• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hybrid NOMA Based MIMO Offloading for Mobile Edge Computing in 6G Networks

    2022-10-27 04:41:50YunusDursunFangFangZhiguoDing
    China Communications 2022年10期

    Yunus Dursun,Fang Fang,Zhiguo Ding

    1 School of Electrical and Electronic Engineering,University of Manchester,Manchester,UK

    2 Department of Electrical and Computer Engineering and the Department of Computer Science,Western University,London,Canada

    *The corresponding author,email:yunus.dursun@manchester.ac.uk

    Abstract:Non-orthogonal multiple access(NOMA),multiple-input multiple-output(MIMO)and mobile edge computing(MEC)are prominent technologies to meet high data rate demand in the sixth generation(6G)communication networks.In this paper,we aim to minimize the transmission delay in the MIMOMEC in order to improve the spectral efficiency,energy efficiency,and data rate of MEC offloading.Dinkelbach transform and generalized singular value decomposition(GSVD)method are used to solve the delay minimization problem.Analytical results are provided to evaluate the performance of the proposed Hybrid-NOMA-MIMO-MEC system.Simulation results reveal that the H-NOMA-MIMO-MEC system can achieve better delay performance and lower energy consumption compared to OMA.

    Keywords:NOMA;MEC;MIMO;Generalized singular value decomposition;sixth generation networks(6G);delay minimization

    I.INTRODUCTION

    Increasing demand for both achieving higher data rate to solve computationally intensive tasks timely and connecting more user equipment(UEs)simultaneously have prompted researchers to develop new technologies in the area of wireless communications.Transmission delay time is a comprehensive metric for satisfying these demands.

    Non-orthogonal multiple access(NOMA),multipleinput multiple-output(MIMO)and mobile edge computing(MEC)are promising technologies for minimizing the uplink/downlink transmission delay[1,2].Specifically,NOMA,which hosts more than one user in the same sub-carrier by exploiting power domain,could play a vital role in the next generation communication networks due to its higher spectral efficiency,lower latency,user fairness,and greater connectivity features compared with the traditional orthogonal multiple access(OMA)techniques[3].Motivated by the advantage of high throughput due to array and spatial diversity gains,several studies have shown that MIMO will maintain its importance in 5G and beyond[1].Driven by the increasing applications with computationally intensive tasks,MEC was proposed to reduce the computation time.The main idea behind MEC technology is to bring mini cloud computers to the edge.Therefore,UEs in the cell can enjoy the cloud computing-like facilities by offloading their computationally complex tasks to the MEC server[4].

    Existing studies with MEC mainly utilized OMA protocols[5,6].Joint optimization of radio resource and computation resource have been investigated in order to reduce energy consumption with latency constraints for the OMA-based MIMO-MEC system[5].In[7],the weighted sum of energy consumption and round transmission delay for OMA based multi-user MIMO-MEC offloading were minimized by using the semi-definite relaxation(SDR)method.In[8],an inter-user task dependency problem was investigated while minimizing a weighted sum of energy and of-floading delay in the time division multiple access(TDMA)based SISO-MEC systems.In[6],a TDMA based multiple input single output(MISO)-MEC system was integrated with secure wireless power transfer(WPT).

    Table 1.Comparison of OMA,NOMA and H-NOMA.

    Recently,researchers have demonstrated the superiority of NOMA over OMA in the single-input singleoutput(SISO)-MEC for a delay minimization problem[2].In[9],offloading tasks partition ratio and offloading transmit power of the users were jointly optimized to minimize the offloading delay.In[10],energy consumption minimization problem was studied for a multi-user multi-BS NOMA-MEC network with imperfect channel state information(CSI).In[11],total energy consumption was minimized by optimising the user clustering,computing and communication resource allocation,and transmit power for the NOMAbased SISO-MEC.In[12],a NOMA based secure and energy efficient massive MIMO system was investigated.

    Hybrid NOMA(H-NOMA)is a hybrid multiple access concept that combines NOMA and OMA.More specifically,if there are two H-NOMA users in a cluster,the users start uploading/downloading their data concurrently by using NOMA protocol.Once one of the users completes its transmission,the other user switches to OMA protocol to upload/download its remaining task.The advantages and disadvantages of the H-NOMA,comparison with OMA and NOMA,are presented in Table 1.H-NOMA achieves better delay performance compared to pure NOMA and OMA as energy consumption are considered[2].In[13],power allocation,time slot allocation,task assignment and user grouping methods were utilised to minimize energy consumption in the H-NOMA based SISO-MEC system.

    In SISO-NOMA,two channels can be compared and their corresponding transmit powers can be allocated to the channels,but it is not as easy for MIMO as it is in SISO.The generalized singular value decomposition(GSVD)method,which simultaneously decomposes two matrices into their singular values,was proposed for MIMO-NOMA uplink and downlink transmissions in[14].

    Existing studies on NOMA based MEC were mostly build on SISO transmission[2,11,13].In order to exploit MIMO’s diversity gain and H-NOMA’s superior delay performance[2]with balanced spectral efficiency and system complexity features[15],we integrate H-NOMA,MIMO and MEC technologies by the GSVD technique.To this end,an optimal power allocation problem is formulated.The problem is a non-convex problem.Therefore,some insights are provided to transform the non-convex problem into a suboptimal convex form.The delay minimization problem is divided into two subproblems which are represented by two time-frames:T1andT2.T1represents the total offloading delay during NOMA transmission,andT2is for OMA transmission.In addition,the MIMO channels between UEs and the MECassisted base station are decomposed into SISO channels by using the GSVD and the singular value decomposition(SVD)techniques according to the H-NOMA method.Moreover,we only focus onT2becauseT1is a basic concave problem[2].In other words,T1could be easily solved by numerical methods.Due to the fractional form ofT2,the Dinkelbach method[16]is applied to transformT2into a subtractive form.After the transformation,an iterative closed-form solution forT2is derived by using the Karush-Kuhn-Tucker(KKT)conditions.Finally,delay performance of the OMA-MIMO-MEC and H-NOMA-MIMO-MEC systems are compared.The effect of the antenna number on delay in the H-NOMA-MIMO-MEC system is also investigated.

    Figure 1.H-NOMA based MIMO MEC system model.

    II.SYSTEM MODEL

    We consider a MIMO-NOMA-MEC uplink communication scenario in which one MEC-assisted eNodeB communicates with two UEs,as shown in figure 1.We assume that the base station has M antennas and each UE has K antennas.In this system model,we consider the H-NOMA scheme due to its superior delay minimization performance[2].The objective of the model is to minimize the total offloading time for bothUE1andUE2.We also assume thatUE1is the near user,and it has a higher SINR rate thanUE2.As shown in figure 2,UE1offloads its task duringT1.Concurrently,UE2offloads its task.However,UE2might not complete its task inT1due to its lower SINR.Therefore,UE2needs to continue offloading duringT2to complete its task.Accordingly,the total delay time forUE2can be found byT1+T2.Under the timeinvariant wireless channel condition,the received signal at the base station can be formulated as follows:

    Figure 2.A basic concept of H-NOMA.

    where y is anM×1 dimensional vector.xi∈C1×Kdenotes information vector created by thei-th user,n∈CM×1denotes a complex additive noise with zero mean andσ2nvariance.Hi∈CM×Krepresents a complex Gaussian channel matrix betweenUEiand the base station.Hican be decomposed into SISO channels by GSVD as follows:

    where U is anM×Mmatrix,Viis anM×Munitary matrix and Λi=diag(σi,1,...,σi,K).In addition,we assume that the users have perfect channel state information(CSI).The power of the transmitted signalxi,jis set to be normalized.Therefore,the received signal at the MEC-assisted base station can be expressed as:

    In the H-NOMA based system,the achievable maximum data rates are denoted byR1andR2forUE1andUE2,respectively.In comparison to NOMA,these rates in an OMA system,i.e.,orthogonal frequency division multiple access(OFDMA)are given byR3andR4.

    whereBis the bandwidth.σ1,jandσ2,jare the generalized singular values;σ3,jandσ4,jare singular values of the strong channel and the weak channels,respectively.The power allocation expressions of the j-th subchannels forUE1andUE2are denoted byPN1,jandPN2,jin NOMA;PO1,jandPO2,jare the power allocation expressions in OMA as illustrated in figure 2.

    III.PROBLEM FORMULATION AND SOLUTION

    As 6G networks are expected to serve unprecedented number of UEs with different data rate requirements and power constraints,we formulate the transmission delay problem based on the H-NOMA technique in this section.According to H-NOMA,T1andT2correspond to the delay time during NOMA and OMA transmission in(5),respectively.The delay minimization problem can be formulated as

    where(5a)is the objective function minimizing total transmission time.Particularly,NOMA and OMA based transmission time expressions are given in(6)and(7),respectively.The inequality constraints in(5b)and(5c)denote the transmit power limits for the users.(5)can be divided into two sub-problems(8)and(9).

    where(8)only depends onPN1,jand for this reason(8)is a concave optimization problem as in[3].To solve(8),we use CVX,a package for specifying and solving convex programs[18].Therefore,we assume thatPN1,jandT1are fixed forT2.However,(9)is still a non-convex problem owing to its concave-to-convex fractional expression in(9b).Fortunately,(9b)can be reformulated as a subtractive optimization problem by applying the Dinkelbach method.AsPN1,jis fixed forT2,(9)can be rewritten as follows:

    The Dinkelbach transform is applied to(10)as follows:

    where q is the Dinkelbach parameter.Thus,(9)is transformed into a convex optimization problem.To obtain the optimal solutions forPN2,jandPO2,j,the Lagrange multipliers method is applied to(11).The Lagrange function of(11)is written as follows:

    whereλiare the Lagrange multipliers.The KKT conditions are derived to find the optimal solutions as follows:

    The optimal solutions forPN2,jandPO2,jare given in Lemma 1.Algorithm 1 describes the Dinkelbach’s method based closed form solution.

    Lemma 1.H-NOMA power allocation policy.

    wheremax(a,b)denotes the maximum of a and b.

    Proof.Please see Appendix.

    Complexity Analysis

    The time complexity of the proposed algorithm is analyzed in this subsection.Algorithm 1 consists of two loops:the outer loop is to apply the Dinkelbach algorithm and the inner loop,which is a waterfilling like solution,is to specify the number of power allocated sub-channels(K)and to assign optimal power.The Dinkelbach parameterqis updated in each iteration untilf(q)<Δ.The computational complexity of the Dinkelbach algorithm isO(T),whereO(.)describes the upper bound of the time complexity andTis the number of iterations required for convergence of the Dinkelbach algorithm[19].The required number of operations,at worst,for the inner loop isO(K),whereKis the minimum rank of the near and the far users’channel matrices.Therefore,the proposed algorithm has a complexity ofO(TK).

    Figure 3.Delay performance comparison of H-NOMAMIMO-MEC with OMA-MIMO-MEC.

    Figure 4.Delay performance of antenna numbers in HNOMA-MIMO-MEC system.

    IV.NUMERICAL STUDIES

    In this section,we evaluate the performance of the proposed H-NOMA-MIMO-MEC system.In the simulations,we consider that there are two randomly distributed users in the cell and an MEC-assisted base station at the cell centre.We assume that the cell radius isr=125 meters,the carrier frequency isfc=2 GHz,the total bandwidth isB=10 MHz,AWGN spectral density isN0=-174 dBm/Hz and the number of bit needs to be offloaded isN=1 Gbit for each user.

    Figure 5.Total energy consumption versus power budget.

    Figure 6.Convergence performance of the proposed algorithm in terms of iteration number.

    In figure 3,the offloading delay performances of the H-NOMA and OMA based MIMO-MEC systems are demonstrated.The base station and theUEsare equipped with three antennas.The figure clearly demonstrates that the H-NOMA-MIMO-MEC achieves better performance than OMA-MIMO-MEC,particularly at higher power levels.This is because the weak NOMA user suffers from co-channel interference at low SNR.Also,it can be concluded that increasing transmit power has less impact on delay minimization compared with bandwidth.This is one of the key advantages of using NOMA.Figure 3 shows that the H-NOMA-MIMO-MEC improves delay performance by an average of 11% compared to the OMAMIMO-MEC.In figure 4,the impact of antenna numbers on transmission delay is demonstrated.Transmission delay is closely related to the antenna number.As seen from the figure,the proposed H-NOMA based MIMO-MEC achieves better delay performance compared to SISO-MEC.The most striking result from the figure is that having more antennas improve delay performance significantly on the low transmit power region.In figure 5,energy consumption of the HNOMA based MIMO offloading system is compared with OMA.It can be seen that NOMA yields better results for each antenna configuration.Since the power budgets are the same for the UEs in H-NOMA and OMA transmissions and the proposed H-NOMA based system completes offloading earlier than OMA,energy efficiency is improved.figure 6 presents sublinearly convergence of the proposed algorithm versus iteration number.It can be observed in figure 6 that the algorithm significantly converges within 20 iterations for H-NOMA-MIMO-MEC.

    V.CONCLUSION

    Recent developments in wireless communication have increased the need for spectrum efficiency,energy efficiency,and data rate.This is the first study to combine H-NOMA,MIMO and MEC technologies for delay minimization.In this paper,the H-NOMA-MIMOMEC offloading delay was investigated.Due to the concave-to-convex fractional nature of the problem,the Dinkelbach method was used to eliminate fractional expression.Finally,an iterative closed-form solution was obtained.According to the simulation results,the proposed method improved the delay performance and reduced the total energy consumption of the MIMO-MEC.

    ACKNOWLEDGEMENT

    This work was supported by Republic of Turkey Ministry of National Education.The authors would like to thank the anonymous reviewers for their valuable comments and suggestions.

    APPENDIX

    Proof of Lemma 1

    Proof.To find the optimal value for,it is necessary to show that there is no more feasible descent for(11)in terms of.Therefore,(13a)is executed as follows:

    λ1,jis the vector consisting of the Lagrange multipliers(λ1,1,...,λ1,K)corresponding to(PO2,1,...,PO2,K),respectively.From the complimentary slackness condition in(13c),eitherPO2,jorλ1,jmust be zero.When a MIMO channel is decomposed into decoupled SISO channels,some of these channels may not be feasible for power allocation.Accordingly,we introduce a variable(L)indicating the number of power allocated SISO channels.Hence,we can eliminateλ1,jexpression in(15a)for the weak SISO channels.Therefore,λ3can be written as follows:

    It is clear from(15b)thatλ3is positive.Therefore,(15c)can be obtained from(13e).

    Furthermore,can be simplified as follows:

    Finally,by combining(15b)with(15d),the optimal expression forbecomes

    We follow similar steps to those above to find the optimal expression for.(12a)is differentiated with respect toas follows:

    λ2,jgoes zero for power allocated sub-channels.Thus,λ4becomes

    PN2,jcan be manipulated as follows:

    We rewrite(13f)by using(16c)as

    We combine(16b)with(16d).Finally,the optimal power allocation expression forPN2,jis as follows:

    Therefore,the proof for Lemma 1 is complete.

    欧美成人精品欧美一级黄| 精品一区在线观看国产| 欧美日韩综合久久久久久| 欧美精品国产亚洲| 中文字幕制服av| 中文乱码字字幕精品一区二区三区| 桃花免费在线播放| 成人国产麻豆网| 欧美精品人与动牲交sv欧美| 日本黄色日本黄色录像| 乱人伦中国视频| 国语对白做爰xxxⅹ性视频网站| 日韩不卡一区二区三区视频在线| 大香蕉久久网| 国产成人一区二区在线| 精品99又大又爽又粗少妇毛片| 精品国产国语对白av| 欧美少妇被猛烈插入视频| 午夜日本视频在线| 黑丝袜美女国产一区| 中国美白少妇内射xxxbb| 亚洲精品国产av蜜桃| 九色亚洲精品在线播放| 热99国产精品久久久久久7| 午夜福利视频精品| 丰满饥渴人妻一区二区三| 国产色爽女视频免费观看| 在线精品无人区一区二区三| a级毛片在线看网站| 国产国语露脸激情在线看| 男女边吃奶边做爰视频| 啦啦啦中文免费视频观看日本| 久久99热6这里只有精品| 91成人精品电影| 国产伦理片在线播放av一区| 精品熟女少妇av免费看| 欧美bdsm另类| 欧美少妇被猛烈插入视频| 成人无遮挡网站| 人妻少妇偷人精品九色| 高清毛片免费看| 亚洲精品久久成人aⅴ小说| 国产毛片在线视频| 亚洲精品自拍成人| 国产成人免费观看mmmm| 久久热在线av| 97精品久久久久久久久久精品| 老熟女久久久| 成人免费观看视频高清| 亚洲天堂av无毛| 一边亲一边摸免费视频| 人妻人人澡人人爽人人| 少妇人妻精品综合一区二区| 巨乳人妻的诱惑在线观看| 女性生殖器流出的白浆| 大陆偷拍与自拍| 中文天堂在线官网| 欧美日韩成人在线一区二区| 2018国产大陆天天弄谢| av卡一久久| 久久久久国产精品人妻一区二区| 中文字幕制服av| 男男h啪啪无遮挡| 午夜激情av网站| 国产乱人偷精品视频| 免费人成在线观看视频色| 久久久久国产网址| 久久99蜜桃精品久久| 最新中文字幕久久久久| 高清不卡的av网站| 丰满少妇做爰视频| 久久精品国产a三级三级三级| 亚洲,欧美精品.| 人人妻人人爽人人添夜夜欢视频| 日产精品乱码卡一卡2卡三| 少妇被粗大猛烈的视频| 成人18禁高潮啪啪吃奶动态图| 成年人午夜在线观看视频| 亚洲人与动物交配视频| 日韩视频在线欧美| 热99久久久久精品小说推荐| 久久久a久久爽久久v久久| 极品人妻少妇av视频| 精品少妇黑人巨大在线播放| 日韩欧美一区视频在线观看| 精品亚洲成国产av| 妹子高潮喷水视频| 9191精品国产免费久久| 日本av手机在线免费观看| 久久人人爽av亚洲精品天堂| 看免费成人av毛片| 熟妇人妻不卡中文字幕| 丰满少妇做爰视频| av不卡在线播放| 亚洲色图综合在线观看| 亚洲av男天堂| av卡一久久| 在现免费观看毛片| 国产乱人偷精品视频| 深夜精品福利| 十八禁高潮呻吟视频| 亚洲精品456在线播放app| 如何舔出高潮| 国产色婷婷99| 欧美日韩一区二区视频在线观看视频在线| 国国产精品蜜臀av免费| 老司机影院成人| 久久精品熟女亚洲av麻豆精品| 纵有疾风起免费观看全集完整版| 日本wwww免费看| 亚洲婷婷狠狠爱综合网| 九九爱精品视频在线观看| 97超碰精品成人国产| 日本-黄色视频高清免费观看| 欧美日本中文国产一区发布| 欧美日韩视频精品一区| 人人妻人人添人人爽欧美一区卜| 国产精品国产三级国产专区5o| 一二三四在线观看免费中文在 | 99久久精品国产国产毛片| 国产av国产精品国产| 免费黄色在线免费观看| 性色avwww在线观看| 欧美日韩亚洲高清精品| 久久亚洲国产成人精品v| 天天躁夜夜躁狠狠久久av| 亚洲成国产人片在线观看| 成人漫画全彩无遮挡| 国产成人aa在线观看| 巨乳人妻的诱惑在线观看| 看免费成人av毛片| 两性夫妻黄色片 | 日韩熟女老妇一区二区性免费视频| 一区二区三区精品91| 日韩制服骚丝袜av| 综合色丁香网| 99热6这里只有精品| 精品一区二区三卡| 国产精品不卡视频一区二区| 国产黄频视频在线观看| 1024视频免费在线观看| 色哟哟·www| 婷婷色综合www| 亚洲av在线观看美女高潮| 亚洲性久久影院| 丝袜人妻中文字幕| 国国产精品蜜臀av免费| 国产日韩一区二区三区精品不卡| 麻豆乱淫一区二区| 精品国产一区二区三区四区第35| 90打野战视频偷拍视频| 亚洲欧洲国产日韩| 国产麻豆69| 嫩草影院入口| 一边摸一边做爽爽视频免费| 欧美 日韩 精品 国产| 日韩在线高清观看一区二区三区| 亚洲国产精品国产精品| 夫妻性生交免费视频一级片| 免费高清在线观看视频在线观看| 久久99热这里只频精品6学生| 久久久精品区二区三区| 国产伦理片在线播放av一区| 天天操日日干夜夜撸| 波野结衣二区三区在线| 久久精品国产自在天天线| 黑人欧美特级aaaaaa片| 黑人猛操日本美女一级片| 九色亚洲精品在线播放| 内地一区二区视频在线| 九九在线视频观看精品| 少妇的丰满在线观看| 久久精品国产综合久久久 | 巨乳人妻的诱惑在线观看| 熟女av电影| av.在线天堂| 亚洲精品乱久久久久久| 黄色视频在线播放观看不卡| 日本91视频免费播放| 不卡视频在线观看欧美| 久久久久精品久久久久真实原创| 美女福利国产在线| 精品亚洲成国产av| 丝瓜视频免费看黄片| 亚洲,欧美,日韩| 黄色一级大片看看| 五月开心婷婷网| 亚洲美女黄色视频免费看| 91久久精品国产一区二区三区| 日韩 亚洲 欧美在线| 天堂俺去俺来也www色官网| 国产无遮挡羞羞视频在线观看| 一区二区三区乱码不卡18| 五月玫瑰六月丁香| 丰满乱子伦码专区| 男女高潮啪啪啪动态图| 久久99热这里只频精品6学生| 午夜老司机福利剧场| 久久ye,这里只有精品| 午夜激情久久久久久久| 国产亚洲最大av| 中文精品一卡2卡3卡4更新| 久久精品国产自在天天线| 成人国语在线视频| 中文字幕人妻熟女乱码| 国产精品秋霞免费鲁丝片| 伦理电影免费视频| 婷婷色综合大香蕉| 亚洲高清免费不卡视频| 国产日韩欧美亚洲二区| 国产熟女欧美一区二区| √禁漫天堂资源中文www| 欧美日韩av久久| 热99久久久久精品小说推荐| 亚洲精品自拍成人| 欧美精品av麻豆av| 欧美少妇被猛烈插入视频| 三级国产精品片| 蜜桃在线观看..| 免费高清在线观看视频在线观看| 久久人人爽av亚洲精品天堂| 国产白丝娇喘喷水9色精品| 欧美亚洲 丝袜 人妻 在线| 免费不卡的大黄色大毛片视频在线观看| av电影中文网址| 精品国产国语对白av| 少妇 在线观看| 精品少妇黑人巨大在线播放| www.色视频.com| 欧美日韩国产mv在线观看视频| av线在线观看网站| 人人妻人人澡人人爽人人夜夜| 美女大奶头黄色视频| 日韩av在线免费看完整版不卡| 黑人猛操日本美女一级片| 水蜜桃什么品种好| 九九在线视频观看精品| 久久ye,这里只有精品| 极品少妇高潮喷水抽搐| 日本免费在线观看一区| av在线播放精品| 日韩制服丝袜自拍偷拍| 这个男人来自地球电影免费观看 | 久久免费观看电影| 99久久综合免费| 国产在线一区二区三区精| 宅男免费午夜| 一级片'在线观看视频| 欧美 日韩 精品 国产| 国产成人精品在线电影| 七月丁香在线播放| 中文字幕最新亚洲高清| 又黄又粗又硬又大视频| 捣出白浆h1v1| 亚洲精品乱久久久久久| 欧美亚洲日本最大视频资源| 天堂中文最新版在线下载| av在线播放精品| 男女午夜视频在线观看 | 啦啦啦中文免费视频观看日本| 成人综合一区亚洲| 欧美日韩视频精品一区| 狂野欧美激情性bbbbbb| 精品人妻熟女毛片av久久网站| 亚洲av福利一区| 久久人人爽人人片av| 免费高清在线观看日韩| 一级a做视频免费观看| av线在线观看网站| 亚洲精品日韩在线中文字幕| 男女高潮啪啪啪动态图| 国产深夜福利视频在线观看| 久久久久国产网址| 青青草视频在线视频观看| 97人妻天天添夜夜摸| 久久久国产精品麻豆| 18禁裸乳无遮挡动漫免费视频| 激情视频va一区二区三区| 久久久久精品人妻al黑| 国国产精品蜜臀av免费| 老熟女久久久| 香蕉国产在线看| 亚洲高清免费不卡视频| 日韩,欧美,国产一区二区三区| av免费在线看不卡| 99热这里只有是精品在线观看| 看免费成人av毛片| 中国国产av一级| 国产精品蜜桃在线观看| 中文字幕人妻丝袜制服| 好男人视频免费观看在线| 自线自在国产av| 欧美xxⅹ黑人| 18禁裸乳无遮挡动漫免费视频| 三上悠亚av全集在线观看| 中文天堂在线官网| 热re99久久国产66热| 国产毛片在线视频| 黑人高潮一二区| 99久久人妻综合| 美女大奶头黄色视频| 夜夜骑夜夜射夜夜干| 午夜免费男女啪啪视频观看| 日韩av免费高清视频| 丰满迷人的少妇在线观看| 亚洲三级黄色毛片| 日韩中字成人| 国产精品久久久久久久久免| 免费高清在线观看日韩| 亚洲婷婷狠狠爱综合网| 一级爰片在线观看| 香蕉国产在线看| 久久精品久久精品一区二区三区| av线在线观看网站| 你懂的网址亚洲精品在线观看| 日日摸夜夜添夜夜爱| 欧美97在线视频| 亚洲伊人久久精品综合| 99热全是精品| 你懂的网址亚洲精品在线观看| 各种免费的搞黄视频| 最近手机中文字幕大全| 人妻系列 视频| 又黄又爽又刺激的免费视频.| 美女大奶头黄色视频| 日日撸夜夜添| av国产精品久久久久影院| 午夜精品国产一区二区电影| 蜜桃在线观看..| 日韩人妻精品一区2区三区| 七月丁香在线播放| 国产精品女同一区二区软件| 性色av一级| 精品人妻在线不人妻| 国产av一区二区精品久久| 国产福利在线免费观看视频| 母亲3免费完整高清在线观看 | 黑人巨大精品欧美一区二区蜜桃 | 男女国产视频网站| 国产精品国产三级国产专区5o| 免费观看在线日韩| 国产激情久久老熟女| www日本在线高清视频| 精品国产露脸久久av麻豆| 中文字幕最新亚洲高清| 国产精品不卡视频一区二区| 亚洲成国产人片在线观看| 亚洲少妇的诱惑av| 日韩av在线免费看完整版不卡| 亚洲婷婷狠狠爱综合网| 日韩成人伦理影院| 久久影院123| 亚洲伊人色综图| 欧美bdsm另类| 一边摸一边做爽爽视频免费| 久久99蜜桃精品久久| 精品人妻偷拍中文字幕| 国产精品99久久99久久久不卡 | 又黄又爽又刺激的免费视频.| 超色免费av| 亚洲欧美一区二区三区国产| 日本免费在线观看一区| 久久国内精品自在自线图片| 成人免费观看视频高清| 丰满少妇做爰视频| 国产成人一区二区在线| 久久青草综合色| 日本91视频免费播放| 亚洲伊人久久精品综合| 国产成人aa在线观看| 国产高清不卡午夜福利| 99九九在线精品视频| 熟女av电影| 国产精品一区二区在线不卡| 午夜福利视频在线观看免费| 视频区图区小说| 免费日韩欧美在线观看| 免费大片黄手机在线观看| 又粗又硬又长又爽又黄的视频| 国产免费又黄又爽又色| 日本wwww免费看| 午夜精品国产一区二区电影| 这个男人来自地球电影免费观看 | 国产免费现黄频在线看| 好男人视频免费观看在线| 亚洲人成网站在线观看播放| 成人影院久久| 久久狼人影院| www.熟女人妻精品国产 | 日韩大片免费观看网站| 另类精品久久| 国产一区二区在线观看日韩| 国产深夜福利视频在线观看| 欧美日韩精品成人综合77777| 美女视频免费永久观看网站| 婷婷色麻豆天堂久久| 少妇熟女欧美另类| 亚洲一码二码三码区别大吗| 亚洲国产色片| 九九在线视频观看精品| 久久久久网色| 中文字幕另类日韩欧美亚洲嫩草| 日本欧美国产在线视频| 女人久久www免费人成看片| 少妇猛男粗大的猛烈进出视频| 成年女人在线观看亚洲视频| av天堂久久9| 丝袜喷水一区| 十分钟在线观看高清视频www| 极品少妇高潮喷水抽搐| 国产国语露脸激情在线看| 久久精品国产a三级三级三级| 国产一区二区三区av在线| 国产精品久久久久久精品古装| 国产精品 国内视频| 国产黄色视频一区二区在线观看| 欧美xxⅹ黑人| 免费黄色在线免费观看| 永久免费av网站大全| 97精品久久久久久久久久精品| 精品国产一区二区三区久久久樱花| 春色校园在线视频观看| 成年女人在线观看亚洲视频| 成人18禁高潮啪啪吃奶动态图| 亚洲国产精品999| 国产亚洲午夜精品一区二区久久| 两个人免费观看高清视频| 我的女老师完整版在线观看| 免费人成在线观看视频色| 极品人妻少妇av视频| tube8黄色片| 精品国产一区二区久久| 老女人水多毛片| 国产一区二区在线观看日韩| 91成人精品电影| 国产极品粉嫩免费观看在线| 老女人水多毛片| 五月伊人婷婷丁香| 乱人伦中国视频| 亚洲成国产人片在线观看| 久久久久久人妻| 十分钟在线观看高清视频www| 久久精品国产亚洲av天美| 国产精品国产三级国产av玫瑰| 亚洲精品第二区| 亚洲色图 男人天堂 中文字幕 | 亚洲av电影在线进入| 久久久久人妻精品一区果冻| 在线精品无人区一区二区三| 午夜激情久久久久久久| 国产xxxxx性猛交| 日本av免费视频播放| 99久久综合免费| 免费少妇av软件| 99久久中文字幕三级久久日本| 亚洲国产毛片av蜜桃av| av片东京热男人的天堂| 夜夜爽夜夜爽视频| 我的女老师完整版在线观看| 国产av一区二区精品久久| 香蕉国产在线看| 高清毛片免费看| 国产免费现黄频在线看| 亚洲精品日本国产第一区| 这个男人来自地球电影免费观看 | 街头女战士在线观看网站| 三级国产精品片| 精品亚洲成国产av| a级毛片在线看网站| 在线观看国产h片| 国产亚洲精品第一综合不卡 | 日韩不卡一区二区三区视频在线| 麻豆乱淫一区二区| 看十八女毛片水多多多| 国产日韩一区二区三区精品不卡| 亚洲图色成人| 国产精品久久久久久久电影| 午夜福利视频精品| 国产淫语在线视频| 亚洲成国产人片在线观看| 亚洲国产色片| av.在线天堂| 免费久久久久久久精品成人欧美视频 | 欧美精品国产亚洲| 亚洲四区av| av视频免费观看在线观看| 又粗又硬又长又爽又黄的视频| 欧美成人午夜免费资源| 亚洲欧洲国产日韩| 精品99又大又爽又粗少妇毛片| 亚洲国产色片| 免费黄频网站在线观看国产| 99热网站在线观看| 最近2019中文字幕mv第一页| 欧美激情 高清一区二区三区| 男人添女人高潮全过程视频| 母亲3免费完整高清在线观看 | 18禁国产床啪视频网站| 69精品国产乱码久久久| 2021少妇久久久久久久久久久| 国产日韩一区二区三区精品不卡| 久久久久视频综合| 建设人人有责人人尽责人人享有的| 少妇高潮的动态图| 久久99热这里只频精品6学生| 久久久久久久亚洲中文字幕| 99久久中文字幕三级久久日本| 国产成人aa在线观看| 欧美人与善性xxx| 中文字幕最新亚洲高清| 香蕉精品网在线| 免费观看a级毛片全部| av国产精品久久久久影院| 精品酒店卫生间| 91久久精品国产一区二区三区| 精品视频人人做人人爽| 欧美精品一区二区免费开放| 99久久精品国产国产毛片| 九草在线视频观看| 99久久综合免费| 中国美白少妇内射xxxbb| www.熟女人妻精品国产 | 性色av一级| 日韩一本色道免费dvd| 五月玫瑰六月丁香| 国产xxxxx性猛交| 久久久亚洲精品成人影院| 久久精品夜色国产| 成年人免费黄色播放视频| 777米奇影视久久| 午夜福利视频精品| 免费av不卡在线播放| 久久综合国产亚洲精品| 91精品三级在线观看| 欧美少妇被猛烈插入视频| 热99久久久久精品小说推荐| 亚洲精品色激情综合| 欧美97在线视频| 精品国产一区二区久久| 国产精品久久久久久精品电影小说| 亚洲久久久国产精品| 18在线观看网站| 欧美精品一区二区免费开放| 日本色播在线视频| 精品一区二区三区四区五区乱码 | 久久99蜜桃精品久久| 男男h啪啪无遮挡| 波野结衣二区三区在线| 久久久久久久精品精品| 女人久久www免费人成看片| 搡老乐熟女国产| 热99久久久久精品小说推荐| 自拍欧美九色日韩亚洲蝌蚪91| 成年女人在线观看亚洲视频| 如日韩欧美国产精品一区二区三区| 亚洲成人手机| 成人免费观看视频高清| 国产一区二区三区av在线| www日本在线高清视频| 久久女婷五月综合色啪小说| 在线观看国产h片| 国产淫语在线视频| 亚洲av.av天堂| 一区二区三区四区激情视频| 久热这里只有精品99| 制服人妻中文乱码| 青春草视频在线免费观看| 99热网站在线观看| 久久久精品区二区三区| 最黄视频免费看| 国产日韩欧美视频二区| 免费高清在线观看视频在线观看| 亚洲四区av| 日本黄色日本黄色录像| 高清不卡的av网站| 亚洲精品一二三| 国产片内射在线| 国产精品.久久久| 黑丝袜美女国产一区| 丰满乱子伦码专区| 99热全是精品| 欧美精品人与动牲交sv欧美| 日韩免费高清中文字幕av| 美女中出高潮动态图| 九九在线视频观看精品| 国产免费视频播放在线视频| 欧美老熟妇乱子伦牲交| 久久久久国产网址| 久久99精品国语久久久| 久久久久久人人人人人| 精品人妻偷拍中文字幕| 咕卡用的链子| 看免费成人av毛片| 啦啦啦在线观看免费高清www| 少妇的逼水好多| 成人国语在线视频| 人妻 亚洲 视频| 久久久久久久久久成人| 9色porny在线观看| 成年女人在线观看亚洲视频| 一本色道久久久久久精品综合| 亚洲图色成人| 国产有黄有色有爽视频| 少妇人妻精品综合一区二区| 国产av码专区亚洲av| 黄片播放在线免费| 中文字幕亚洲精品专区| 国产黄色免费在线视频| 美女国产视频在线观看| 各种免费的搞黄视频| 精品99又大又爽又粗少妇毛片| 免费人妻精品一区二区三区视频| 久久精品国产综合久久久 | 少妇 在线观看| 亚洲,欧美精品.|