• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Deep Learning-Based AMP for Massive MIMO Detection

    2022-10-27 04:44:00YangYangShaopingChenXiqiGao
    China Communications 2022年10期

    Yang Yang,Shaoping Chen,*,Xiqi Gao

    1 Hubei Key Laboratory of Intelligent Wireless Communications,South-Central Minzu University,Wuhan 430074,China

    2 National Mobile Communications Research Laboratory,Southeast University,Nanjing 210096,China

    *The corresponding author,email:spchen@scuec.edu.cn

    Abstract:Low-complexity detectors play an essential role in massive multiple-input multiple-output(MIMO)transmissions.In this work,we discuss the perspectives of utilizing approximate message passing(AMP)algorithm to the detection of massive MIMO transmission.To this end,we need to efficiently reduce the divergence occurrence in AMP iterations and bridge the performance gap that AMP has from the optimum detector while making use of its advantage of low computational load.Our solution is to build a neural network to learn and optimize AMP detection with four groups of specifically designed learnable coefficients such that divergence rate and detection mean squared error(MSE)can be significantly reduced.Moreover,the proposed deep learning-based AMP has a much faster converging rate,and thus a much lower computational complexity than conventional AMP,providing an alternative solution for the massive MIMO detection.Extensive simulation experiments are provided to validate the advantages of the proposed deep learning-based AMP.

    Keywords:approximate message passing;convergence;machine learning

    I.INTRODUCTION

    Massive multiple-input multiple-output(MIMO)system with hundreds of antennas at the base-station(BS)that serves multiple mobile user-equipment(UE)at the same spectrum band had spurred much research interest as a key element of the 5th generation mobile communication system,due to its high spectral and power efficiency.However,the complexity of traditional MIMO detectors,e.g.,the maximum likelihood(ML)detector and the iterative detection and decoding scheme,whose BER performance approaches ML detector,is too high to be applied in the massive MIMO systems.Hence,it is worthwhile to develop simple yet effective detectors for massive MIMO systems[1–3].As an efficient iterative algorithm,approximate message passing(AMP)has gained significant attentions for its light computational load without much compromise in performance.

    AMP was first proposed in[4]to solve the sparse linear inverse problem for compressed sensing.Afterwards,some significant progresses have been made to enable AMP converge faster,or converge into a more accurate result[5–7].Recently,an approach to improve AMP algorithm following the line of machine learning was presented in[8],whereby AMP-unfolded deep network was first proposed which can achieve a much better performance than the standard AMP.Although AMP along with its improved schemes has many advantages,there still exist some challenges,e.g.,it may suffer from divergence if not properly controlled[4].Moreover,to ease the derivation,an assumption of Gaussian distribution about the detected signals is made and the computational complexity is significantly reduced under this assumption.However,different from sparse linear inverse problem where AMP was first applied,the signals to be detected in massive MIMO detection are not sparse but of finite alphabets and the Gaussian assumption is not met in practice.Thus,the AMP and its learning-based version cannot be directly applied in massive MIMO detection[9–11].

    Inspired by the work in[8],we consider employing machine learning to optimize AMP algorithm for massive MIMO detection.Different from conventional AMP where the parameters are obtained by theoretical analysis and approximation,our proposed method introduces specifically designed coefficients whose values are learned from a large number of data.Via machine learning,the divergence rate of AMP can be controlled to a very low level such that detection errors caused by it can be corrected by interleaving and channel coding in practice.What is more,via machine learning,a faster converging rate along with a lower detection bit error rate(BER)can be achieved.

    The rest of the paper is organized as follows.In Section II,we briefly review the system model for massive MIMO detection.The AMP detector is introduced in Section III.Our proposed method is then given in Section IV.Simulation results are given in Section V.The conclusions are drawn in Section VI.

    II.SYSTEM MODEL

    We consider a massive MIMO communication,consisting of one BS equipped withMantennas servingNUE’s each equipped with one antenna.In this work,we focus on the uplink detection problem,where the frequency domain signals from UEs are denoted by the vector∈CN×1which are drawn from the constellation.The received signal vector∈CM×1is given by

    where y and x are real vectors consisting of the real and imaginary part of~y and~x respectively.H consists of the real and imaginary part of~H as follows,

    In the massive MIMO detection,the block fading channel is usually assumed where channel matrix H stays constant during a coherence block and changes from block to block according to some ergodic property.We estimate channel H and recover the information transmitted from the UE’s,which is referred to the uplink detection given as

    where‖·‖2returns the 2-norm of a vectors.Ω is the real equivalent constellation of the complex.For more detail of the system model see[2,12].

    III.AMP DETECTION

    The complexity of exhaustive search for Eq.(4)scales exponentially withNand it is impractical for a largeNin massive MIMO’s.Hence,how to design a detector with a low complexity has been an active research topic.AMP is an iterative algorithm with a low complexity,which is designed based on the expectation of the posterior probability distribution of the received signals as[9]

    wheref(x|y)is the conditional distribution function of x given y.Rewritef(x|y)using Bayes formula as follows,

    Suppose each element of x and y are independent from each other.Then,Eq.(6)can be changed into

    Figure 1.Factor graph of posteriori distribution f(x|y).

    A factor graph is employed to illustrate the posteriori distribution in Eq.(7)as given in Figure 1.As a matter of fact,a numerically efficient method can be employed to approximate each marginal pdff(xn|y)by a set of message passing operations that go from factor nodes to variable nodes(i.e.,rm→n)and from variable nodes to factor nodes(i.e.,xm→n),as illustrated in Figure 1.The message passing equations are constructed as follows,[9]

    where a superscriptrtdenotes the number of iterations and the symbol~=denotes identity between probability distributions up to a normalization constant.

    Suppose all random variables ofxtn→mfollow Gaussian distributions,satisfying

    Whereμtn→m,νtn→mdenote its mean and variance respectively.Thus,rtm→ncan be worked out through Eq.(8)according to Gaussian approximation method as

    where

    wherehmnis the(m,n)-th entry of H.Base on Eq.(8)and Eq.(10),we come across a method to updatextn→mas

    Henceforth,we have the method to update the mean and variance ofxtn→mas

    Nevertheless,the computation load in equations Eq.(8)is still heavy as it requires to calculate 2MNmessages.With the goal of further simplifying the updating,AMP is reorganized via soft thresholding function as[4,9]

    whereη(z;λ0)is the soft thresholding function defined by

    The functionη′(;)is the derivative ofη(;).The operation〈b〉denotes the average of vector b,and[b]jdenotes thej-th component of the vector.Vector x is initialized as a zero vector,and r is initialized as a vector of one’s generally.For detailed derivation of the AMP,please see[4,9].

    Based on Eq.(13),a multi-layer network is obtained via unfolding the message passing as shown in Figure 2,where the number of layers is determined by the number of AMP iterations.It well known thatη(z;λ0)plays a vital role to rebuild a sparse x[9].However,it does not mean thatη(z;λ0)can be absent where x is not sparse,as the message will diverge to infinity without the restriction fromη(z;λ0).

    IV.DEEP LEARNING-BASED AMP DETECTOR

    AMP is a low complexity yet effective algorithm and has a great application potential in many scenarios.However,AMP may suffer from divergence if not properly controlled.It has been extensively investigated in the academic society,and a theoretical conclusion of what causes the divergence is still absent.In addition,AMP is derived under the assumption that the signals are Gaussian,which is not met in massive MIMO transmissions.Our motivation in the paper is to modify conventional AMP algorithm and optimize it via machine learning such that it can be applied for massive MIMO detection.

    Although many investigations are proposed to optimize AMP,most of them focus on how to adjust key coefficients in a heuristic manner and thus a performance gain is limited.In addition,repeated manual adjustment is troublesome and hard to achieve an optimized solution,e.g.,divergence may occur if not properly controlled.

    Fortunately,deep learning provides a promising solution,which helps us to find the optimized coefficients for AMP.This is achieved via learning from a tremendous amount of massive MIMO data.Thus,a learnable AMP with an obviously better performance over traditional AMP is allowable,even though we cannot explain exactly how it works[13–15].

    Our investigation shows that whether AMP converges or not greatly depends on the channel matrix H along with the received signals y.To mitigate the occurrence of divergence,we introduce two learnable coefficients(θ,ψ)for H and y,respectively.The modified version of Eq.(13)is given by

    Although it is hard to work out the optimum solution of(θ,ψ),a suboptimal solution is available via machine learning.Extensive investigations via machine learning show that(θ,ψ)does have a dominant effect on the convergence of AMP.To explain this effect visually,some intermediate learning results are shown in Figure 4 and Figure 5,Section V,which show how the normalized mean square error(NMSE)of AMP will vary with the increase of layers(iterations).The results show that the proposed parameters do have an impact on the convergence performance of AMP,and there is a great potential of optimization learning.

    The authors in[7,8]showed that the thresholdτtplays an important role in the convergence speed of AMP iterations and accordingly presented a multilayer network by introducing a coefficientαtfor the threshold that can be learned.By optimizing the threshold via machine learning,an obvious performance gain is allowed for AMP iterations.In addition,we introduce another coefficientβtfor more performance gain.A learnable message passing detector with more efficient learnable coefficients is obtained by transforming Eq.(15)into

    Figure 3 illustrates the proposed methold via unfolding the equations in Eq.(16)into a multilayer network.The difference between our proposed learning-based AMP and that presented in[8]includes two folds.First,we explicitly employ threshold update operation that was first presented in[4].The threshold update(the third Eq.(16))with optimized coefficientsαtwill further speed up the convergence.Second,additional learnable coefficients are introduced to mitigate the occurrence of divergence in AMP iterations.

    Figure 2.Multilayer network from unfolding the AMP iterations.

    Figure 3.Multilayer network from unfolding the proposed message passing methods.

    whereEandRare the convergence and divergence loss,respectively.The divergence lossRis evaluated by the divergence rate and the convergence lossEis evaluated by the MSE of the converged outputs.To minimize the sum ofEandRcan help to reduce the divergence loss and optimize the converged outputs at the same time.

    There should be enough training data for a network to achieve a good performance.Generally,thousands or tens of thousands of training data are recommended with the goal of predicting the unknown x with a high accuracy from a newly received y[15].Suppose there areNdtraining data available denoted byThe detailed process to compute them is given in Algorithm 1,where 0 and 1 denote vectors with all 0’s and 1’s,respectively.

    Different from traditional AMP where the parameters are obtained by theoretical analysis and approximation,the proposed method includes 4 learnable coefficients that can be optimized via learning.The massive MIMO channel varies in different scenarios,so the traditional method with constant parameters may suffer from performance degradation in a changing scenario.In contrast,the proposed learnable method is more flexible and adaptive to channel variations,and thus may adapt to massive MIMO detections.Different from the learnable AMP scheme presented in[8],where learnable coefficients for threshold is introduced to achieve a faster convergence speed and a lower detection error,our proposed learnable AMP employs threshold update and introduce more learnable coefficients such that a significant lower divergence rate is achieved than the learnable AMP in[8]while maintaining a faster convergence rate and a lower detection error.

    Algorithm 1.Proposed quadratic loss for learning.Require:Ξt,H,{xd,yd}Nd d=1 Ensure:E,R 1:Et=0,Rt=0,Nc=0 2:for d=1:Nd do 3:xt=0,rt=1,τt=0.5 4:for t=1:T do 5: (xt,rt,τt)6: =AMP(yd,Ξt,H,xt-1,rt-1,τt-1)7:end for 8:if images/BZ_80_371_908_399_954.png(xt-xd)2images/BZ_80_599_908_627_954.png 〉then 9: Et=Et+(xt-xd)2images/BZ_80_819_994_847_1040.png 10: Nc=Nc+1 11:else 12: Rt=Rt+1 13:end if 14:end for 15:E=Et/Nc,R=Rt/Nd images/BZ_80_591_994_619_1040.png <〈x2d

    There are various solutions to deal with the MIMO detection problem following different technical routes,and some already achieve very low BER recently[10,11].However,AMP is still worthwhile to be further investigated,although it does not have a beautiful BER curve in comparison with some other ideas.As a distributed algorithm,AMP can be conducted into a group of simple computing units,so it is easy to be realized via the programmable chips and does not require high cost powerful centralized processors.Hence,AMP has been a popular method for massive MIMO detection problem for its potential application in various mobile,small,and low energy consumption devices,which will become the main stream of the future networks like internet of things.

    In addition,complexity is no doubt an important factor in low cost device of Industrial applications.Both MMSE detector and the OAMP-Net method given in[13]require to perform complex matrix inversion operations,whose computational complexity of orderO(N3)is much heavier than the message passing based AMP method of a complexity of orderO(TN).Although the proposed scheme includes more coefficients to be learned and thus has a heavier training complexity,it still has a similar on-line detection complexity of orderO(TN)as conventional AMP and the learnable AMP,since the training operation is performed off-line.In addition,considering the proposed AMP converges faster than existing AMPs(less iterationsTis needed for the same performance to be achieved),the proposed AMP has a lower detection complexity than them.

    V.SIMULATIONS

    This section provides the simulation results to validate the advantages of the proposed method.As ML detector is too complicated to be realized for massive MIMO simulations,we choose to compare it with those of MMSE detector[2],conventional AMP in[4],tied learned AMP given in[8],and the OAMP-Net in[13].The simulations are performed with a multiuser MIMO system as described in Section II with SCM channel model H withM=100 andN=100.The normalized average powerof the transmitted signals is set to be 1,and the received signalto-noise-ratio(SNR)isThe NMSE,defined in the following,is calculated by Monte Carlo simulations with 106frames of channel and signal realizations.

    Figure 4 and Figure 5 show the NMSE performance comparison against the number of layers for two groups of channel and signal realizations.The trace of H employed in the simulations shown in Figure 5 is ten times greater than the trace of H in Figure 4.Thus,the power gain of the channels experimented in Figure 5 is much higher than Figure 4.The result also shows that no matter AMP and tied learned AMP converge or not,the NMSE performance of the proposed deep learning-based AMP can well converge.Moreover,it is obvious that the proposed method converges faster and has a lower NMSE as shown in Figure 4,even though AMP and tied learned AMP all converge after about 20 iterations.

    Figure 4.NMSE against the number of layers,where SNR=13 dB.

    Figure 5.NMSE against the number of layers,where SNR=13 dB.

    Figure 6 shows the divergence rate of each method in different SNR scenarios,where both the proposed method and tired learned AMP are trained at SNR=13 dB.We choose the 13 dB scenario to ensure the impact of AWGN can be learned well,on the other hand,the signal is available for detection.The result shows that the divergence rates of tired learned AMP along with the conventional AMP are higher than 10-1,that is far away from the practical requirement.In contrast,the divergence rate of the proposed method decreases nearly 2 order of magnitude around 13 dB compared with other methods,and it continues to decrease when SNR is beyond 13 dB.Hence,the proposed learning method controls the divergence rate to a very low level,and it also is robust to SNR change.

    Figure 7 shows the NMSE comparison versus SNR.The results show that the proposed deep learningbased AMP performs obviously better than conventional AMP.Although the performance of the proposed AMP is very close to MMSE detector around SNR=13 dB,the performance gap is enlarged when SNR is away from 13 dB.The reason is that the learned AMPs are learned at SNR=13 dB such that they achieve the best performance at this SNR value.We may customize different learnable AMPs that are trained at several SNR values to achieve a good performance at whole reasonable SNR values.

    Figure 6.Divergence rate comparison versus SNR.

    Figure 7.The NMSE of converging outputs versus SNR.

    Figure 8.The BER of each method to detect 4-QAM signals.

    Figure 9.The BER of each method to detect 16-QAM signals.

    Figure 8 and Figure 9 show the BER comparison in the detection of 4-QAM and 16-QAM signals respectively.The results show that MMSE and OAMP-Net have a lower BER than others,but this gain is accomplished by complex computation of matrix inversion in both MMSE and OAMP-Net.AMP,tied learned AMP,and the proposed AMP have a similar complexity,but the proposed method has much lower BER,which is very close to MMSE and OAMP-Net.Thus,the proposed deep learning-based AMP achieves a good tradeoff between complexity and performance.

    VI.CONCLUSION

    We have presented a deep learning-based AMP for massive MIMO detection.We build a deep neural network to learn and optimize AMP detection with four groups of specifically designed learnable coefficients.The simulation results showed that the proposed scheme had much lower divergence rate and detection MSE than the conventional AMP.In addition,we need to further investigate the reasons why divergence occurs in AMP iterations and analyze what impact it will has in detection MSE.Accordingly,optimized interleaving and coding scheme is investigated to correct the errors caused by divergence.We will conduct the research of these problems in our future work.

    ACKNOWLEDGEMENT

    This work was supported by the National Natural Science Foundation of China under Grants 61801523,61971452,and 91538203.

    精品国产乱子伦一区二区三区| 国产精品一及| 日本a在线网址| 99精品久久久久人妻精品| 国产精品永久免费网站| av免费在线观看网站| 午夜福利在线在线| 99国产综合亚洲精品| 麻豆成人午夜福利视频| 国产激情欧美一区二区| 亚洲中文字幕一区二区三区有码在线看 | 欧美精品啪啪一区二区三区| 久久久久久九九精品二区国产 | 看片在线看免费视频| 黑人巨大精品欧美一区二区mp4| 18禁黄网站禁片免费观看直播| 亚洲性夜色夜夜综合| 亚洲一卡2卡3卡4卡5卡精品中文| 国产激情久久老熟女| 久久中文字幕一级| 久久精品91无色码中文字幕| 亚洲欧美日韩高清专用| 国产v大片淫在线免费观看| 老汉色∧v一级毛片| 97人妻精品一区二区三区麻豆| 长腿黑丝高跟| 一级片免费观看大全| 国产成人一区二区三区免费视频网站| 久久伊人香网站| 一级毛片高清免费大全| 日本熟妇午夜| 亚洲 欧美 日韩 在线 免费| 国产真人三级小视频在线观看| 久久久水蜜桃国产精品网| 国产精品久久久久久人妻精品电影| 两性夫妻黄色片| 一卡2卡三卡四卡精品乱码亚洲| 日日摸夜夜添夜夜添小说| 亚洲欧美日韩东京热| 午夜福利高清视频| 婷婷六月久久综合丁香| 亚洲av美国av| 国产欧美日韩精品亚洲av| 国产一区二区三区在线臀色熟女| 成人午夜高清在线视频| 欧美成人一区二区免费高清观看 | 99国产精品一区二区蜜桃av| 日韩高清综合在线| 欧美人与性动交α欧美精品济南到| aaaaa片日本免费| 亚洲国产精品久久男人天堂| 亚洲成人久久性| 欧美一级a爱片免费观看看 | 久久香蕉激情| 国产在线精品亚洲第一网站| 一区二区三区高清视频在线| 亚洲av电影在线进入| 51午夜福利影视在线观看| 亚洲色图 男人天堂 中文字幕| 狂野欧美激情性xxxx| 久久热在线av| 日韩欧美 国产精品| 长腿黑丝高跟| 在线看三级毛片| 99久久99久久久精品蜜桃| av中文乱码字幕在线| or卡值多少钱| 国产v大片淫在线免费观看| 国内精品一区二区在线观看| 午夜免费观看网址| 日韩有码中文字幕| 久久精品国产综合久久久| 亚洲精品在线观看二区| 两个人视频免费观看高清| 老司机福利观看| 天天一区二区日本电影三级| 香蕉av资源在线| 俺也久久电影网| 国产又黄又爽又无遮挡在线| 中文亚洲av片在线观看爽| 美女高潮喷水抽搐中文字幕| 99久久国产精品久久久| 在线十欧美十亚洲十日本专区| 美女大奶头视频| 狠狠狠狠99中文字幕| 亚洲精品国产一区二区精华液| 欧美不卡视频在线免费观看 | 免费在线观看日本一区| 免费看a级黄色片| 一个人免费在线观看电影 | 白带黄色成豆腐渣| 好男人电影高清在线观看| 精品一区二区三区视频在线观看免费| 十八禁网站免费在线| 欧美人与性动交α欧美精品济南到| 久久 成人 亚洲| 国产精品影院久久| 免费人成视频x8x8入口观看| 久久国产精品人妻蜜桃| 国产三级中文精品| 狠狠狠狠99中文字幕| 日韩欧美在线二视频| 久久国产精品影院| 久久久国产精品麻豆| 免费在线观看成人毛片| 久久精品国产综合久久久| 少妇人妻一区二区三区视频| 亚洲精品久久国产高清桃花| 国产在线精品亚洲第一网站| 亚洲av成人不卡在线观看播放网| 国产伦人伦偷精品视频| 级片在线观看| 欧美+亚洲+日韩+国产| 俄罗斯特黄特色一大片| 高清在线国产一区| 国产精品综合久久久久久久免费| 免费看美女性在线毛片视频| 高清在线国产一区| 波多野结衣高清无吗| 精品国产乱码久久久久久男人| 亚洲欧美精品综合久久99| 黄色成人免费大全| 免费av毛片视频| 狠狠狠狠99中文字幕| 少妇人妻一区二区三区视频| 国产精品久久久av美女十八| 丁香欧美五月| 香蕉av资源在线| 免费观看人在逋| 欧美成狂野欧美在线观看| 久久久久国产一级毛片高清牌| 一级毛片精品| 国产精品久久久久久久电影 | 国产成人精品久久二区二区免费| 色精品久久人妻99蜜桃| 最新在线观看一区二区三区| 高潮久久久久久久久久久不卡| 国产日本99.免费观看| 国产激情久久老熟女| 在线十欧美十亚洲十日本专区| 久久99热这里只有精品18| 中国美女看黄片| 脱女人内裤的视频| 巨乳人妻的诱惑在线观看| 日韩高清综合在线| 无限看片的www在线观看| 国产主播在线观看一区二区| 青草久久国产| 香蕉久久夜色| 国产精品免费一区二区三区在线| 国产精品美女特级片免费视频播放器 | 成人一区二区视频在线观看| 国产一区在线观看成人免费| 99精品久久久久人妻精品| 一本综合久久免费| 长腿黑丝高跟| 国产精品久久电影中文字幕| www.自偷自拍.com| 又大又爽又粗| 午夜日韩欧美国产| 欧美午夜高清在线| 又爽又黄无遮挡网站| 午夜激情av网站| 变态另类丝袜制服| 亚洲精品国产一区二区精华液| 999精品在线视频| 欧美日韩亚洲综合一区二区三区_| 欧美极品一区二区三区四区| 久久久久久九九精品二区国产 | 国产精品久久久久久久电影 | 一二三四社区在线视频社区8| 久久久精品国产亚洲av高清涩受| 亚洲专区国产一区二区| 欧美日韩亚洲综合一区二区三区_| 久久伊人香网站| 国产高清视频在线播放一区| 亚洲七黄色美女视频| 国产又黄又爽又无遮挡在线| av国产免费在线观看| 亚洲男人天堂网一区| 亚洲美女视频黄频| 精品无人区乱码1区二区| 99国产精品一区二区三区| 免费在线观看完整版高清| 很黄的视频免费| 国产乱人伦免费视频| 国产欧美日韩精品亚洲av| 国产单亲对白刺激| 久久久久久人人人人人| 久久久久国内视频| 搞女人的毛片| 琪琪午夜伦伦电影理论片6080| 欧美一级毛片孕妇| 亚洲成人久久性| 日本a在线网址| 亚洲欧美日韩高清在线视频| 久久国产乱子伦精品免费另类| 一本久久中文字幕| 又黄又爽又免费观看的视频| 国产一区二区三区在线臀色熟女| 夜夜躁狠狠躁天天躁| 成人三级黄色视频| 国产精品美女特级片免费视频播放器 | 成人高潮视频无遮挡免费网站| 深夜精品福利| 99热这里只有精品一区 | 搡老岳熟女国产| 青草久久国产| 国产精品99久久99久久久不卡| 亚洲国产欧美人成| 黄色丝袜av网址大全| 久久久久亚洲av毛片大全| 母亲3免费完整高清在线观看| 成人一区二区视频在线观看| 免费电影在线观看免费观看| 成人国语在线视频| 午夜视频精品福利| 免费搜索国产男女视频| 久久精品亚洲精品国产色婷小说| 波多野结衣高清作品| 可以免费在线观看a视频的电影网站| 999久久久精品免费观看国产| 免费看美女性在线毛片视频| 精品久久久久久久人妻蜜臀av| av欧美777| 久9热在线精品视频| 757午夜福利合集在线观看| 长腿黑丝高跟| 最新美女视频免费是黄的| 亚洲成人精品中文字幕电影| 一级作爱视频免费观看| 在线a可以看的网站| a级毛片a级免费在线| 国产av一区在线观看免费| 欧美日韩亚洲国产一区二区在线观看| 久久久久久免费高清国产稀缺| 丝袜美腿诱惑在线| 两个人看的免费小视频| 十八禁人妻一区二区| 日日摸夜夜添夜夜添小说| 日本 av在线| 免费在线观看亚洲国产| 一进一出抽搐gif免费好疼| 亚洲av熟女| 国产1区2区3区精品| 午夜a级毛片| 三级毛片av免费| 在线观看免费视频日本深夜| 亚洲国产精品成人综合色| 午夜日韩欧美国产| 久久香蕉国产精品| 亚洲欧洲精品一区二区精品久久久| 国产av在哪里看| 国产精华一区二区三区| 亚洲欧美精品综合一区二区三区| 日本a在线网址| 国产精品野战在线观看| 日本精品一区二区三区蜜桃| 亚洲第一电影网av| 欧美日本亚洲视频在线播放| 久久这里只有精品19| 麻豆成人av在线观看| 国产伦人伦偷精品视频| 欧美乱码精品一区二区三区| 九九热线精品视视频播放| 欧美久久黑人一区二区| 两个人免费观看高清视频| 亚洲欧美激情综合另类| 久久久久久人人人人人| 这个男人来自地球电影免费观看| 白带黄色成豆腐渣| 国产成人精品无人区| 中文字幕av在线有码专区| 久久久久久久久久黄片| 法律面前人人平等表现在哪些方面| 亚洲真实伦在线观看| 欧美色视频一区免费| 国产精品99久久99久久久不卡| 久久中文字幕一级| 91在线观看av| 久久久精品欧美日韩精品| 国产成人av激情在线播放| 在线观看一区二区三区| 老司机午夜福利在线观看视频| 久久精品成人免费网站| 成人国产综合亚洲| 亚洲七黄色美女视频| 亚洲av片天天在线观看| 欧美性猛交黑人性爽| 国产成人av激情在线播放| 黑人巨大精品欧美一区二区mp4| 精品国产亚洲在线| 黄片大片在线免费观看| 国产视频一区二区在线看| 大型av网站在线播放| 女人爽到高潮嗷嗷叫在线视频| 亚洲av成人av| 亚洲欧美日韩高清在线视频| 男女床上黄色一级片免费看| xxx96com| 美女高潮喷水抽搐中文字幕| 久久热在线av| 99热只有精品国产| 日韩欧美国产在线观看| 午夜福利欧美成人| 狂野欧美激情性xxxx| 亚洲精品在线观看二区| aaaaa片日本免费| 久久久久久九九精品二区国产 | 亚洲av成人不卡在线观看播放网| 国产成人aa在线观看| 国产一级毛片七仙女欲春2| 久久亚洲真实| 激情在线观看视频在线高清| 免费搜索国产男女视频| 国语自产精品视频在线第100页| 51午夜福利影视在线观看| netflix在线观看网站| 亚洲精品美女久久久久99蜜臀| 国产激情久久老熟女| 精品人妻1区二区| 久久久久九九精品影院| 国产亚洲精品av在线| 成人亚洲精品av一区二区| 亚洲精品一卡2卡三卡4卡5卡| 国产91精品成人一区二区三区| 欧美成狂野欧美在线观看| 久久久久免费精品人妻一区二区| 成人av一区二区三区在线看| 亚洲av第一区精品v没综合| 午夜成年电影在线免费观看| 亚洲成人免费电影在线观看| 十八禁网站免费在线| 最新在线观看一区二区三区| 变态另类成人亚洲欧美熟女| 九色成人免费人妻av| 色综合欧美亚洲国产小说| 精品一区二区三区视频在线观看免费| 国产一区二区激情短视频| 狂野欧美激情性xxxx| 色哟哟哟哟哟哟| 欧美日韩乱码在线| 级片在线观看| 国产av在哪里看| 俺也久久电影网| 久久久久免费精品人妻一区二区| 欧美午夜高清在线| 亚洲人成伊人成综合网2020| 国产视频一区二区在线看| 欧美一级a爱片免费观看看 | 亚洲精品色激情综合| 午夜成年电影在线免费观看| 两个人免费观看高清视频| 欧美另类亚洲清纯唯美| 两个人免费观看高清视频| 欧洲精品卡2卡3卡4卡5卡区| 两个人免费观看高清视频| 色综合欧美亚洲国产小说| 欧美+亚洲+日韩+国产| 久久久久国内视频| 啦啦啦韩国在线观看视频| 日韩欧美国产一区二区入口| 人成视频在线观看免费观看| 黄色a级毛片大全视频| 2021天堂中文幕一二区在线观| 夜夜爽天天搞| 窝窝影院91人妻| 国产不卡一卡二| 麻豆成人午夜福利视频| 国内精品一区二区在线观看| 长腿黑丝高跟| 国产精品久久电影中文字幕| 成人国产一区最新在线观看| 这个男人来自地球电影免费观看| 在线观看舔阴道视频| 男女床上黄色一级片免费看| 中出人妻视频一区二区| 两个人的视频大全免费| 99国产精品一区二区蜜桃av| 一级毛片高清免费大全| 99久久精品热视频| 午夜老司机福利片| 中文亚洲av片在线观看爽| 1024视频免费在线观看| 精品国产超薄肉色丝袜足j| 午夜免费激情av| 精品国产亚洲在线| 免费在线观看黄色视频的| 少妇粗大呻吟视频| 三级毛片av免费| 婷婷精品国产亚洲av在线| 精品一区二区三区四区五区乱码| 无遮挡黄片免费观看| 狂野欧美激情性xxxx| 国产真人三级小视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产精品久久久人人做人人爽| 国内久久婷婷六月综合欲色啪| 婷婷六月久久综合丁香| 亚洲人成网站高清观看| 琪琪午夜伦伦电影理论片6080| 国产成人精品久久二区二区免费| 少妇裸体淫交视频免费看高清 | 国产一区二区激情短视频| 人人妻人人看人人澡| 精品久久久久久久毛片微露脸| 国产亚洲精品av在线| 日韩欧美免费精品| 午夜激情av网站| a在线观看视频网站| 久久久久久免费高清国产稀缺| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩免费av在线播放| 免费在线观看亚洲国产| 国产真人三级小视频在线观看| 午夜成年电影在线免费观看| 欧美黑人欧美精品刺激| 可以在线观看毛片的网站| 欧美日韩中文字幕国产精品一区二区三区| 亚洲成av人片在线播放无| 日本免费a在线| 欧美激情久久久久久爽电影| 麻豆av在线久日| 国产精品 欧美亚洲| 中文字幕人成人乱码亚洲影| 正在播放国产对白刺激| 亚洲av成人av| 亚洲av片天天在线观看| 一个人免费在线观看电影 | 久久久国产欧美日韩av| 欧美另类亚洲清纯唯美| 亚洲av美国av| 久久久久久久久中文| 99国产综合亚洲精品| 欧美日韩瑟瑟在线播放| 日韩高清综合在线| 天天躁夜夜躁狠狠躁躁| 国产成人欧美在线观看| 男女做爰动态图高潮gif福利片| 日韩欧美国产在线观看| 久久香蕉国产精品| 国产精品亚洲美女久久久| 人成视频在线观看免费观看| 精品国产超薄肉色丝袜足j| 日本一区二区免费在线视频| 一级a爱片免费观看的视频| 欧美中文综合在线视频| 欧美黑人欧美精品刺激| 午夜福利成人在线免费观看| 在线永久观看黄色视频| 一级毛片女人18水好多| 国产精品av久久久久免费| 亚洲欧美日韩东京热| 国产精品 国内视频| 亚洲一区二区三区色噜噜| 可以在线观看的亚洲视频| 国产亚洲精品第一综合不卡| 丰满人妻熟妇乱又伦精品不卡| 国产精品一区二区三区四区久久| 一区二区三区高清视频在线| 亚洲免费av在线视频| 国产一区二区在线观看日韩 | 丝袜人妻中文字幕| 一区二区三区高清视频在线| 少妇的丰满在线观看| av在线播放免费不卡| 一本精品99久久精品77| 中文字幕人妻丝袜一区二区| netflix在线观看网站| 69av精品久久久久久| 日韩中文字幕欧美一区二区| 狂野欧美白嫩少妇大欣赏| 日韩成人在线观看一区二区三区| 天堂影院成人在线观看| 欧美一区二区国产精品久久精品 | 欧美一区二区国产精品久久精品 | 最近视频中文字幕2019在线8| 久久久久国产精品人妻aⅴ院| 丝袜人妻中文字幕| 亚洲av成人不卡在线观看播放网| 亚洲精品国产一区二区精华液| 88av欧美| 国产熟女xx| 亚洲国产精品成人综合色| 久久久久久免费高清国产稀缺| 精品无人区乱码1区二区| 亚洲成人中文字幕在线播放| 两个人看的免费小视频| 俄罗斯特黄特色一大片| 女同久久另类99精品国产91| 久久久精品国产亚洲av高清涩受| 亚洲片人在线观看| xxx96com| 国内毛片毛片毛片毛片毛片| 亚洲专区国产一区二区| 99久久国产精品久久久| 亚洲美女视频黄频| 真人做人爱边吃奶动态| 最近最新中文字幕大全免费视频| 欧美三级亚洲精品| 女人被狂操c到高潮| 91麻豆精品激情在线观看国产| 免费一级毛片在线播放高清视频| 亚洲一码二码三码区别大吗| 日本黄大片高清| 国产69精品久久久久777片 | 制服诱惑二区| 午夜影院日韩av| 亚洲天堂国产精品一区在线| 亚洲人成77777在线视频| av免费在线观看网站| 99精品久久久久人妻精品| 18禁黄网站禁片免费观看直播| 欧美一级毛片孕妇| 一区福利在线观看| 国产高清videossex| 国产高清视频在线观看网站| 色综合婷婷激情| 免费观看人在逋| 777久久人妻少妇嫩草av网站| 嫁个100分男人电影在线观看| 国产高清视频在线播放一区| 成年免费大片在线观看| 欧美在线黄色| 欧美中文综合在线视频| 1024香蕉在线观看| 亚洲在线自拍视频| 久久香蕉国产精品| 国产亚洲精品综合一区在线观看 | 日韩国内少妇激情av| 色播亚洲综合网| 精品不卡国产一区二区三区| e午夜精品久久久久久久| 欧美不卡视频在线免费观看 | 亚洲最大成人中文| 亚洲国产精品成人综合色| av福利片在线观看| 午夜福利视频1000在线观看| 999精品在线视频| 欧美日韩一级在线毛片| 日韩欧美国产一区二区入口| av片东京热男人的天堂| 亚洲国产精品sss在线观看| 国产单亲对白刺激| 日韩精品免费视频一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 亚洲成人国产一区在线观看| 久久人妻av系列| 国产午夜精品久久久久久| 91九色精品人成在线观看| 桃红色精品国产亚洲av| 久久国产乱子伦精品免费另类| 亚洲av成人精品一区久久| 亚洲av第一区精品v没综合| 亚洲成人久久性| 欧美另类亚洲清纯唯美| videosex国产| 欧美成人午夜精品| 成年免费大片在线观看| 天堂动漫精品| 亚洲av五月六月丁香网| 99热6这里只有精品| 久久99热这里只有精品18| 亚洲中文日韩欧美视频| 日韩高清综合在线| 亚洲国产精品sss在线观看| 啦啦啦韩国在线观看视频| 欧美黑人巨大hd| 嫩草影视91久久| 成人18禁在线播放| 听说在线观看完整版免费高清| 精品不卡国产一区二区三区| 国产精品亚洲av一区麻豆| 亚洲av成人av| 婷婷精品国产亚洲av| 97超级碰碰碰精品色视频在线观看| 免费电影在线观看免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 中文字幕高清在线视频| 午夜福利在线观看吧| 国产男靠女视频免费网站| 91老司机精品| 亚洲一码二码三码区别大吗| 97碰自拍视频| 黑人欧美特级aaaaaa片| 日本a在线网址| 国产高清视频在线播放一区| 国产av一区在线观看免费| 丝袜美腿诱惑在线| 每晚都被弄得嗷嗷叫到高潮| 日本三级黄在线观看| or卡值多少钱| 亚洲 欧美 日韩 在线 免费| 欧美一级毛片孕妇| 久久久国产精品麻豆| 亚洲 欧美 日韩 在线 免费| 人妻久久中文字幕网| or卡值多少钱| 亚洲精品中文字幕在线视频| 校园春色视频在线观看| 成在线人永久免费视频| 999久久久精品免费观看国产| 欧美极品一区二区三区四区| 亚洲狠狠婷婷综合久久图片| 色哟哟哟哟哟哟| 国产1区2区3区精品| 999精品在线视频| 国产久久久一区二区三区| 黄色视频,在线免费观看| 亚洲熟女毛片儿| 欧美一级毛片孕妇| 露出奶头的视频| 日本黄大片高清| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲精品久久久久5区|