• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Unprecedented Record Low Antarctic Sea-ice Extent during Austral Summer 2022

    2022-10-27 09:44:16JinfeiWANGHaoLUOQinghuaYANGJipingLIULejiangYUQianSHIandBoHAN
    Advances in Atmospheric Sciences 2022年10期

    Jinfei WANG, Hao LUO*, Qinghua YANG, Jiping LIU, Lejiang YU, Qian SHI, and Bo HAN

    1School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China

    2Department of Atmospheric and Environmental Sciences University at Albany,State University of New York, New York 12222, USA

    3Ministry of Natural Resources Key Laboratory for Polar Science,Polar Research Institute of China, Shanghai 200136, China

    ABSTRACT

    Key words: Antarctic, record low, sea ice budget, atmospheric circulation

    1. Introduction

    Changes in Antarctic sea ice cover can affect heat, moisture, and gas exchanges between the atmosphere and ocean(Raphael, 2003; Kurtz et al., 2011; S?ren et al., 2011), freshwater input, ocean circulation (Aagaard and Carmack, 1989; Kirkman and Bitz, 2011; Ferrari et al., 2014), local weather systems, and global climate change (Vihma, 2014; Smith et al.,2017; Ayres and Screen, 2019). Contrary to the rapid decline of the Arctic sea ice extent (SIE) in the context of global warming(Stroeve et al., 2007; Notz and Stroeve, 2016; Serreze and Meier, 2019), Antarctic SIE displays a modest increasing trend of ~1.0% ± 0.5% per decade since late 1978 (Parkinson, 2019), masking significant interannual and regional variations (Liu et al., 2004; Stammerjohn and Maksym, 2016; Yuan et al., 2017; Maksym, 2019). Annual mean Antarctic SIE hit a record high in 2014 (12.8 million km2) after a long-term increase since 1978 and then plunged to a record low in 2017 (10.7 million km2). The reasons behind the variability of Antarctic sea ice are complicated, and various mechanisms have been proposed(Hobbs et al., 2016; Maksym, 2019; Eayrs et al., 2021). Seasonal minimum SIE also hit a record low (2.3 million km2) on 1 March 2017. However, it has been broken after merely five years, as SIE reached 1.9 million km2on 25 February 2022.This is the first time SIE has reached below 2 million km2since satellite observation began, and this record low is ~30%lower than 1981-2010 climatology (Fig. 1a). This lowest SIE mainly resulted from large negative SIE anomalies in the Bellingshausen/Amundsen Seas, the Weddell Sea, and the western Indian Ocean sector (Fig. 1b).

    In a very recent publication, Raphael and Handcock (2022) commented that the new record SIE minimum in austral summer 2022 might have been caused by the early retreat of the ice in August 2021. Here, we examine the relative roles of dynamics and thermodynamics in contributing to the extremely low Antarctic SIE in spring and summer 2022 through a sea ice concentration (SIC) budget analysis.

    Fig. 1. (a) Time series of Antarctic sea ice extent (SIE) from 1 August to 28 February of the next year during 2016-17 (grey)and 2021-22 (blue), and average SIE based on the period 1981-2010 (black) with two standard deviations (SDs; grey shade).The red vertical line indicates the date (8 February) when 2022 SIE is beyond the range of two SDs of the climatology.(b) Sea ice concentration (SIC) distribution for austral summer (December to February 2022) with an outline of the 30-year(1981-2010) average SIC (orange line), an outline of the minimum SIC on 25 February (cyan line), and an outline of 2016-17 summer average SIC (grey line). The outlines are defined with the 15% contour of SIC. (c) SIC distribution for austral spring (September to November 2021) with an outline of the 30-year (1981-2010) average SIC (orange line).

    2. Data and methods

    2.1. Data

    Daily SIC data on a 25-km grid for the period 1979-2022 from the National Snow and Ice Data Center (NSIDC) are used for the sea ice budget analyses. The SIC data are derived from the brightness temperatures measured by the Nimbus-7 Scanning Multichannel Microwave Radiometer and the Defense Meteorological Satellite Program's Special Sensor Microwave/Imager and Special Sensor Microwave Imager/Sounder using the NASA Team algorithm (Cavalieri et al.,1996; Meier et al., 2021). Daily sea ice drift (SID) during 1979-2020 (Tschudi et al., 2019a) and weekly quicklook SID since 2021 (Tschudi et al., 2019b) are also obtained from the NSIDC (ending on 4 February). The SID data are derived by merging data from different sources, including the Advanced Very High Resolution Radiometer, passive microwaves,IABP buoys, and NCEP/NCAR reanalysis. To reduce the uncertainty in the ice drift fields, we smooth the daily ice drift fields with a 7×7 cell square-window filter following Holland and Kimura (2016). Daily SIE data from 1979 to 2022 are based on the NSIDC Sea Ice Index (https://nsidc.org/data/seaice_index). The NASA Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) monthly gridded sea ice freeboard (SIF) data with 25-km resolution from 2018 to 2021 are also used to facilitate the analysis (Petty et al., 2021).

    Hourly sea level pressure (SLP), 10-m winds (W10), 2-m air temperature (T2m), surface net shortwave (SWnet; positive downwards for all fluxes) and longwave (LWnet) radiative fluxes, surface latent heat (Hl), and sensible heat (Hs) fluxes are obtained from the ERA5 reanalysis (ECMWF, 2018). All these variables are retrieved with 0.25°×0.25° resolution and converted to monthly means from September 2021 to February 2022. Anomalies are calculated by removing the seasonal cycle based on the 1981-2010 climatology. ERA5 is the latest climate reanalysis produced by European Centre for Medium-Range Weather Forecasts and has been widely used in previous studies on the Antarctic (e.g., Tetzner et al., 2019; Dong et al., 2020; Zhu et al., 2021).

    2.2. Methodology

    Following the sea ice budget method of Holland and Kwok (2012), sea ice tendency can be decomposed into dynamic ice change and residual change [see Eq. (1)]. This method has been applied in previous studies to diagnose the SIC budget(e.g., Holland and Kimura, 2016; Pope et al., 2017) and validate whether climate models can produce realistic dynamic and thermodynamic contributions of sea ice changes (e.g., Uotila et al., 2014; Lecomte et al., 2016).

    whereCis sea ice concentration anduis sea ice drift. ?C/?tis sea ice tendency and is calculated as the central difference between one day after and before the specific day. -?·(uC) represents the dynamic processes, which are calculated using the central difference in space and then smoothed using a three-day average. The residual term includes the contributions from the thermodynamic processes and mechanical redistribution. Positive values are connected to increased ice concentration. In this study, we calculate the ratio between the dynamic term and the ice tendency to indicate the residual-induced contributions. Both the ice tendency and the dynamic term are cumulated through spring (September-November; SON) and summer (December-February, until 4 February due to lack of SID; DJF).

    3. Results

    Since Antarctic sea ice basically melts from September to February, the record low SIE in February is caused by total melting in spring and summer. Figure 1a shows the evolution of SIE in spring 2021 and summer 2022. Apparently, compared to the climatology, sea ice retreated earlier (started from early September), the negative anomalies became larger until mid-November and changed little until mid-December, and SIE dropped quickly exceeding two standard deviations (SDs) of the climatology on 8 February. Compared to 2017, the SIE in 2022 had a delayed recovery in late February, leading to the new record minimum.

    Spatially, in austral summer, significant SIE anomalies are located in the western Amundsen Sea, eastern Ross Sea,west of Antarctic Peninsula, northern Weddell Sea, and northwestern Indian Ocean sector (Fig. 1b). It is noteworthy that sea ice in the western Amundsen Sea and the eastern Ross Sea completely disappeared on 25 February, which is also an important feature of the SIC minimum on 1 March 2017. In spring, SIE anomalies are negative in the western Weddell Sea,the Bellingshausen Sea, and the eastern Indian Ocean (Fig. 1c).

    Summer SIC anomalies reveal widespread negative anomalies with the largest anomalies in the southwestern Amundsen Sea, southeastern Ross Sea, and the northwestern Weddell Sea, though there are some clustered positive anomalies (Fig. 2a).Sea ice tendency shows a decrease from December to February in most of the Antarctic (Fig. 2b). However, dynamic processes cannot explain the integrated ice tendency (Fig. 2c). Therefore, summer ice loss is dominantly attributed to thermodynamic processes. The SLP field shows a broad low pressure anomaly over the high-latitude Southern Hemisphere with the center in the eastern Ross Sea, leading to a deepening and westward shift of the Amundsen Sea Low (ASL). Induced by the SLP anomalies, westerly winds are intensified between 60°S and 70°S, and there are cyclonic circulations in the Ross Sea and Weddell Sea (Fig. 2e). Consequently, poleward heat transport is enhanced in the Bellingshausen/Amundsen Seas, eastern Weddell Sea, and the western Pacific Ocean, which accelerates sea ice melting (Fig. 2e). In addition, positive net heat flux anomalies are found in the Amundsen Sea and the Weddell Sea, dominated by SWnetanomalies, which are consistent with negative SIC anomalies (Fig. 2f). Hland Hsaccount for a small proportion of the positive anomalies, while LWnetshows few anomalies over the Southern Ocean. As more sea ice is melted in summer, more open water emerges, absorbing more shortwave radiation and lowering surface albedo, thus resulting in more sea ice melting.

    In austral spring, SIC also displays circumpolar negative anomalies, with the largest changes in the Weddell Sea, the Bellingshausen Sea, and the eastern Indian Ocean (Fig. 3a). This indicates that summer ice loss as discussed above follows the sea ice melting at an earlier stage. Thus, it is necessary to look at the sea ice budget and atmospheric circulation in spring. Like summer, sea ice tendency in spring also shows an overall decrease, but mostly at the ice edge zone (Fig. 3b).Dynamic processes dominate the spring tendency due to strong sea ice drift (Fig. 3c), giving rise to SIC decline in the inner ice pack areas like the Amundsen Sea, Ross Sea, and the Weddell Sea, and SIC increases at the ice edge. Northward ice motion pushes more ice to the lower latitudes and increases melting, especially in the Amundsen Sea and the Ross Sea, providing a chance for total ice melting there in summer. Besides, from Fig. 3c we can also see that the rest of the tendency should be represented by the residual term (thermodynamic processes). Therefore, we attribute spring tendency to the combined impacts of dynamic and thermodynamic processes. The SLP fields show below-normal SLP in the eastern Amundsen Sea that is much stronger than that of summer (Fig. 3d), leading to strong cyclonic winds. Northerly winds and southward heat transport happen in the Weddell Sea and the Bellingshausen Sea, while southerly winds and northward heat transport happen in the Amundsen Sea and eastern Ross Sea (Fig. 3e). Positive net heat flux anomalies appear in the Weddell Sea, caused by SWnet, Hl,and Hsanomalies (Fig. 3f).

    Changes in SIT have a preconditioning role in the rate of sea ice retreat. As demonstrated by ICESat-2 SIF, sea ice in spring 2021 was much thinner along the coast of the Amundsen Sea compared with SIF during 2018-20, and it was accompanied with strong northward dispersion of sea ice, leading to more open water (Fig. 4). This provides a favorable precondition for summer sea ice melting there and might be related to the record temperatures of the Southern Ocean in 2021 (Cheng et al., 2022).

    4. Conclusions and discussion

    Our study gives a thorough description of the features in the Antarctic SIE minimum in February 2022. SIE reached a new record low since recordkeeping began in 1978 of 1.9 million km2on 25 February, 0.17 million km2lower than the previous record low set in 2017. One reason for this is that the Antarctic sea ice retreated earlier than normal, starting from early September of 2021. The negative anomalies became larger until mid-November, and then sea ice exhibited a steadily decreasing rate until mid-December of 2021 and dropped quickly, exceeding two standard deviations (SDs) of the climatology, on 8 February 2022. Significant negative SIC anomalies in summer were located in the western Amundsen Sea, eastern Ross Sea,west of Antarctic Peninsula, northern Weddell Sea, and northwestern Indian Ocean sector, while spring SIC anomalies were negative in most sectors, basically confined in the western Weddell Sea, the Bellingshausen Sea, and the eastern Indian Ocean. We analyze the sea ice budget over the melting seasons and connect the atmospheric circulation with them. In summer, thermodynamic processes dominate the sea ice melting through poleward heat transport anomalies in the Bellingshausen/Amundsen Seas, eastern Weddell Sea, and the western Pacific Ocean and positive net shortwave radiation anomalies with albedo-temperature feedback. In spring, dynamic and thermodynamic processes contribute to sea ice tendency together. Dynamic ice loss exists in the Amundsen Sea where northward ice motion pushes more ice to the lower latitudes and increases melting, especially in the Amundsen Sea and the Ross Sea. Thermodynamic contributions including poleward heat transport, shortwave radiation, and sensible and latent heat flux anomalies melt sea ice in the Weddell Sea. Meanwhile,thinner sea ice freeboard along the coast of the Amundsen Sea is also critical to the summer melting. All these atmospheric impacts originate from the intensity and position of ASL and ocean warming, proving the deductions made by Raphael and Handcock (2022).

    Fig. 2. (a) SIC anomalies for austral summer based on 1981-2010 average SIC (units: %). (b) SIC tendency (? C/?t) from 1 December to 4 February (units: % season-1). (c) The ratio of the dynamic contributions [- ?·(uC)] to tendency from 1 December to 4 February. The vectors represent seasonal average sea ice drift. (d) Anomalies of sea level pressure (units:hPa). (e) Anomalies of meridional heat transport (units: K m s-1) and 10-m wind (units: m s-1). (f) Anomalies of surface net heat fluxes (shaded), net shortwave radiation fluxes of 20 W m-2 (dark blue contour), and the sum of net sensible and latent heat fluxes of 20 W m-2 (purple contour) (units: W m-2).

    Fig. 3. Same as Fig. 2 but for austral spring (September-November; SON).

    Fig. 4. Sea ice freeboard anomalies (shading) and sea ice motion anomalies(vectors) in spring 2021 based on average spring values during 2018-20.

    According to the NOAA Climate Prediction Center, the monthly Antarctic Oscillation (AAO) index and Oceanic Ni?o Index show that the new record Antarctic SIE minimum happened during a combination of positive Southern Annular Mode (SAM) and La Ni?a. Both of these modes lead to a deepened ASL (Yu et al., 2015; Fogt and Marshall, 2020). Fogt et al. (2011) revealed that when a La Ni?a (El Ni?o) is concurrent with a positive (negative) SAM, the impact of ENSO is significant on South Pacific atmospheric circulation. Stammerjohn et al. (2008) investigated the relationship between these combined impacts and the sea ice retreat/advance and showed a similar result to the in-phase condition in Fogt et al. (2011), with significant ice responses, particularly in the western Antarctic Peninsula and the southern Bellingshausen Sea. In addition, the Indian Ocean Dipole, Interdecadal Pacific Oscillation, and the Atlantic Multidecadal Oscillation are all important factors contributing to Antarctic sea ice decline in spring 2016 (Eayrs et al., 2021). Therefore, impacts of tropical variability and largescale climate modes should be further studied.

    Besides, examining the physical cause of the difference of the SIC distribution between 2016-17 and 2021-22 can help us understand the physical causes of the interannual variability of the Antarctic sea ice. Figure 1b reveals that the 2017 summer SIC pattern shows a few differences in the eastern Ross Sea, Bellingshausen Sea, and the northern Weddell Sea compared with the 2022 summer. More sea ice is melted in the Weddell Sea rather than in the Ross Sea in 2017. By comparing the sea ice budgets and atmospheric circulations of the two events (not shown), we find a different budget result and opposite SLP anomalies and thus suggest that the underlying mechanisms might be different in these two recent record low SIE events.Detailed and comprehensive investigations are required to further verify this deduction.

    Acknowledgements. The authors wish to thank the editor and two anonymous reviewers for their very helpful comments and suggestions. This is a contribution to the Year of Polar Prediction (YOPP), a flagship activity of the Polar Prediction Project (PPP), initiated by the World Weather Research Programme (WWRP) of the World Meteorological Organisation (WMO). We acknowledge the WMO WWRP for its role in coordinating this international research activity. This study is supported by the National Natural Science Foundation of China (Grant Nos. 41941009, 41922044, and 42006191), the Guangdong Basic and Applied Basic Research Foundation (Grant No.2020B1515020025), and the Fundamental Research Funds for the Central Universities (Grant No. 19lgzd07), the Norges Forskningsr?d(Grant no. 328886).

    国产成人91sexporn| 热99re8久久精品国产| 欧美性猛交╳xxx乱大交人| 精品人妻视频免费看| 中文亚洲av片在线观看爽| 国产综合懂色| 一级黄片播放器| 国产老妇伦熟女老妇高清| 成人午夜高清在线视频| 亚洲内射少妇av| 热99在线观看视频| 久久99蜜桃精品久久| 欧美区成人在线视频| 国产成人一区二区在线| 午夜久久久久精精品| 午夜爱爱视频在线播放| 亚州av有码| 免费av毛片视频| 亚洲av中文av极速乱| 国产高潮美女av| 插逼视频在线观看| 免费无遮挡裸体视频| 成人欧美大片| 欧美另类亚洲清纯唯美| 级片在线观看| 亚洲欧美精品综合久久99| 美女 人体艺术 gogo| 免费观看的影片在线观看| 日韩欧美精品免费久久| 观看美女的网站| 亚洲熟妇中文字幕五十中出| 久久99热这里只有精品18| 久久人人精品亚洲av| 亚洲欧美精品自产自拍| 人人妻人人澡人人爽人人夜夜 | 啦啦啦观看免费观看视频高清| 国产一级毛片在线| a级毛色黄片| 乱系列少妇在线播放| 熟女人妻精品中文字幕| 一本久久精品| 高清毛片免费观看视频网站| 一区二区三区免费毛片| 国产高清有码在线观看视频| 中国国产av一级| 我要看日韩黄色一级片| 日韩强制内射视频| 97在线视频观看| 久久久久久国产a免费观看| 色吧在线观看| 亚洲综合色惰| 久久中文看片网| 精品久久久久久久久亚洲| avwww免费| 国产 一区精品| 久久久久久久久大av| 一区福利在线观看| av国产免费在线观看| 亚洲国产精品sss在线观看| 高清午夜精品一区二区三区 | 色综合站精品国产| 免费电影在线观看免费观看| 亚洲欧美成人综合另类久久久 | 久久久久久久久久久免费av| 久久精品国产亚洲av涩爱 | 国产精品国产三级国产av玫瑰| avwww免费| 亚洲精品成人久久久久久| 精品一区二区三区人妻视频| 日本-黄色视频高清免费观看| 你懂的网址亚洲精品在线观看 | 赤兔流量卡办理| 欧美变态另类bdsm刘玥| 国产精品福利在线免费观看| 内射极品少妇av片p| 国产探花极品一区二区| 岛国毛片在线播放| 在线观看免费视频日本深夜| 在线观看66精品国产| 国产成人freesex在线| 91狼人影院| 久久亚洲国产成人精品v| kizo精华| 青春草视频在线免费观看| 日本一本二区三区精品| 国产成人精品一,二区 | 大型黄色视频在线免费观看| 国产高潮美女av| 亚洲精品日韩在线中文字幕 | 97热精品久久久久久| 高清毛片免费观看视频网站| 欧美成人a在线观看| 丝袜美腿在线中文| 国产黄片视频在线免费观看| 女人十人毛片免费观看3o分钟| 狂野欧美激情性xxxx在线观看| 97在线视频观看| 偷拍熟女少妇极品色| 亚洲aⅴ乱码一区二区在线播放| av在线天堂中文字幕| 欧美日韩乱码在线| 听说在线观看完整版免费高清| 一级毛片电影观看 | 欧美三级亚洲精品| 熟女电影av网| 男的添女的下面高潮视频| 2022亚洲国产成人精品| 亚洲乱码一区二区免费版| 一区福利在线观看| 久久久成人免费电影| 在线免费观看的www视频| 久久这里只有精品中国| 国产国拍精品亚洲av在线观看| 国产av不卡久久| a级毛片a级免费在线| 噜噜噜噜噜久久久久久91| 久久人人爽人人爽人人片va| 狂野欧美激情性xxxx在线观看| 男女边吃奶边做爰视频| 深爱激情五月婷婷| 精品免费久久久久久久清纯| 免费看美女性在线毛片视频| 国产视频首页在线观看| 最近中文字幕高清免费大全6| 91在线精品国自产拍蜜月| 国产精品久久久久久av不卡| 午夜福利在线观看吧| 1024手机看黄色片| 精品人妻熟女av久视频| 久久99热6这里只有精品| 成年免费大片在线观看| 极品教师在线视频| 日韩欧美国产在线观看| 国产成人a区在线观看| 成人欧美大片| 国产伦理片在线播放av一区 | 日韩人妻高清精品专区| 哪个播放器可以免费观看大片| 深夜a级毛片| 成人国产麻豆网| 色综合亚洲欧美另类图片| 少妇被粗大猛烈的视频| av又黄又爽大尺度在线免费看 | 成人亚洲欧美一区二区av| 男的添女的下面高潮视频| 黄片wwwwww| 99久久中文字幕三级久久日本| 色哟哟·www| 亚洲国产精品成人综合色| 日本一二三区视频观看| 在线免费观看不下载黄p国产| 秋霞在线观看毛片| 成熟少妇高潮喷水视频| 99热这里只有是精品50| 国产成人一区二区在线| 美女脱内裤让男人舔精品视频 | 免费不卡的大黄色大毛片视频在线观看 | 亚洲av免费在线观看| 波多野结衣高清作品| 观看美女的网站| 男人的好看免费观看在线视频| 在现免费观看毛片| 99热6这里只有精品| 欧美另类亚洲清纯唯美| 国产成人精品一,二区 | 3wmmmm亚洲av在线观看| 国产亚洲91精品色在线| 99热全是精品| 欧美3d第一页| 国产精品久久电影中文字幕| 国产视频内射| 91精品国产九色| 国内精品久久久久精免费| 99热这里只有是精品50| 国产色爽女视频免费观看| 国产精品人妻久久久久久| 三级男女做爰猛烈吃奶摸视频| 午夜福利在线观看免费完整高清在 | 久久欧美精品欧美久久欧美| 久久精品国产自在天天线| 少妇的逼好多水| 美女xxoo啪啪120秒动态图| 最后的刺客免费高清国语| 在线免费观看不下载黄p国产| 美女高潮的动态| 尤物成人国产欧美一区二区三区| 亚洲久久久久久中文字幕| 久久这里有精品视频免费| 成人亚洲欧美一区二区av| 久久人人精品亚洲av| 久久精品国产亚洲av香蕉五月| 国产av不卡久久| 偷拍熟女少妇极品色| 高清毛片免费观看视频网站| 午夜激情欧美在线| 亚洲第一电影网av| 美女被艹到高潮喷水动态| 99久久九九国产精品国产免费| 亚洲一区二区三区色噜噜| 悠悠久久av| 成人国产麻豆网| 激情 狠狠 欧美| 岛国在线免费视频观看| 插阴视频在线观看视频| 国产精品一二三区在线看| 校园春色视频在线观看| 美女被艹到高潮喷水动态| 少妇的逼水好多| 中文亚洲av片在线观看爽| 国产爱豆传媒在线观看| 精品国产三级普通话版| 国产亚洲91精品色在线| 欧美一区二区亚洲| 日本欧美国产在线视频| 久久国内精品自在自线图片| 久久精品久久久久久久性| 啦啦啦韩国在线观看视频| 91狼人影院| 国内精品美女久久久久久| 久久99精品国语久久久| 国产精品久久久久久精品电影| 久久久精品94久久精品| 国产精品久久视频播放| 99久久精品国产国产毛片| 日本黄色片子视频| 老女人水多毛片| 成人午夜精彩视频在线观看| 不卡视频在线观看欧美| 欧美区成人在线视频| 免费看a级黄色片| 国产精品,欧美在线| 一级二级三级毛片免费看| 在现免费观看毛片| 别揉我奶头 嗯啊视频| 伦精品一区二区三区| 日韩,欧美,国产一区二区三区 | 日韩,欧美,国产一区二区三区 | 熟女电影av网| 国产真实伦视频高清在线观看| 亚洲av免费在线观看| 欧美成人a在线观看| 青春草国产在线视频 | 国产精品不卡视频一区二区| 亚洲欧美精品自产自拍| 久久婷婷人人爽人人干人人爱| 成人漫画全彩无遮挡| 国产精品久久久久久精品电影小说 | 伊人久久精品亚洲午夜| 亚洲中文字幕一区二区三区有码在线看| 国产三级在线视频| 久久这里只有精品中国| 噜噜噜噜噜久久久久久91| 好男人在线观看高清免费视频| 狂野欧美白嫩少妇大欣赏| 中文字幕人妻熟人妻熟丝袜美| 欧美+日韩+精品| 国内少妇人妻偷人精品xxx网站| 日韩欧美一区二区三区在线观看| 嫩草影院精品99| 午夜福利视频1000在线观看| 麻豆av噜噜一区二区三区| 国产伦精品一区二区三区四那| 一个人看的www免费观看视频| 悠悠久久av| 丰满人妻一区二区三区视频av| 天美传媒精品一区二区| 99久国产av精品国产电影| 中文字幕制服av| 国产伦理片在线播放av一区 | eeuss影院久久| 成年女人永久免费观看视频| 精品不卡国产一区二区三区| 亚洲精品乱码久久久久久按摩| www.色视频.com| 99久久无色码亚洲精品果冻| 免费看av在线观看网站| 啦啦啦观看免费观看视频高清| 国语自产精品视频在线第100页| 亚洲中文字幕日韩| 99久久成人亚洲精品观看| 欧美最黄视频在线播放免费| 老女人水多毛片| 亚洲精品456在线播放app| 亚洲在线观看片| 黄色配什么色好看| 亚洲精品乱码久久久久久按摩| 亚洲成人精品中文字幕电影| 亚洲精品日韩av片在线观看| 国产精品日韩av在线免费观看| or卡值多少钱| 丰满乱子伦码专区| av在线播放精品| 欧美丝袜亚洲另类| 亚洲成a人片在线一区二区| 老师上课跳d突然被开到最大视频| 久久久a久久爽久久v久久| 欧美最新免费一区二区三区| 日韩中字成人| 免费看美女性在线毛片视频| 午夜精品在线福利| 又爽又黄无遮挡网站| 看黄色毛片网站| 三级经典国产精品| 哪个播放器可以免费观看大片| 九九久久精品国产亚洲av麻豆| 一边亲一边摸免费视频| 久久久久九九精品影院| 女人被狂操c到高潮| 观看免费一级毛片| 久久久久免费精品人妻一区二区| 日本-黄色视频高清免费观看| 少妇被粗大猛烈的视频| 国产一区二区三区在线臀色熟女| 中国美女看黄片| 特大巨黑吊av在线直播| 在线国产一区二区在线| av天堂中文字幕网| 亚洲欧洲国产日韩| 精品免费久久久久久久清纯| 成人av在线播放网站| 99久久精品一区二区三区| 国产亚洲精品久久久久久毛片| 男人狂女人下面高潮的视频| 午夜精品国产一区二区电影 | 亚洲aⅴ乱码一区二区在线播放| 午夜爱爱视频在线播放| 美女被艹到高潮喷水动态| 亚洲中文字幕日韩| 久久久久久久久大av| 亚洲av第一区精品v没综合| 午夜激情欧美在线| 午夜视频国产福利| 久久久久久九九精品二区国产| 高清日韩中文字幕在线| 色播亚洲综合网| 婷婷色av中文字幕| 久久久欧美国产精品| 一区二区三区高清视频在线| 日日撸夜夜添| 一边摸一边抽搐一进一小说| 一卡2卡三卡四卡精品乱码亚洲| 久久久久免费精品人妻一区二区| 国产免费一级a男人的天堂| 色吧在线观看| 美女cb高潮喷水在线观看| 天堂影院成人在线观看| 欧美不卡视频在线免费观看| 国内揄拍国产精品人妻在线| 日韩成人av中文字幕在线观看| 1024手机看黄色片| 国产日韩欧美在线精品| 寂寞人妻少妇视频99o| 亚洲自偷自拍三级| 美女cb高潮喷水在线观看| 精品久久久久久久久久免费视频| 插逼视频在线观看| 日韩欧美三级三区| videossex国产| 亚洲天堂国产精品一区在线| 少妇高潮的动态图| 日韩精品有码人妻一区| 日韩av在线大香蕉| 免费看av在线观看网站| 欧美日本视频| 神马国产精品三级电影在线观看| 狂野欧美激情性xxxx在线观看| 亚洲欧美中文字幕日韩二区| 国产在线男女| 亚洲激情五月婷婷啪啪| 91久久精品国产一区二区三区| 欧美xxxx性猛交bbbb| 在线播放无遮挡| 亚洲精品成人久久久久久| 天美传媒精品一区二区| 精品日产1卡2卡| 国产成人freesex在线| 国产一区二区在线观看日韩| 18禁裸乳无遮挡免费网站照片| 亚洲在线观看片| 黄片无遮挡物在线观看| 搡老妇女老女人老熟妇| 国产69精品久久久久777片| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲真实伦在线观看| 国产一区二区三区在线臀色熟女| 精品一区二区三区视频在线| 一本精品99久久精品77| 插逼视频在线观看| 色吧在线观看| 国产黄色视频一区二区在线观看 | 女人被狂操c到高潮| 特级一级黄色大片| 丰满的人妻完整版| 夜夜爽天天搞| 97热精品久久久久久| 国产精品久久久久久av不卡| 国产午夜精品久久久久久一区二区三区| 免费看av在线观看网站| 亚洲最大成人av| 男的添女的下面高潮视频| 亚洲精品久久国产高清桃花| 卡戴珊不雅视频在线播放| 色视频www国产| 欧美人与善性xxx| 在线观看一区二区三区| 狠狠狠狠99中文字幕| 中文字幕免费在线视频6| 两个人的视频大全免费| a级毛片免费高清观看在线播放| 夜夜夜夜夜久久久久| 伊人久久精品亚洲午夜| 九九久久精品国产亚洲av麻豆| 午夜精品在线福利| 国产精品野战在线观看| 免费看a级黄色片| 欧美一区二区国产精品久久精品| 99热6这里只有精品| 看免费成人av毛片| 99热网站在线观看| 三级毛片av免费| 少妇高潮的动态图| 亚州av有码| 久久99热6这里只有精品| 亚洲av二区三区四区| 九色成人免费人妻av| 麻豆精品久久久久久蜜桃| 日韩,欧美,国产一区二区三区 | 国产 一区精品| 好男人视频免费观看在线| 黄色欧美视频在线观看| 中文欧美无线码| 国产成人影院久久av| 看片在线看免费视频| 此物有八面人人有两片| 精品免费久久久久久久清纯| 99热这里只有精品一区| 日本黄大片高清| 日本与韩国留学比较| 超碰av人人做人人爽久久| 天堂影院成人在线观看| 在线观看66精品国产| 国产国拍精品亚洲av在线观看| 少妇熟女欧美另类| .国产精品久久| 最近视频中文字幕2019在线8| 99热6这里只有精品| 岛国毛片在线播放| 爱豆传媒免费全集在线观看| 久久精品国产亚洲网站| 十八禁国产超污无遮挡网站| 国产三级中文精品| 六月丁香七月| 日韩欧美在线乱码| 久久久久久久久大av| 亚洲成a人片在线一区二区| 亚洲在久久综合| 日韩欧美三级三区| 亚洲成a人片在线一区二区| 老熟妇乱子伦视频在线观看| 国产一区二区在线av高清观看| 晚上一个人看的免费电影| 色哟哟哟哟哟哟| 一个人免费在线观看电影| 国产成人a区在线观看| av国产免费在线观看| 国产人妻一区二区三区在| 欧美区成人在线视频| 狠狠狠狠99中文字幕| 看片在线看免费视频| 久久精品国产自在天天线| 久久国内精品自在自线图片| 久久鲁丝午夜福利片| 最近视频中文字幕2019在线8| 99久久成人亚洲精品观看| 黄片无遮挡物在线观看| 国产精品久久久久久精品电影小说 | 身体一侧抽搐| 午夜亚洲福利在线播放| 亚洲av成人精品一区久久| 搡女人真爽免费视频火全软件| 免费在线观看成人毛片| 在线观看免费视频日本深夜| 激情 狠狠 欧美| 免费观看精品视频网站| 一区福利在线观看| 51国产日韩欧美| 亚洲中文字幕日韩| 99国产精品一区二区蜜桃av| 天堂av国产一区二区熟女人妻| 日韩精品有码人妻一区| 夜夜夜夜夜久久久久| 日本-黄色视频高清免费观看| 日本免费a在线| 免费观看精品视频网站| 男人舔女人下体高潮全视频| 能在线免费观看的黄片| 在线天堂最新版资源| 久久久精品欧美日韩精品| 在线播放国产精品三级| 日产精品乱码卡一卡2卡三| 成人性生交大片免费视频hd| 国产老妇女一区| 搡老妇女老女人老熟妇| 成人综合一区亚洲| 久久中文看片网| 久久久久久久久久久丰满| 久久精品久久久久久噜噜老黄 | 亚洲欧美日韩高清专用| 欧美最新免费一区二区三区| 中国国产av一级| 亚洲av中文字字幕乱码综合| 波多野结衣高清作品| 日韩欧美国产在线观看| 国产真实伦视频高清在线观看| 亚洲四区av| 熟女电影av网| 一个人观看的视频www高清免费观看| 中文资源天堂在线| 色哟哟·www| 国产日韩欧美在线精品| 免费电影在线观看免费观看| 内地一区二区视频在线| 色噜噜av男人的天堂激情| 中出人妻视频一区二区| 99久久久亚洲精品蜜臀av| 少妇猛男粗大的猛烈进出视频 | 国产伦一二天堂av在线观看| 国产精品一区二区三区四区久久| 在线播放国产精品三级| 91av网一区二区| 久久草成人影院| 22中文网久久字幕| 亚洲国产色片| 色哟哟哟哟哟哟| 最近手机中文字幕大全| 久久久久久久久久久免费av| 卡戴珊不雅视频在线播放| 内射极品少妇av片p| 亚洲av一区综合| av在线亚洲专区| 我要搜黄色片| 久久久久久久久久成人| 欧美日韩乱码在线| 欧美潮喷喷水| 色哟哟·www| 亚洲人成网站在线观看播放| 久久精品影院6| 天堂网av新在线| 日韩三级伦理在线观看| 精品久久久久久久久久久久久| 97人妻精品一区二区三区麻豆| 熟女人妻精品中文字幕| 欧美一区二区精品小视频在线| 午夜福利视频1000在线观看| 成人亚洲欧美一区二区av| videossex国产| 人体艺术视频欧美日本| videossex国产| 欧美最新免费一区二区三区| 亚洲高清免费不卡视频| 国产精品1区2区在线观看.| 91在线精品国自产拍蜜月| 成人永久免费在线观看视频| 国国产精品蜜臀av免费| 成人欧美大片| 又粗又硬又长又爽又黄的视频 | 老熟妇乱子伦视频在线观看| 免费看美女性在线毛片视频| 国产精品不卡视频一区二区| 日本免费a在线| 亚洲无线观看免费| 97在线视频观看| 91精品一卡2卡3卡4卡| 噜噜噜噜噜久久久久久91| 国产成人午夜福利电影在线观看| 一边亲一边摸免费视频| 麻豆一二三区av精品| 哪里可以看免费的av片| 一级毛片aaaaaa免费看小| 亚洲国产欧美在线一区| 一级毛片aaaaaa免费看小| 淫秽高清视频在线观看| 麻豆一二三区av精品| 国国产精品蜜臀av免费| 日韩在线高清观看一区二区三区| 国产一区二区激情短视频| 国产高清激情床上av| 欧美高清性xxxxhd video| 久久精品国产亚洲av香蕉五月| 尤物成人国产欧美一区二区三区| 亚洲美女视频黄频| 国产亚洲av片在线观看秒播厂 | 欧美xxxx黑人xx丫x性爽| 夫妻性生交免费视频一级片| 国产精华一区二区三区| 全区人妻精品视频| 亚洲av免费高清在线观看| 国产高潮美女av| 欧美色欧美亚洲另类二区| 免费观看a级毛片全部| 国产久久久一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av卡一久久| 全区人妻精品视频| 久久久久网色| 精品人妻偷拍中文字幕| 麻豆av噜噜一区二区三区| 国产亚洲5aaaaa淫片| 极品教师在线视频| 色综合亚洲欧美另类图片| 亚洲天堂国产精品一区在线| 久久久久久伊人网av| 99热精品在线国产| 国产精品精品国产色婷婷| 亚洲欧美成人精品一区二区|