• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Unprecedented Record Low Antarctic Sea-ice Extent during Austral Summer 2022

    2022-10-27 09:44:16JinfeiWANGHaoLUOQinghuaYANGJipingLIULejiangYUQianSHIandBoHAN
    Advances in Atmospheric Sciences 2022年10期

    Jinfei WANG, Hao LUO*, Qinghua YANG, Jiping LIU, Lejiang YU, Qian SHI, and Bo HAN

    1School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China

    2Department of Atmospheric and Environmental Sciences University at Albany,State University of New York, New York 12222, USA

    3Ministry of Natural Resources Key Laboratory for Polar Science,Polar Research Institute of China, Shanghai 200136, China

    ABSTRACT

    Key words: Antarctic, record low, sea ice budget, atmospheric circulation

    1. Introduction

    Changes in Antarctic sea ice cover can affect heat, moisture, and gas exchanges between the atmosphere and ocean(Raphael, 2003; Kurtz et al., 2011; S?ren et al., 2011), freshwater input, ocean circulation (Aagaard and Carmack, 1989; Kirkman and Bitz, 2011; Ferrari et al., 2014), local weather systems, and global climate change (Vihma, 2014; Smith et al.,2017; Ayres and Screen, 2019). Contrary to the rapid decline of the Arctic sea ice extent (SIE) in the context of global warming(Stroeve et al., 2007; Notz and Stroeve, 2016; Serreze and Meier, 2019), Antarctic SIE displays a modest increasing trend of ~1.0% ± 0.5% per decade since late 1978 (Parkinson, 2019), masking significant interannual and regional variations (Liu et al., 2004; Stammerjohn and Maksym, 2016; Yuan et al., 2017; Maksym, 2019). Annual mean Antarctic SIE hit a record high in 2014 (12.8 million km2) after a long-term increase since 1978 and then plunged to a record low in 2017 (10.7 million km2). The reasons behind the variability of Antarctic sea ice are complicated, and various mechanisms have been proposed(Hobbs et al., 2016; Maksym, 2019; Eayrs et al., 2021). Seasonal minimum SIE also hit a record low (2.3 million km2) on 1 March 2017. However, it has been broken after merely five years, as SIE reached 1.9 million km2on 25 February 2022.This is the first time SIE has reached below 2 million km2since satellite observation began, and this record low is ~30%lower than 1981-2010 climatology (Fig. 1a). This lowest SIE mainly resulted from large negative SIE anomalies in the Bellingshausen/Amundsen Seas, the Weddell Sea, and the western Indian Ocean sector (Fig. 1b).

    In a very recent publication, Raphael and Handcock (2022) commented that the new record SIE minimum in austral summer 2022 might have been caused by the early retreat of the ice in August 2021. Here, we examine the relative roles of dynamics and thermodynamics in contributing to the extremely low Antarctic SIE in spring and summer 2022 through a sea ice concentration (SIC) budget analysis.

    Fig. 1. (a) Time series of Antarctic sea ice extent (SIE) from 1 August to 28 February of the next year during 2016-17 (grey)and 2021-22 (blue), and average SIE based on the period 1981-2010 (black) with two standard deviations (SDs; grey shade).The red vertical line indicates the date (8 February) when 2022 SIE is beyond the range of two SDs of the climatology.(b) Sea ice concentration (SIC) distribution for austral summer (December to February 2022) with an outline of the 30-year(1981-2010) average SIC (orange line), an outline of the minimum SIC on 25 February (cyan line), and an outline of 2016-17 summer average SIC (grey line). The outlines are defined with the 15% contour of SIC. (c) SIC distribution for austral spring (September to November 2021) with an outline of the 30-year (1981-2010) average SIC (orange line).

    2. Data and methods

    2.1. Data

    Daily SIC data on a 25-km grid for the period 1979-2022 from the National Snow and Ice Data Center (NSIDC) are used for the sea ice budget analyses. The SIC data are derived from the brightness temperatures measured by the Nimbus-7 Scanning Multichannel Microwave Radiometer and the Defense Meteorological Satellite Program's Special Sensor Microwave/Imager and Special Sensor Microwave Imager/Sounder using the NASA Team algorithm (Cavalieri et al.,1996; Meier et al., 2021). Daily sea ice drift (SID) during 1979-2020 (Tschudi et al., 2019a) and weekly quicklook SID since 2021 (Tschudi et al., 2019b) are also obtained from the NSIDC (ending on 4 February). The SID data are derived by merging data from different sources, including the Advanced Very High Resolution Radiometer, passive microwaves,IABP buoys, and NCEP/NCAR reanalysis. To reduce the uncertainty in the ice drift fields, we smooth the daily ice drift fields with a 7×7 cell square-window filter following Holland and Kimura (2016). Daily SIE data from 1979 to 2022 are based on the NSIDC Sea Ice Index (https://nsidc.org/data/seaice_index). The NASA Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) monthly gridded sea ice freeboard (SIF) data with 25-km resolution from 2018 to 2021 are also used to facilitate the analysis (Petty et al., 2021).

    Hourly sea level pressure (SLP), 10-m winds (W10), 2-m air temperature (T2m), surface net shortwave (SWnet; positive downwards for all fluxes) and longwave (LWnet) radiative fluxes, surface latent heat (Hl), and sensible heat (Hs) fluxes are obtained from the ERA5 reanalysis (ECMWF, 2018). All these variables are retrieved with 0.25°×0.25° resolution and converted to monthly means from September 2021 to February 2022. Anomalies are calculated by removing the seasonal cycle based on the 1981-2010 climatology. ERA5 is the latest climate reanalysis produced by European Centre for Medium-Range Weather Forecasts and has been widely used in previous studies on the Antarctic (e.g., Tetzner et al., 2019; Dong et al., 2020; Zhu et al., 2021).

    2.2. Methodology

    Following the sea ice budget method of Holland and Kwok (2012), sea ice tendency can be decomposed into dynamic ice change and residual change [see Eq. (1)]. This method has been applied in previous studies to diagnose the SIC budget(e.g., Holland and Kimura, 2016; Pope et al., 2017) and validate whether climate models can produce realistic dynamic and thermodynamic contributions of sea ice changes (e.g., Uotila et al., 2014; Lecomte et al., 2016).

    whereCis sea ice concentration anduis sea ice drift. ?C/?tis sea ice tendency and is calculated as the central difference between one day after and before the specific day. -?·(uC) represents the dynamic processes, which are calculated using the central difference in space and then smoothed using a three-day average. The residual term includes the contributions from the thermodynamic processes and mechanical redistribution. Positive values are connected to increased ice concentration. In this study, we calculate the ratio between the dynamic term and the ice tendency to indicate the residual-induced contributions. Both the ice tendency and the dynamic term are cumulated through spring (September-November; SON) and summer (December-February, until 4 February due to lack of SID; DJF).

    3. Results

    Since Antarctic sea ice basically melts from September to February, the record low SIE in February is caused by total melting in spring and summer. Figure 1a shows the evolution of SIE in spring 2021 and summer 2022. Apparently, compared to the climatology, sea ice retreated earlier (started from early September), the negative anomalies became larger until mid-November and changed little until mid-December, and SIE dropped quickly exceeding two standard deviations (SDs) of the climatology on 8 February. Compared to 2017, the SIE in 2022 had a delayed recovery in late February, leading to the new record minimum.

    Spatially, in austral summer, significant SIE anomalies are located in the western Amundsen Sea, eastern Ross Sea,west of Antarctic Peninsula, northern Weddell Sea, and northwestern Indian Ocean sector (Fig. 1b). It is noteworthy that sea ice in the western Amundsen Sea and the eastern Ross Sea completely disappeared on 25 February, which is also an important feature of the SIC minimum on 1 March 2017. In spring, SIE anomalies are negative in the western Weddell Sea,the Bellingshausen Sea, and the eastern Indian Ocean (Fig. 1c).

    Summer SIC anomalies reveal widespread negative anomalies with the largest anomalies in the southwestern Amundsen Sea, southeastern Ross Sea, and the northwestern Weddell Sea, though there are some clustered positive anomalies (Fig. 2a).Sea ice tendency shows a decrease from December to February in most of the Antarctic (Fig. 2b). However, dynamic processes cannot explain the integrated ice tendency (Fig. 2c). Therefore, summer ice loss is dominantly attributed to thermodynamic processes. The SLP field shows a broad low pressure anomaly over the high-latitude Southern Hemisphere with the center in the eastern Ross Sea, leading to a deepening and westward shift of the Amundsen Sea Low (ASL). Induced by the SLP anomalies, westerly winds are intensified between 60°S and 70°S, and there are cyclonic circulations in the Ross Sea and Weddell Sea (Fig. 2e). Consequently, poleward heat transport is enhanced in the Bellingshausen/Amundsen Seas, eastern Weddell Sea, and the western Pacific Ocean, which accelerates sea ice melting (Fig. 2e). In addition, positive net heat flux anomalies are found in the Amundsen Sea and the Weddell Sea, dominated by SWnetanomalies, which are consistent with negative SIC anomalies (Fig. 2f). Hland Hsaccount for a small proportion of the positive anomalies, while LWnetshows few anomalies over the Southern Ocean. As more sea ice is melted in summer, more open water emerges, absorbing more shortwave radiation and lowering surface albedo, thus resulting in more sea ice melting.

    In austral spring, SIC also displays circumpolar negative anomalies, with the largest changes in the Weddell Sea, the Bellingshausen Sea, and the eastern Indian Ocean (Fig. 3a). This indicates that summer ice loss as discussed above follows the sea ice melting at an earlier stage. Thus, it is necessary to look at the sea ice budget and atmospheric circulation in spring. Like summer, sea ice tendency in spring also shows an overall decrease, but mostly at the ice edge zone (Fig. 3b).Dynamic processes dominate the spring tendency due to strong sea ice drift (Fig. 3c), giving rise to SIC decline in the inner ice pack areas like the Amundsen Sea, Ross Sea, and the Weddell Sea, and SIC increases at the ice edge. Northward ice motion pushes more ice to the lower latitudes and increases melting, especially in the Amundsen Sea and the Ross Sea, providing a chance for total ice melting there in summer. Besides, from Fig. 3c we can also see that the rest of the tendency should be represented by the residual term (thermodynamic processes). Therefore, we attribute spring tendency to the combined impacts of dynamic and thermodynamic processes. The SLP fields show below-normal SLP in the eastern Amundsen Sea that is much stronger than that of summer (Fig. 3d), leading to strong cyclonic winds. Northerly winds and southward heat transport happen in the Weddell Sea and the Bellingshausen Sea, while southerly winds and northward heat transport happen in the Amundsen Sea and eastern Ross Sea (Fig. 3e). Positive net heat flux anomalies appear in the Weddell Sea, caused by SWnet, Hl,and Hsanomalies (Fig. 3f).

    Changes in SIT have a preconditioning role in the rate of sea ice retreat. As demonstrated by ICESat-2 SIF, sea ice in spring 2021 was much thinner along the coast of the Amundsen Sea compared with SIF during 2018-20, and it was accompanied with strong northward dispersion of sea ice, leading to more open water (Fig. 4). This provides a favorable precondition for summer sea ice melting there and might be related to the record temperatures of the Southern Ocean in 2021 (Cheng et al., 2022).

    4. Conclusions and discussion

    Our study gives a thorough description of the features in the Antarctic SIE minimum in February 2022. SIE reached a new record low since recordkeeping began in 1978 of 1.9 million km2on 25 February, 0.17 million km2lower than the previous record low set in 2017. One reason for this is that the Antarctic sea ice retreated earlier than normal, starting from early September of 2021. The negative anomalies became larger until mid-November, and then sea ice exhibited a steadily decreasing rate until mid-December of 2021 and dropped quickly, exceeding two standard deviations (SDs) of the climatology, on 8 February 2022. Significant negative SIC anomalies in summer were located in the western Amundsen Sea, eastern Ross Sea,west of Antarctic Peninsula, northern Weddell Sea, and northwestern Indian Ocean sector, while spring SIC anomalies were negative in most sectors, basically confined in the western Weddell Sea, the Bellingshausen Sea, and the eastern Indian Ocean. We analyze the sea ice budget over the melting seasons and connect the atmospheric circulation with them. In summer, thermodynamic processes dominate the sea ice melting through poleward heat transport anomalies in the Bellingshausen/Amundsen Seas, eastern Weddell Sea, and the western Pacific Ocean and positive net shortwave radiation anomalies with albedo-temperature feedback. In spring, dynamic and thermodynamic processes contribute to sea ice tendency together. Dynamic ice loss exists in the Amundsen Sea where northward ice motion pushes more ice to the lower latitudes and increases melting, especially in the Amundsen Sea and the Ross Sea. Thermodynamic contributions including poleward heat transport, shortwave radiation, and sensible and latent heat flux anomalies melt sea ice in the Weddell Sea. Meanwhile,thinner sea ice freeboard along the coast of the Amundsen Sea is also critical to the summer melting. All these atmospheric impacts originate from the intensity and position of ASL and ocean warming, proving the deductions made by Raphael and Handcock (2022).

    Fig. 2. (a) SIC anomalies for austral summer based on 1981-2010 average SIC (units: %). (b) SIC tendency (? C/?t) from 1 December to 4 February (units: % season-1). (c) The ratio of the dynamic contributions [- ?·(uC)] to tendency from 1 December to 4 February. The vectors represent seasonal average sea ice drift. (d) Anomalies of sea level pressure (units:hPa). (e) Anomalies of meridional heat transport (units: K m s-1) and 10-m wind (units: m s-1). (f) Anomalies of surface net heat fluxes (shaded), net shortwave radiation fluxes of 20 W m-2 (dark blue contour), and the sum of net sensible and latent heat fluxes of 20 W m-2 (purple contour) (units: W m-2).

    Fig. 3. Same as Fig. 2 but for austral spring (September-November; SON).

    Fig. 4. Sea ice freeboard anomalies (shading) and sea ice motion anomalies(vectors) in spring 2021 based on average spring values during 2018-20.

    According to the NOAA Climate Prediction Center, the monthly Antarctic Oscillation (AAO) index and Oceanic Ni?o Index show that the new record Antarctic SIE minimum happened during a combination of positive Southern Annular Mode (SAM) and La Ni?a. Both of these modes lead to a deepened ASL (Yu et al., 2015; Fogt and Marshall, 2020). Fogt et al. (2011) revealed that when a La Ni?a (El Ni?o) is concurrent with a positive (negative) SAM, the impact of ENSO is significant on South Pacific atmospheric circulation. Stammerjohn et al. (2008) investigated the relationship between these combined impacts and the sea ice retreat/advance and showed a similar result to the in-phase condition in Fogt et al. (2011), with significant ice responses, particularly in the western Antarctic Peninsula and the southern Bellingshausen Sea. In addition, the Indian Ocean Dipole, Interdecadal Pacific Oscillation, and the Atlantic Multidecadal Oscillation are all important factors contributing to Antarctic sea ice decline in spring 2016 (Eayrs et al., 2021). Therefore, impacts of tropical variability and largescale climate modes should be further studied.

    Besides, examining the physical cause of the difference of the SIC distribution between 2016-17 and 2021-22 can help us understand the physical causes of the interannual variability of the Antarctic sea ice. Figure 1b reveals that the 2017 summer SIC pattern shows a few differences in the eastern Ross Sea, Bellingshausen Sea, and the northern Weddell Sea compared with the 2022 summer. More sea ice is melted in the Weddell Sea rather than in the Ross Sea in 2017. By comparing the sea ice budgets and atmospheric circulations of the two events (not shown), we find a different budget result and opposite SLP anomalies and thus suggest that the underlying mechanisms might be different in these two recent record low SIE events.Detailed and comprehensive investigations are required to further verify this deduction.

    Acknowledgements. The authors wish to thank the editor and two anonymous reviewers for their very helpful comments and suggestions. This is a contribution to the Year of Polar Prediction (YOPP), a flagship activity of the Polar Prediction Project (PPP), initiated by the World Weather Research Programme (WWRP) of the World Meteorological Organisation (WMO). We acknowledge the WMO WWRP for its role in coordinating this international research activity. This study is supported by the National Natural Science Foundation of China (Grant Nos. 41941009, 41922044, and 42006191), the Guangdong Basic and Applied Basic Research Foundation (Grant No.2020B1515020025), and the Fundamental Research Funds for the Central Universities (Grant No. 19lgzd07), the Norges Forskningsr?d(Grant no. 328886).

    免费看不卡的av| 国产成人啪精品午夜网站| 欧美精品人与动牲交sv欧美| 亚洲第一av免费看| 亚洲国产最新在线播放| 日韩伦理黄色片| 久久国产精品大桥未久av| av在线老鸭窝| 一级黄片播放器| 9色porny在线观看| 一区福利在线观看| 日本av手机在线免费观看| 老鸭窝网址在线观看| 国产乱人偷精品视频| 久久久久人妻精品一区果冻| 国产精品av久久久久免费| 女的被弄到高潮叫床怎么办| 大码成人一级视频| 久久久久国产精品人妻一区二区| 又大又黄又爽视频免费| 操美女的视频在线观看| av又黄又爽大尺度在线免费看| 2018国产大陆天天弄谢| 夫妻午夜视频| 久久久久人妻精品一区果冻| av卡一久久| 在现免费观看毛片| 狠狠精品人妻久久久久久综合| 丝袜喷水一区| 在线精品无人区一区二区三| 免费看不卡的av| av国产精品久久久久影院| 亚洲精品国产av成人精品| 三上悠亚av全集在线观看| av在线老鸭窝| 青青草视频在线视频观看| 一本久久精品| 天天躁日日躁夜夜躁夜夜| 在线免费观看不下载黄p国产| 亚洲av综合色区一区| 亚洲精品久久成人aⅴ小说| 午夜福利,免费看| 亚洲精品久久成人aⅴ小说| 欧美黑人欧美精品刺激| 午夜福利,免费看| 美女脱内裤让男人舔精品视频| 99精品久久久久人妻精品| 欧美人与善性xxx| 你懂的网址亚洲精品在线观看| 国产一卡二卡三卡精品 | 美国免费a级毛片| 久久青草综合色| 欧美 亚洲 国产 日韩一| 婷婷色av中文字幕| 精品亚洲成a人片在线观看| 国产在线免费精品| 日本色播在线视频| 日日撸夜夜添| 国产av精品麻豆| 永久免费av网站大全| 观看av在线不卡| 国产一区亚洲一区在线观看| 精品卡一卡二卡四卡免费| 亚洲欧美日韩另类电影网站| 亚洲av成人不卡在线观看播放网 | 可以免费在线观看a视频的电影网站 | 高清视频免费观看一区二区| 国产精品麻豆人妻色哟哟久久| 伦理电影大哥的女人| 国产色婷婷99| 男女无遮挡免费网站观看| 国产av一区二区精品久久| 久久久久精品人妻al黑| 亚洲,欧美精品.| 天天操日日干夜夜撸| 永久免费av网站大全| 亚洲成人av在线免费| 午夜福利,免费看| 亚洲av成人不卡在线观看播放网 | 午夜福利免费观看在线| 亚洲精品国产av蜜桃| 超碰97精品在线观看| 免费看av在线观看网站| 在线观看www视频免费| 国产精品99久久99久久久不卡 | 男人舔女人的私密视频| 精品亚洲成a人片在线观看| 熟妇人妻不卡中文字幕| 另类精品久久| 在线观看一区二区三区激情| 日本91视频免费播放| 亚洲av在线观看美女高潮| 欧美亚洲日本最大视频资源| 一级毛片我不卡| 丰满少妇做爰视频| 青春草亚洲视频在线观看| 亚洲国产欧美在线一区| av网站在线播放免费| 日韩制服骚丝袜av| 99热网站在线观看| 久久久久国产一级毛片高清牌| 久久久久久久久免费视频了| 国产日韩一区二区三区精品不卡| 国产视频首页在线观看| 国产在视频线精品| 久久人人爽人人片av| 亚洲精品第二区| 妹子高潮喷水视频| 一二三四在线观看免费中文在| 777久久人妻少妇嫩草av网站| 美女福利国产在线| 黄色怎么调成土黄色| 无限看片的www在线观看| 美女扒开内裤让男人捅视频| 免费久久久久久久精品成人欧美视频| 国产免费一区二区三区四区乱码| 亚洲一区中文字幕在线| 国产无遮挡羞羞视频在线观看| 99久久人妻综合| 欧美av亚洲av综合av国产av | 国产免费又黄又爽又色| 亚洲人成网站在线观看播放| 亚洲精品美女久久久久99蜜臀 | 新久久久久国产一级毛片| 伊人久久国产一区二区| 高清不卡的av网站| 欧美最新免费一区二区三区| 亚洲成人国产一区在线观看 | 欧美97在线视频| 国产av一区二区精品久久| 熟女av电影| 悠悠久久av| 99久久综合免费| 热re99久久国产66热| 亚洲欧美激情在线| h视频一区二区三区| 黄频高清免费视频| 欧美人与性动交α欧美精品济南到| 国产97色在线日韩免费| 色婷婷av一区二区三区视频| 成人国产麻豆网| 哪个播放器可以免费观看大片| 美女大奶头黄色视频| 制服诱惑二区| 别揉我奶头~嗯~啊~动态视频 | 久久99热这里只频精品6学生| 一本—道久久a久久精品蜜桃钙片| 欧美日韩成人在线一区二区| 黄频高清免费视频| 国产av精品麻豆| a级片在线免费高清观看视频| 久热这里只有精品99| 精品一区二区三卡| 久久久国产欧美日韩av| av线在线观看网站| 建设人人有责人人尽责人人享有的| 久久久久国产精品人妻一区二区| 久久久久久免费高清国产稀缺| 秋霞在线观看毛片| 一边摸一边做爽爽视频免费| 亚洲av成人不卡在线观看播放网 | 久久久国产精品麻豆| 黄片小视频在线播放| 成年人免费黄色播放视频| 日韩,欧美,国产一区二区三区| 国产有黄有色有爽视频| 国产国语露脸激情在线看| 亚洲精品日韩在线中文字幕| 这个男人来自地球电影免费观看 | 自拍欧美九色日韩亚洲蝌蚪91| 精品国产乱码久久久久久小说| 精品福利永久在线观看| 亚洲av国产av综合av卡| 日韩大片免费观看网站| 久久影院123| 国语对白做爰xxxⅹ性视频网站| 五月天丁香电影| 国产 精品1| 秋霞在线观看毛片| 国产亚洲av高清不卡| 中文字幕高清在线视频| 久久综合国产亚洲精品| 哪个播放器可以免费观看大片| 在线观看免费日韩欧美大片| 欧美精品一区二区免费开放| 尾随美女入室| 亚洲欧美成人精品一区二区| 女人久久www免费人成看片| 天堂中文最新版在线下载| 国产极品天堂在线| 1024视频免费在线观看| 一级,二级,三级黄色视频| 精品国产一区二区久久| 黑人猛操日本美女一级片| av电影中文网址| 韩国精品一区二区三区| 日本欧美视频一区| 欧美老熟妇乱子伦牲交| 国产熟女欧美一区二区| 观看av在线不卡| 制服人妻中文乱码| av在线播放精品| 免费久久久久久久精品成人欧美视频| 中文字幕高清在线视频| 人人妻,人人澡人人爽秒播 | 女人爽到高潮嗷嗷叫在线视频| 一边摸一边抽搐一进一出视频| 欧美成人精品欧美一级黄| 老司机在亚洲福利影院| 亚洲精品日本国产第一区| 国产乱人偷精品视频| 亚洲精品美女久久av网站| 国产黄频视频在线观看| 久久久久视频综合| 丁香六月欧美| 久久久精品区二区三区| 午夜福利乱码中文字幕| 天堂中文最新版在线下载| 色婷婷av一区二区三区视频| 久久人人爽av亚洲精品天堂| 一级毛片我不卡| 成年人午夜在线观看视频| 熟妇人妻不卡中文字幕| 亚洲精品国产av蜜桃| 国产精品麻豆人妻色哟哟久久| 秋霞伦理黄片| 国产一区二区激情短视频 | av线在线观看网站| 一个人免费看片子| 成人午夜精彩视频在线观看| 亚洲成人av在线免费| 国产精品成人在线| 国产亚洲欧美精品永久| 久久国产亚洲av麻豆专区| 亚洲欧美激情在线| 一个人免费看片子| 精品酒店卫生间| 丝袜美腿诱惑在线| 日韩一本色道免费dvd| 极品人妻少妇av视频| 国产亚洲午夜精品一区二区久久| 午夜福利视频精品| 一边摸一边抽搐一进一出视频| 悠悠久久av| 搡老岳熟女国产| 不卡视频在线观看欧美| 国产福利在线免费观看视频| 国产精品无大码| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品国产色婷婷电影| 久久精品国产综合久久久| 日韩一区二区三区影片| 亚洲成人一二三区av| 亚洲成人免费av在线播放| 考比视频在线观看| 性高湖久久久久久久久免费观看| 亚洲精品aⅴ在线观看| 日韩制服骚丝袜av| 9色porny在线观看| 亚洲欧美一区二区三区国产| 18禁动态无遮挡网站| 黄片小视频在线播放| 日韩av在线免费看完整版不卡| 美女主播在线视频| 国产精品三级大全| 一本久久精品| av线在线观看网站| 精品酒店卫生间| 亚洲人成电影观看| 一级片'在线观看视频| 亚洲精品久久午夜乱码| 亚洲精品第二区| 国产精品久久久人人做人人爽| 欧美在线一区亚洲| 亚洲国产欧美在线一区| 夜夜骑夜夜射夜夜干| 自线自在国产av| 久久久久精品人妻al黑| 成人毛片60女人毛片免费| 日韩精品有码人妻一区| 国产精品女同一区二区软件| 水蜜桃什么品种好| 美女午夜性视频免费| 90打野战视频偷拍视频| 美女大奶头黄色视频| 十分钟在线观看高清视频www| 色视频在线一区二区三区| 亚洲自偷自拍图片 自拍| 亚洲熟女毛片儿| 搡老岳熟女国产| 久久久国产精品麻豆| 久久久久久久久久久久大奶| 99热国产这里只有精品6| 色视频在线一区二区三区| 黄色视频在线播放观看不卡| 亚洲av在线观看美女高潮| 国产一区二区三区综合在线观看| 国产精品 国内视频| e午夜精品久久久久久久| 久久青草综合色| 一级毛片我不卡| 男女午夜视频在线观看| 欧美精品高潮呻吟av久久| 十八禁网站网址无遮挡| 亚洲av国产av综合av卡| 高清av免费在线| 国产免费视频播放在线视频| 天堂俺去俺来也www色官网| av在线老鸭窝| 夫妻性生交免费视频一级片| 久久99精品国语久久久| 国产97色在线日韩免费| 一区二区三区四区激情视频| 久久精品久久久久久久性| 国产又爽黄色视频| 国产精品av久久久久免费| 色吧在线观看| 黄色 视频免费看| 欧美日韩亚洲综合一区二区三区_| 国产高清国产精品国产三级| 日韩中文字幕欧美一区二区 | 天天影视国产精品| 欧美精品人与动牲交sv欧美| 欧美少妇被猛烈插入视频| 久久久久久久大尺度免费视频| 人体艺术视频欧美日本| 久久久久国产一级毛片高清牌| 亚洲精品日本国产第一区| 日韩欧美一区视频在线观看| 只有这里有精品99| 我的亚洲天堂| 老汉色∧v一级毛片| 五月开心婷婷网| 日韩大片免费观看网站| 97人妻天天添夜夜摸| 久久av网站| 日韩不卡一区二区三区视频在线| 国产1区2区3区精品| 97在线人人人人妻| 美女大奶头黄色视频| 国产精品一区二区在线不卡| 亚洲成人一二三区av| 九草在线视频观看| 菩萨蛮人人尽说江南好唐韦庄| 不卡av一区二区三区| 国产免费又黄又爽又色| 1024视频免费在线观看| 青青草视频在线视频观看| 青春草国产在线视频| 亚洲天堂av无毛| 精品一区在线观看国产| 亚洲五月色婷婷综合| 亚洲国产日韩一区二区| 日韩一卡2卡3卡4卡2021年| 色婷婷久久久亚洲欧美| 1024香蕉在线观看| 91aial.com中文字幕在线观看| 校园人妻丝袜中文字幕| 丝瓜视频免费看黄片| 欧美在线一区亚洲| svipshipincom国产片| 建设人人有责人人尽责人人享有的| 国产欧美亚洲国产| 午夜老司机福利片| 欧美日韩国产mv在线观看视频| 黑人巨大精品欧美一区二区蜜桃| 色94色欧美一区二区| 国产欧美日韩综合在线一区二区| 丰满迷人的少妇在线观看| 国产欧美日韩一区二区三区在线| 国产高清不卡午夜福利| 日日撸夜夜添| 欧美成人午夜精品| 色网站视频免费| 国产男人的电影天堂91| 欧美成人午夜精品| 五月开心婷婷网| xxx大片免费视频| 少妇 在线观看| 捣出白浆h1v1| 国产男女内射视频| 妹子高潮喷水视频| 成人亚洲精品一区在线观看| 爱豆传媒免费全集在线观看| 热re99久久精品国产66热6| 久久久久久久久久久免费av| 成人三级做爰电影| 秋霞在线观看毛片| 天天添夜夜摸| 国产视频首页在线观看| 亚洲美女搞黄在线观看| 在线看a的网站| 欧美另类一区| 天天躁夜夜躁狠狠躁躁| 国产伦人伦偷精品视频| 丰满乱子伦码专区| 国产精品蜜桃在线观看| 亚洲欧美精品自产自拍| 青春草亚洲视频在线观看| 精品亚洲乱码少妇综合久久| 日韩一本色道免费dvd| 国产成人a∨麻豆精品| 18禁国产床啪视频网站| 性少妇av在线| 一二三四在线观看免费中文在| 女性生殖器流出的白浆| 中文精品一卡2卡3卡4更新| 热re99久久精品国产66热6| 久久人妻熟女aⅴ| 国产成人av激情在线播放| 男女午夜视频在线观看| 久久性视频一级片| 日日爽夜夜爽网站| 免费看不卡的av| 免费不卡黄色视频| 日韩一区二区三区影片| 欧美激情高清一区二区三区 | 亚洲av综合色区一区| 老司机影院毛片| av一本久久久久| 嫩草影视91久久| 男的添女的下面高潮视频| 黄色毛片三级朝国网站| 两个人免费观看高清视频| 亚洲欧美成人综合另类久久久| 少妇 在线观看| 99国产综合亚洲精品| 免费av中文字幕在线| 伊人久久国产一区二区| 久久免费观看电影| 久久精品国产综合久久久| 国产不卡av网站在线观看| 性少妇av在线| 国产日韩欧美视频二区| av.在线天堂| 国产成人av激情在线播放| 欧美97在线视频| 亚洲天堂av无毛| 国产精品久久久久久精品电影小说| 五月开心婷婷网| 在线观看国产h片| 亚洲国产看品久久| 欧美日韩成人在线一区二区| 9191精品国产免费久久| 在线观看免费视频网站a站| 街头女战士在线观看网站| 亚洲自偷自拍图片 自拍| 亚洲精品美女久久久久99蜜臀 | 美女主播在线视频| 欧美国产精品va在线观看不卡| 久久av网站| 女人精品久久久久毛片| 日韩 亚洲 欧美在线| 亚洲成人av在线免费| 久久精品久久精品一区二区三区| 在线观看一区二区三区激情| 欧美日韩福利视频一区二区| 婷婷色麻豆天堂久久| 欧美中文综合在线视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲人成电影观看| 在线 av 中文字幕| 岛国毛片在线播放| 国产日韩一区二区三区精品不卡| 一个人免费看片子| 亚洲天堂av无毛| 曰老女人黄片| 亚洲人成77777在线视频| 免费av中文字幕在线| 国产在线一区二区三区精| 婷婷色麻豆天堂久久| 欧美乱码精品一区二区三区| 高清视频免费观看一区二区| 少妇的丰满在线观看| 免费黄网站久久成人精品| 久久99精品国语久久久| 久久精品亚洲熟妇少妇任你| 性高湖久久久久久久久免费观看| 在线观看国产h片| 国产亚洲精品第一综合不卡| 最黄视频免费看| 黄网站色视频无遮挡免费观看| 黄频高清免费视频| 99九九在线精品视频| 超碰成人久久| 国产不卡av网站在线观看| 最新在线观看一区二区三区 | 免费久久久久久久精品成人欧美视频| 天天躁夜夜躁狠狠躁躁| 亚洲av中文av极速乱| 无限看片的www在线观看| 99国产精品免费福利视频| 夫妻午夜视频| 国产亚洲精品第一综合不卡| 少妇被粗大猛烈的视频| 一二三四在线观看免费中文在| 色94色欧美一区二区| 看免费av毛片| 一本一本久久a久久精品综合妖精| 日本猛色少妇xxxxx猛交久久| 十八禁高潮呻吟视频| 18在线观看网站| 成年人午夜在线观看视频| 成人亚洲欧美一区二区av| 日本爱情动作片www.在线观看| 国产又爽黄色视频| 精品一区二区免费观看| 在线观看www视频免费| 久久免费观看电影| 最近手机中文字幕大全| 99国产精品免费福利视频| www.精华液| 波多野结衣av一区二区av| 99热国产这里只有精品6| 亚洲精品第二区| 成年美女黄网站色视频大全免费| 国产99久久九九免费精品| 美女午夜性视频免费| 99热网站在线观看| 黄色 视频免费看| 丝袜人妻中文字幕| 免费日韩欧美在线观看| 五月开心婷婷网| 国产一区二区 视频在线| 国产精品香港三级国产av潘金莲 | 国产熟女午夜一区二区三区| 亚洲精品成人av观看孕妇| 精品免费久久久久久久清纯 | 欧美日本中文国产一区发布| 伦理电影免费视频| 国产色婷婷99| 亚洲一级一片aⅴ在线观看| 纯流量卡能插随身wifi吗| 国产极品天堂在线| 亚洲一区中文字幕在线| 男女之事视频高清在线观看 | xxx大片免费视频| 午夜影院在线不卡| 精品午夜福利在线看| 日本欧美视频一区| 午夜老司机福利片| 老汉色∧v一级毛片| 欧美亚洲 丝袜 人妻 在线| 国产精品99久久99久久久不卡 | 中文字幕高清在线视频| 国产一区二区三区综合在线观看| 青春草亚洲视频在线观看| 人妻 亚洲 视频| 大片电影免费在线观看免费| tube8黄色片| 亚洲一级一片aⅴ在线观看| 国产在线一区二区三区精| 欧美人与性动交α欧美精品济南到| 久久精品久久久久久久性| 哪个播放器可以免费观看大片| 啦啦啦啦在线视频资源| 国产极品天堂在线| 国产亚洲av高清不卡| 日韩大码丰满熟妇| 亚洲三区欧美一区| 国产精品偷伦视频观看了| 欧美成人午夜精品| 亚洲精品,欧美精品| 性色av一级| 国产 一区精品| 激情视频va一区二区三区| 久久性视频一级片| 国产精品一二三区在线看| av在线观看视频网站免费| 亚洲五月色婷婷综合| 亚洲精品久久久久久婷婷小说| 天堂俺去俺来也www色官网| 街头女战士在线观看网站| 亚洲av综合色区一区| 久久99精品国语久久久| 黄网站色视频无遮挡免费观看| 黄片无遮挡物在线观看| 亚洲成人一二三区av| 国产熟女午夜一区二区三区| 飞空精品影院首页| 国产极品粉嫩免费观看在线| 国产深夜福利视频在线观看| 亚洲伊人久久精品综合| 精品亚洲成a人片在线观看| 99热网站在线观看| 亚洲国产毛片av蜜桃av| 国产精品免费大片| 一本一本久久a久久精品综合妖精| xxxhd国产人妻xxx| 免费在线观看完整版高清| 啦啦啦在线免费观看视频4| 亚洲av电影在线进入| 精品久久久精品久久久| 国产免费福利视频在线观看| 97精品久久久久久久久久精品| 亚洲熟女精品中文字幕| 婷婷成人精品国产| 中文欧美无线码| 十八禁高潮呻吟视频| 国产亚洲午夜精品一区二区久久| 男女床上黄色一级片免费看| 丝袜美足系列| 国产av码专区亚洲av| 国产精品嫩草影院av在线观看| 亚洲国产欧美一区二区综合| 国产精品国产三级国产专区5o| av福利片在线| 老熟女久久久| 自拍欧美九色日韩亚洲蝌蚪91| a级片在线免费高清观看视频| 日韩成人av中文字幕在线观看| 国产av精品麻豆| 在线免费观看不下载黄p国产| 日韩精品有码人妻一区| 日韩精品免费视频一区二区三区|