喬,段磊,王曉娟,等.煤矸石酸性水釋放對土壤重金屬化學行為的影響[J].水土保持學報,2016,30(1):300-304,314.SUN Yaqiao,Duan Lei,Wang Xiaojuan,et al.Acid water of coal gangue piles on chemical behavior of heavy metals in soil[J].Journal of Soil and Water Conservation,2016,30(1):300-304,314.
[31]陳莉薇,陳海英,武君,等.利用Tessier五步法和改進BCR法分析銅尾礦中Cu、Pb、Zn賦存形態(tài)的對比研究[J].安全與環(huán)境學報,2020,20(2):735-740.CHEN Liwei CHEN Haiying WU Jun,et al.Comparative study on speciation of Cu,Pb and Zn from mining tailings via Tessier 5-step sequential extraction and improved BCR method[J].Journal of Safety and Environment,2020,20(2):735-740.
[32]LI H,JI H.Chemical speciation,vertical profile and human health risk assessment of heavy metals in soils from coal-mine brownfield,Beijing,China[J].Journal of Geochemical Exploration,2017,183(DEC.):22-32.
[33]秦勝,田莉雅,張劍.兗州礦區(qū)矸石山與周圍土壤中微量元素形態(tài)分析[J].中國煤炭,2010,36(10):125-127,140.QIN Sheng,TIAN Liya,ZHANG Jian.Speciation analysis of trace elements in the waste piles and surrounding soil in Yanzhou mine field[J].China Coal,2010,36(10):125-127,140.
[34]劉玥,喬棟,牛宏,等.煤礦周邊土壤重金屬形態(tài)特征及遷移轉(zhuǎn)化規(guī)律[J].中國煤炭,2016,42(3):115-120.LIU Yue,QIAO Dong,NIU Hong,et al.Morphological characteristics and migration and transformation rule of heavy metals in soil around the coal mine[J].China Coal,2016,42(3):115-120.
[35]龐少鵬.煤礦區(qū)土壤-作物系統(tǒng)重金屬生物有效性研究[D].焦作:河南理工大學,2015.PANG Shaopeng.The bioavailability of heavy metals in soil-crop system in coal-mining region[D].Jiaozuo:Henan Polytechnic University,2015.
[36]張鋰.黃土高原地區(qū)煤礦土壤重金屬污染調(diào)查研究及生態(tài)風險評價[D].蘭州:西北師范大學,2007.ZHANG Li.Investigation on heavy metal contamination in soils and risk assessment of eco-environment Honggu coal-mining area of Lanzhou,Loess Plateau in northwest China[D].Lanzhou:Northwest Normal University,2007.
[37]吳先亮,黃先飛,李朝嬋,等.黔西煤礦區(qū)土壤重金屬污染水平及其形態(tài)[J].水土保持研究,2018,25(6):335-341.WU Xianliang,HUANG Xianfei,LI Chaochan,et al.Soil heavy metal pollution degrees and metal chemical forms around the coal mining area in western Guizhou[J].Research of Soil and Water Conservation,2018,25(6):335-341.