• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Human-in-the-Loop Consensus Control for Nonlinear Multi-Agent Systems With Actuator Faults

    2022-10-26 12:23:54GuohuaiLinHongyiLiHuiMaDeyinYaoandRenquanLu
    IEEE/CAA Journal of Automatica Sinica 2022年1期

    Guohuai Lin, Hongyi Li,, Hui Ma, Deyin Yao, and Renquan Lu,

    Abstract—This paper considers the human-in-the-loop leaderfollowing consensus control problem of multi-agent systems(MASs) with unknown matched nonlinear functions and actuator faults. It is assumed that a human operator controls the MASs via sending the command signal to a non-autonomous leader which generates the desired trajectory. Moreover, the leader’s input is nonzero and not available to all followers. By using neural networks and fault estimators to approximate unknown nonlinear dynamics and identify the actuator faults, respectively, the neighborhood observer-based neural fault-tolerant controller with dynamic coupling gains is designed. It is proved that the state of each follower can synchronize with the leader’s state under a directed graph and all signals in the closed-loop system are guaranteed to be cooperatively uniformly ultimately bounded.Finally, simulation results are presented for verifying the effectiveness of the proposed control method.

    I. INTRODUCTION

    IN the past years, the consensus control problem of multiagent systems (MASs) has attracted considerable attention due to its widespread applications such as synchronization of autonomous underwater vehicles (AUVs), formation control of unmanned air vehicles (UAVs), and cooperative control of traffic vehicles [1]–[4]. Generally, the consensus control problem can be roughly divided into two categories: the leaderless consensus [5]–[8] and the leader-following consensus [9]–[13]. The leaderless consensus was studied in [5] for a class of heterogeneous linear MASs with a predictive event-triggered mechanism. Two control methods for the leader-following consensus were first given in [9],including static state feedback and dynamic output feedback control methods. In [10], a robust adaptive controller with event-driven mechanism was established for the state consensus problem of linear MASs subject to external disturbances. However, nonlinearity is ubiquitous in the vast majority of practical control systems. In response to this problem, neural networks and fuzzy logic systems were introduced in [14]–[24]. For example, in [14], by using neural networks to approximate the nonlinear dynamics, an adaptive finite-time control protocol was presented to achieve output consensus for nonstrict feedback nonlinear MASs with unknown control coefficients and output dead zones. In [15]and [16], a fuzzy event-triggered bipartite containment controller and a distributed fuzzy containment controller were designed for nonlinear MASs.

    In the era of artificial intelligence, MASs are expected to be autonomous in practical applications. However, plenty of accidents about autonomous systems have been reported. The reliability and safety of real systems are improved under a human operator’s judgement and decision, which indicates that the presence of the human element is important for some safety-critical autonomous systems [25]. For instance, in order to ensure that UAVs can achieve leader-following consensus safely and successfully, the human operator can supervise the entire team by utilizing the visual equipment connected to the leader and all followers, and manipulate them to avoid certain barriers through broadcasting commands to control the leader directly. Therefore, the leader is required to be nonautonomous. Under the communication graph of MASs, all followers autonomously synchronize with the trajectory of the leader via the distributed protocol. Recently, studies on human-in-the-loop control for MASs have been rapidly increasing [26]–[30]. In [26], for a class of human-in-the-loop MASs with a non-autonomous leader, a novel distributed output feedback control strategy was developed to ensure that the states of all followers can synchronize with the leader’s state using only the relative input-output measurements.Under the remote operation, the information transmission between systems and humans was time-delayed, then authors in [27] investigated the stability of a class of linear timeinvariant human-in-the-loop systems in time-domain and frequency-domain. Similarly, a cooperative controller was designed in [28] to achieve the goal that an ensemble of kinematic robots asymptotically synchronize with the reference inputs through the interaction with human operator.

    On the other hand, as the scale of control systems grow more and more complex, the probability of actuator faults increases, which may lead to system instability. Therefore, it is of great significance to investigate the fault-tolerant control(FTC) problem for MASs subject to actuator faults [31]–[36].In order to stabilize the closed-loop system, a fault estimation module was constructed in [31] for compensating the effect of actuator faults. In [32], an adaptive FTC protocol based on an event-triggered mechanism was studied for a class of general linear MASs with multiplicative actuator faults. By designing a continuous robust adaptive FTC method for heterogeneous fractional-order MASs in [33], the problems of coupling nonlinearities, actuator faults, and external disturbances were solved at the same time.

    In addition, the design of an observer-based controller for the consensus control problem is of great importance in real scenarios [37]–[43]. In [37], based on the local and neighborhood observers, two different kinds of neighborhood controllers were constructed to achieve the state synchronization of MASs. For ann-dimensional stochastic time-delay system subject to unknown control direction, a novel observer-based neural controller was put forward in[38]. Furthermore, the objectives of [39] were to design a reduced-order observer-based fuzzy adaptive bipartite tracking control protocol for nonlinear MASs and achieve that the consensus tracking errors converge to a small neighborhood of the origin. However, the neighborhood observer-based human-in-the-loop consensus control has not been fully studied for general nonlinear MASs with actuator faults.

    Motivated by the aforementioned observations, in this paper, we design the neighborhood observer and the neural fault-tolerant controller with adaptive coupling gains to investigate the human-in-the-loop consensus control problem for nonlinear MASs with actuator faults. The main contributions are given as follows:

    1) The leader of the nonlinear MASs is considered as nonautonomous, whose control input is time-varying and is provided by a human operator. Furthermore, the restriction assumption that a subset of followers can access the leader’s input in [44]–[46] is removed in this paper.

    2) In [37] and [47], the control laws with static coupling strengths were designed. Different from [37] and [47], the control protocol proposed in this paper achieves the leaderfollowing consensus via adaptive coupling strengths for adjusting online.

    3) Compared with [9]–[11], the observer-based protocol design of nonlinear MASs is more challenging, because the separation principle is noneffective for nonlinear MASs generally. By using the relative information of neighboring nodes, the neighborhood observer is designed for nonlinear MASs to obtain the consensus in this paper.

    Notations:INdenotes an identity matrix with dimensionN.‖·‖ is the Euclidean norm of a vector and ‖·‖F(xiàn)is the Frobenius norm of a matrix.andare the maximum singular value and the minimum singular value of a matrix,respectively. Let diag{J1,...,JN} be a diagonal matrix andJiis theith diagonal element, wherei=1,...,N. t r(·) is the trace of a matrix. The Kronecker product is denoted by ?. There are some properties of the Kronecker product, such as(Q?M)T=QT?MT,s(Q?M)=(sQ)?M=Q?(sM), and(Q?M)(I?X)=(QI)?(MX) , where Q,M,X,I are matrices andsis a scalar. Let=[1,1,...,1]T∈RN×1.

    II. PROBLEM FORMULATION AND PRELIMINARIES

    A. Basic Graph Theory

    B. System Formulation

    Consider the nonlinear MASs consisting ofNidentical agents and one leader, and theith agent’s dynamics are described by

    wherexi=[xi1,...,xin]T∈Rnis the state,ui=[ui1,...,uim]T∈Rmis the control input,yi=[yi1,...,yim]T∈Rmis the measurement output of theith agent.fi(xi) = [fi1(xi),...,fim(xi)]T∈Rm, and ωi(t)=[ωi,1(t),...,ωi,ι(t)]T∈Rιrepresent the unknown matched nonlinear functions and the actuator faults of theith follower, respectively. In the context of consensus tracking control of nonlinear MASs,S∈Rn×n,W∈Rn×m,J∈Rm×nandD∈Rn×ιare known constant matrices.

    The dynamics of the leader are given by

    wherex0=[x01,...,x0n]T∈Rnandy0=[y01,...,y0m]T∈Rmare the state and the measurement output of the leader.u0∈Rmis an unknown bounded control input.

    Remark 1:According to [26], the human-in-the-loop control method requires the human operator to control the leader directly through control inputu0and influences each follower indirectly. More precisely, all followers are led by the leader through the designed controller and the connectivity of network topology for synchronization. In addition, unlike previous works [9], [48] on the synchronization problem for linear MASs, the control inputu0of the leader is nonzero and not available to all followers in this paper.

    The following assumptions are given to facilitate analyzing and designing.

    Assumption 1 [31]:Actuator faults satisfy ‖ω(t)‖≤ω1M,, where ω1M>0, ω2M>0.

    Assumption 2 [31]:(S,W) is controllable and (S,J) is observable.

    Remark 2:From [31], Assumption 2 implies rank(W,D) =rank(W). Therefore, the actuator faults considered in this paper belong to the actuation spaceIm(W). In other words,actuation spaceIm(D) is contained in actuation spaceIm(W),which meansIm(D)?Im(W), and there existsW? ∈Rm×nsuch that (In?WW?)D=0.

    Assumption 3 [49]:The unknown matched nonlinear functionsfi(xi) can be approximated by neural networksas

    The control objective of this paper is to design the distributed adaptive FTC protocoluifor the synchronization errors converging to a small neighborhood of the origin.

    III. NEIGHBORHOOD OBSERVER AND CONTROLLER DESIGN

    The neighborhood observer is constructed to estimate the unmeasurable states of the dynamics (1) by only using the neighborhood information in this section. Based on the designed neighborhood observer, the adaptive neural FTC protocol is also proposed by using the neighborhood information.

    The following neural networks can be utilized to approximate the unknown nonlinear functions of the followers dynamics:

    By using the relative states of neighboring nodes, the distributed neural adaptive neighborhood control lawuiis designed as

    whereuiαis the nominal linear controller,uiβis the robust term,uiΞa(chǎn)nduiDare used to compensate the nonlinear functionsfi(xi) and actuator faults ωi(t), respectively. By using (5), they are designed as

    where ξ is a positive constant, adaptive parametersandare specified by the following update laws:

    where Γαi, Γβi,aαandaβare positive constants,K∈Rm×nis the controller gain matrix withK=?WTP2, and P2is the unique positive definite solution to the following Riccati equation:

    whereQ2is a positive definite matrix.

    Remark 3:In [44]–[46], the leader’s control inputu0is contained in the controller design; hence, an assumption that a subset of followers are aware of the leader’s input is made,which is impractical in real applications. In this work, we remove the above restricted condition by the fact that the control input of the leader is neither zero nor available for any follower. For this case, the control termuiβis introduced to improve the robustness of the proposed scheme.

    By using (6), the dynamics of theith node are rewritten as

    Substituting (6) into (3), the observer dynamics ofare expressed as

    According to (12), the global state estimation error dynamics are rewritten as

    The dynamics of the neighborhood estimation error are written as

    In the light of the above description, the block diagram of the neighborhood observer-based neural fault-tolerant distributed controller for agentiis shown in Fig. 1.

    Fig. 1. Block diagram of the control technique.

    IV. STABILITY ANALYSIS

    The stability analysis made in this section follows from the aforementioned observer and controller design.

    Theorem 1:Under Assumptions 1–3 and the considered directed graph contains a spanning tree, for MASs (1) and (2),if the neighborhood state observer (3), the controller (6) with the adaptive coupling strengths (7), (8) are designed well, and the adaptive law is given by

    V. SIMULATION EXAMPLE

    A numerical simulation is given to demonstrate the effectiveness of the designed controller by considering a harmonic oscillator. We consider a group of five followers indexed by 1 to 5 and one leader indexed by 0 with agent dynamics described by

    fi(xi)=xi1sin2(xi2)i=1,2,3,4,5

    where , , and the actuator faults are given as

    The directed communication graph containing five followers and one leader is shown in Fig. 2. Next, the leader’s inputu0(t) is considered as

    Fig. 2. Communication graph for the followers and leader.

    Moreover, it needs to be emphasized that the leader’s inputu0(t) is not available to any follower and is provided by the human operator. According to Fig. 2, the leader adjacency matrix isG=diag{1,0,0,0,0}, the adjacency matrix Λ and the Laplacian matrix L are given as

    From (4), (9) and (21), we obtainamax=0.2912 ,=3,R=?0.1400 and

    The correlative design parameters areaΞ=0.1,aα=0.0015,aβ=0.5,aω=0.001, ΓΞ1=ΓΞ2=ΓΞ3=ΓΞ4=ΓΞ5=100,Γα1=Γα2=Γα3=Γα4=Γα5=1000, Γβ1=Γβ2=Γβ3=Γβ4=Γβ5=500, and Γω1=Γω2=Γω3=Γω4=Γω5=300. Fig. 3 (a)and Fig. 4 (a) imply the state tracking trajectories of followers under the adaptive output feedback fault-tolerant controller.Besides, in order to show the effectiveness of the fault-tolerant controller, the state tracking trajectories of followers without FTC are given in Fig. 3 (b) and Fig. 4 (b) for comparison. The trajectories of consensus errors are shown in Fig. 5, which depicts the tracking result more clearly. Fig. 6 shows the observing errors for revealing that the unmeasurable states are efficiently observed by the neighborhood state observer. The coupling strengthsandare shown in Fig. 7, which illustrates thatandwill finally converge to some bound values. In addition, the effectiveness of fault estimations is shown in Fig. 8. The control inputs of all followers are depicted in Fig. 9. The simulation results for nonlinear MASs are shown in Figs. 3–9, from which we can clearly find that the neighborhood observer-based neural fault-tolerant control protocol with adaptive gains can simultaneously guarantee the leader-following consensus of the MASs and all signals in the closed-loop system are CUUB.

    Fig. 3. States xi1 and x01 of multi-agent systems. (a) States of all followers xi1 and state of the leader x01 with FTC; (b) States of all followers xi1 and state of the leader x01 without FTC.

    Fig. 4. States xi2 and x02 of multi-agent systems. (a) States of all followers xi2 and state of the leader x02 with FTC; (b) States of all followers xi2 and state of the leader x02 without FTC.

    Fig. 5. Trajectories of consensus errors δi with i =1,2,3,4,5.

    Fig. 6. Observer errors with i =1,2,3,4,5.

    Fig. 7. Coupling strengths and with i =1,2,3,4,5.

    Fig. 8. Actuator faults ω i(t) and the fault estimations with i =1,3,5.

    Fig. 9. Control inputs ui with i =1,2,3,4,5.

    Remark 4:In practical applications, for example, the leaderfollowing consensus control of UAVs, the safety problem and tracking performance should be considered at the same time.The adaptive distributed controller is developed to ensure that the states of all followers can track the leader state. The human operator can adjust the trajectory of the entire team through changing the leader’s control inputu0to fulfill some complex tasks like multi-obstacles avoidance and collision avoidance withu0being a time-varying piecewise function given in (41). From Figs. 3 and 4, we can see that the state trajectories of all agents are changed in 15 s and 30 s due to the differentu0.

    VI. CONCLUSION

    The human-in-the-loop leader-following cooperative tracking control problem has been investigated for a class of nonlinear MASs subject to actuator faults. It has been assumed that the human operator manipulates the entire team through sending the control signal to the non-autonomous leader whose input is not available to all followers. Each follower has synchronized with the leader autonomously based on the directed connected graph. The unknown nonlinear functions have been approximated by neural networks and the actuator faults have been identified by the fault estimators. By designing the state observer only using the neighborhood information among all agents, the neighborhood observer-based adaptive fault-tolerant distributed controller with dynamic coupling gains has been established. It has been shown that all signals in the closedloop system are guaranteed to be CUUB. The numerical example has been given to verify the effectiveness of the developed control method. Future research efforts will be devoted to considering the event-triggered mechanism and extending the results to the formation control of UAVs with time delays [50]–[54].

    丰满的人妻完整版| 国产熟女欧美一区二区| 亚洲不卡免费看| 97热精品久久久久久| 国产男人的电影天堂91| 久久热精品热| 亚洲无线观看免费| 午夜福利成人在线免费观看| 夜夜爽天天搞| 成人三级黄色视频| 欧美一级a爱片免费观看看| 国产精华一区二区三区| 久久久久久久午夜电影| 日本与韩国留学比较| 色哟哟·www| 大又大粗又爽又黄少妇毛片口| 好男人在线观看高清免费视频| 国国产精品蜜臀av免费| av国产免费在线观看| 中文亚洲av片在线观看爽| 精品久久久久久久人妻蜜臀av| 亚洲人与动物交配视频| 丰满乱子伦码专区| 少妇人妻一区二区三区视频| 欧美不卡视频在线免费观看| 欧美一级a爱片免费观看看| 无人区码免费观看不卡| 国产精品精品国产色婷婷| 日韩人妻高清精品专区| 黄色配什么色好看| 精品久久久久久久久久免费视频| 午夜激情福利司机影院| 91久久精品国产一区二区成人| 99久久精品热视频| 夜夜看夜夜爽夜夜摸| 国产在线男女| 亚洲图色成人| 美女 人体艺术 gogo| 色播亚洲综合网| 亚洲国产欧洲综合997久久,| 国产爱豆传媒在线观看| 国产午夜精品论理片| av黄色大香蕉| 久久精品国产亚洲网站| 色精品久久人妻99蜜桃| 国产精品人妻久久久影院| 老熟妇仑乱视频hdxx| 亚洲专区国产一区二区| 成人精品一区二区免费| 婷婷丁香在线五月| 春色校园在线视频观看| 久久精品综合一区二区三区| 男人舔女人下体高潮全视频| 免费观看在线日韩| 亚洲性久久影院| 国产在视频线在精品| 麻豆成人午夜福利视频| 亚洲av熟女| 亚洲精品粉嫩美女一区| 黄色女人牲交| 精品人妻1区二区| 国产精品98久久久久久宅男小说| 午夜久久久久精精品| 在线看三级毛片| 高清毛片免费观看视频网站| 免费看美女性在线毛片视频| 99热只有精品国产| 国产爱豆传媒在线观看| 国产精品国产高清国产av| 大又大粗又爽又黄少妇毛片口| 亚洲avbb在线观看| 一进一出抽搐动态| 亚洲五月天丁香| 女生性感内裤真人,穿戴方法视频| 国产一区二区在线观看日韩| 久久热精品热| 国产极品精品免费视频能看的| 在线播放无遮挡| 乱码一卡2卡4卡精品| 女的被弄到高潮叫床怎么办 | 天堂av国产一区二区熟女人妻| 亚洲精品乱码久久久v下载方式| 啦啦啦啦在线视频资源| 亚洲va在线va天堂va国产| 欧美性猛交黑人性爽| 91麻豆精品激情在线观看国产| 国产午夜精品久久久久久一区二区三区 | 国产精品人妻久久久久久| 国产色爽女视频免费观看| 91麻豆av在线| 久久国内精品自在自线图片| or卡值多少钱| 久久精品影院6| 久久精品国产亚洲av香蕉五月| 久久国产乱子免费精品| 99久久久亚洲精品蜜臀av| av.在线天堂| 精品福利观看| 欧美人与善性xxx| 一个人观看的视频www高清免费观看| 91av网一区二区| 91久久精品电影网| 国产老妇女一区| 欧美日本视频| 国产综合懂色| 亚洲美女搞黄在线观看 | 欧美日韩乱码在线| 成年女人永久免费观看视频| 国产成年人精品一区二区| 黄色女人牲交| 少妇人妻一区二区三区视频| 1000部很黄的大片| 麻豆成人av在线观看| 白带黄色成豆腐渣| 特级一级黄色大片| 日日夜夜操网爽| 99久久成人亚洲精品观看| 老司机福利观看| 性欧美人与动物交配| 亚洲人与动物交配视频| www.www免费av| 男女之事视频高清在线观看| 亚洲精品国产成人久久av| 精品久久久久久久久av| 国产精品一区二区三区四区久久| 久久久久久久久久黄片| 一区福利在线观看| 国产男靠女视频免费网站| 人妻夜夜爽99麻豆av| 亚洲电影在线观看av| 小说图片视频综合网站| 欧美日韩瑟瑟在线播放| 日韩欧美在线乱码| 成人欧美大片| 国产欧美日韩精品一区二区| 亚洲在线自拍视频| 国产av一区在线观看免费| 91精品国产九色| 免费看av在线观看网站| 99热6这里只有精品| 99精品久久久久人妻精品| a在线观看视频网站| 嫩草影院入口| 亚洲精品影视一区二区三区av| 久久6这里有精品| 俄罗斯特黄特色一大片| 亚洲无线在线观看| 男女边吃奶边做爰视频| 亚洲内射少妇av| 久久精品影院6| 一进一出好大好爽视频| 久久99热这里只有精品18| 热99在线观看视频| 国内揄拍国产精品人妻在线| 久久国产乱子免费精品| 精品人妻视频免费看| 亚洲欧美日韩无卡精品| 日韩欧美精品v在线| 国产精品久久久久久亚洲av鲁大| 老熟妇仑乱视频hdxx| 日本免费一区二区三区高清不卡| 一区二区三区高清视频在线| 欧美三级亚洲精品| 熟女电影av网| 国产极品精品免费视频能看的| 久久精品91蜜桃| 国产熟女欧美一区二区| 免费观看在线日韩| 日本黄大片高清| 身体一侧抽搐| 成年女人看的毛片在线观看| 精品一区二区三区人妻视频| 国产高潮美女av| 国产高潮美女av| 成人av一区二区三区在线看| 22中文网久久字幕| 日韩一本色道免费dvd| 国产高清视频在线播放一区| 国内少妇人妻偷人精品xxx网站| 22中文网久久字幕| 久久久久久九九精品二区国产| 91久久精品电影网| 午夜福利在线在线| 亚洲乱码一区二区免费版| 精品人妻1区二区| 亚洲自拍偷在线| 男女下面进入的视频免费午夜| 他把我摸到了高潮在线观看| 亚洲熟妇熟女久久| 色哟哟·www| 黄色视频,在线免费观看| 午夜亚洲福利在线播放| 日本免费a在线| 91在线精品国自产拍蜜月| 夜夜爽天天搞| 久久国内精品自在自线图片| 麻豆av噜噜一区二区三区| 亚洲欧美清纯卡通| 99精品久久久久人妻精品| 精品人妻熟女av久视频| 欧美xxxx性猛交bbbb| 国产69精品久久久久777片| 色av中文字幕| av在线老鸭窝| 国产精品电影一区二区三区| 免费一级毛片在线播放高清视频| 国产亚洲精品av在线| 国产精品国产高清国产av| 白带黄色成豆腐渣| 九九在线视频观看精品| 精品人妻偷拍中文字幕| 国产三级中文精品| 精华霜和精华液先用哪个| 久久久久久伊人网av| 亚洲自偷自拍三级| 精品久久国产蜜桃| 日本免费a在线| 国模一区二区三区四区视频| 毛片女人毛片| 在线免费观看不下载黄p国产 | 日本黄色视频三级网站网址| 日韩人妻高清精品专区| 国产三级在线视频| 搡女人真爽免费视频火全软件 | 国内精品一区二区在线观看| 欧美区成人在线视频| 12—13女人毛片做爰片一| 欧美日本亚洲视频在线播放| 18禁黄网站禁片免费观看直播| 草草在线视频免费看| 99在线人妻在线中文字幕| 九九热线精品视视频播放| 国产精品女同一区二区软件 | 中文字幕av在线有码专区| 亚洲欧美日韩东京热| av福利片在线观看| 日本免费一区二区三区高清不卡| 精品人妻视频免费看| 一进一出好大好爽视频| 国国产精品蜜臀av免费| 岛国在线免费视频观看| 日韩高清综合在线| 一进一出抽搐动态| 亚洲avbb在线观看| 成人美女网站在线观看视频| 在线观看舔阴道视频| 国产高清不卡午夜福利| 动漫黄色视频在线观看| av在线观看视频网站免费| 亚洲美女视频黄频| 18禁在线播放成人免费| av视频在线观看入口| 午夜精品在线福利| 成人二区视频| 啦啦啦观看免费观看视频高清| 伊人久久精品亚洲午夜| 国产真实伦视频高清在线观看 | 国产精品亚洲美女久久久| 中文字幕av成人在线电影| 日韩欧美三级三区| 观看美女的网站| 国产欧美日韩一区二区精品| 一卡2卡三卡四卡精品乱码亚洲| 国产欧美日韩精品一区二区| 亚洲精品一卡2卡三卡4卡5卡| 日韩精品有码人妻一区| 嫁个100分男人电影在线观看| 成人美女网站在线观看视频| 久久久久国产精品人妻aⅴ院| 九九在线视频观看精品| 日本与韩国留学比较| 免费不卡的大黄色大毛片视频在线观看 | 国产精品一区二区三区四区久久| 99九九线精品视频在线观看视频| 性色avwww在线观看| xxxwww97欧美| 亚洲在线自拍视频| 熟妇人妻久久中文字幕3abv| 亚洲电影在线观看av| 亚洲国产精品sss在线观看| 亚洲国产欧洲综合997久久,| 久久6这里有精品| 三级毛片av免费| 国产又黄又爽又无遮挡在线| 伦精品一区二区三区| 在线天堂最新版资源| 搡老岳熟女国产| 国产一区二区在线av高清观看| 女人十人毛片免费观看3o分钟| 可以在线观看的亚洲视频| 国内久久婷婷六月综合欲色啪| 欧美潮喷喷水| 国产老妇女一区| 精品人妻视频免费看| 国产精品一区二区三区四区久久| 精品免费久久久久久久清纯| 成年人黄色毛片网站| 亚洲精品久久国产高清桃花| 久久99热6这里只有精品| 熟女人妻精品中文字幕| 欧美高清性xxxxhd video| 日韩欧美在线乱码| 国产精品电影一区二区三区| 日韩国内少妇激情av| 22中文网久久字幕| 国产伦精品一区二区三区视频9| 露出奶头的视频| 啪啪无遮挡十八禁网站| 麻豆精品久久久久久蜜桃| 成人综合一区亚洲| h日本视频在线播放| 午夜影院日韩av| 噜噜噜噜噜久久久久久91| 男人和女人高潮做爰伦理| 精品日产1卡2卡| 亚洲无线观看免费| 国产高清视频在线播放一区| 热99在线观看视频| 校园人妻丝袜中文字幕| 亚洲人与动物交配视频| 国产综合懂色| 国产白丝娇喘喷水9色精品| 精品人妻视频免费看| 精品久久国产蜜桃| 日本欧美国产在线视频| 欧美国产日韩亚洲一区| 在线观看舔阴道视频| 99久久久亚洲精品蜜臀av| 精品一区二区免费观看| 国产高清有码在线观看视频| 少妇人妻精品综合一区二区 | 国产欧美日韩精品一区二区| 熟女电影av网| 黄色女人牲交| 岛国在线免费视频观看| 51国产日韩欧美| 免费在线观看日本一区| 又紧又爽又黄一区二区| avwww免费| av视频在线观看入口| 免费看av在线观看网站| 99精品在免费线老司机午夜| 动漫黄色视频在线观看| 搡女人真爽免费视频火全软件 | 欧美不卡视频在线免费观看| 免费看a级黄色片| 亚洲精品国产成人久久av| 欧美色视频一区免费| 国产大屁股一区二区在线视频| 亚洲av五月六月丁香网| 日本与韩国留学比较| 亚洲最大成人av| 人妻少妇偷人精品九色| 中文字幕久久专区| 动漫黄色视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 毛片一级片免费看久久久久 | 国产激情偷乱视频一区二区| 欧美日韩黄片免| 日本精品一区二区三区蜜桃| 男插女下体视频免费在线播放| 别揉我奶头 嗯啊视频| 亚洲色图av天堂| 亚洲欧美日韩无卡精品| 日本免费a在线| 欧美3d第一页| 日韩国内少妇激情av| 国产精品福利在线免费观看| 欧美性感艳星| 麻豆av噜噜一区二区三区| 色5月婷婷丁香| 色在线成人网| 黄色视频,在线免费观看| 久久久久性生活片| 中文字幕av在线有码专区| 日韩欧美国产一区二区入口| 欧美性猛交黑人性爽| x7x7x7水蜜桃| 在线国产一区二区在线| av在线观看视频网站免费| a级毛片a级免费在线| 免费在线观看成人毛片| 免费av观看视频| 免费看a级黄色片| 乱人视频在线观看| 女人被狂操c到高潮| 欧美日韩综合久久久久久 | 欧美性猛交╳xxx乱大交人| 韩国av在线不卡| 国产伦在线观看视频一区| 色在线成人网| 日日干狠狠操夜夜爽| 成人亚洲精品av一区二区| 欧美不卡视频在线免费观看| 搡女人真爽免费视频火全软件 | 在线观看一区二区三区| 色播亚洲综合网| 久久久久久久久久久丰满 | av国产免费在线观看| 亚洲七黄色美女视频| 成人亚洲精品av一区二区| 精品福利观看| avwww免费| 亚洲精品影视一区二区三区av| 国产av一区在线观看免费| 全区人妻精品视频| 欧美精品国产亚洲| 久99久视频精品免费| a级一级毛片免费在线观看| 久久久午夜欧美精品| 免费看美女性在线毛片视频| 性欧美人与动物交配| 看免费成人av毛片| 男女做爰动态图高潮gif福利片| 欧美zozozo另类| 精品久久久久久久久久久久久| 成人特级黄色片久久久久久久| 国产欧美日韩精品亚洲av| 欧美xxxx性猛交bbbb| 国内揄拍国产精品人妻在线| 毛片一级片免费看久久久久 | 久久精品国产亚洲av涩爱 | 特大巨黑吊av在线直播| 亚洲经典国产精华液单| 免费不卡的大黄色大毛片视频在线观看 | 亚洲久久久久久中文字幕| 网址你懂的国产日韩在线| 久久久成人免费电影| 国产亚洲av嫩草精品影院| 欧美潮喷喷水| 村上凉子中文字幕在线| 91久久精品国产一区二区成人| 级片在线观看| 国产精品综合久久久久久久免费| 听说在线观看完整版免费高清| 国产精品久久久久久久久免| 一级黄色大片毛片| 波多野结衣高清作品| 99热6这里只有精品| 天天一区二区日本电影三级| 丰满的人妻完整版| 国产淫片久久久久久久久| 中国美白少妇内射xxxbb| 男人舔女人下体高潮全视频| 亚洲va在线va天堂va国产| 窝窝影院91人妻| 国产 一区精品| 亚洲va在线va天堂va国产| 国产激情偷乱视频一区二区| 国产真实伦视频高清在线观看 | 国产午夜精品论理片| 婷婷六月久久综合丁香| 最近在线观看免费完整版| 色5月婷婷丁香| www.色视频.com| 乱系列少妇在线播放| 伊人久久精品亚洲午夜| 国产精品一及| 99热6这里只有精品| 欧美不卡视频在线免费观看| 天堂动漫精品| 干丝袜人妻中文字幕| 99视频精品全部免费 在线| 成年免费大片在线观看| 国内精品一区二区在线观看| 美女黄网站色视频| 国产中年淑女户外野战色| 亚洲av五月六月丁香网| 长腿黑丝高跟| 久久草成人影院| 成人特级黄色片久久久久久久| 国产av不卡久久| 精品无人区乱码1区二区| 伦理电影大哥的女人| 变态另类丝袜制服| 欧美中文日本在线观看视频| 日本与韩国留学比较| 免费观看的影片在线观看| 欧美区成人在线视频| 校园人妻丝袜中文字幕| 国产探花在线观看一区二区| 久久久久久伊人网av| 亚洲精品乱码久久久v下载方式| www日本黄色视频网| 精品久久久久久成人av| 99久久精品热视频| 中文字幕人妻熟人妻熟丝袜美| avwww免费| 久久99热6这里只有精品| 色哟哟哟哟哟哟| 久久国内精品自在自线图片| 免费在线观看影片大全网站| 在线免费十八禁| 成人国产一区最新在线观看| 男人的好看免费观看在线视频| 不卡视频在线观看欧美| 国产一区二区亚洲精品在线观看| 精品久久久久久久久久久久久| 精品久久久久久,| 能在线免费观看的黄片| 在线观看免费视频日本深夜| 天美传媒精品一区二区| 真人做人爱边吃奶动态| 精品乱码久久久久久99久播| 老司机福利观看| 午夜免费成人在线视频| 好男人在线观看高清免费视频| 国产精品98久久久久久宅男小说| 深爱激情五月婷婷| 欧美潮喷喷水| 亚洲av美国av| 日本在线视频免费播放| 国产 一区精品| 久久精品国产亚洲网站| av中文乱码字幕在线| 国产麻豆成人av免费视频| 日本-黄色视频高清免费观看| 99国产精品一区二区蜜桃av| 中国美白少妇内射xxxbb| 国产一区二区在线av高清观看| av在线老鸭窝| 精品一区二区免费观看| 91麻豆av在线| 亚洲美女黄片视频| 午夜激情福利司机影院| 悠悠久久av| 久久九九热精品免费| 欧美日韩综合久久久久久 | 老司机午夜福利在线观看视频| 午夜免费成人在线视频| 亚洲成人久久爱视频| 亚洲一区二区三区色噜噜| 日韩欧美精品免费久久| 亚洲av二区三区四区| 99国产精品一区二区蜜桃av| 欧美人与善性xxx| 欧美性感艳星| 国产精品不卡视频一区二区| 琪琪午夜伦伦电影理论片6080| 国产探花在线观看一区二区| 深夜精品福利| 真实男女啪啪啪动态图| 久久久久久久久大av| 日本在线视频免费播放| 日韩精品有码人妻一区| 亚洲av不卡在线观看| 欧美日韩精品成人综合77777| 国产单亲对白刺激| 亚洲乱码一区二区免费版| 亚洲成a人片在线一区二区| 久久欧美精品欧美久久欧美| 一进一出抽搐动态| 精品人妻偷拍中文字幕| 可以在线观看的亚洲视频| 91久久精品电影网| av女优亚洲男人天堂| 成人av一区二区三区在线看| 99在线视频只有这里精品首页| 欧美日韩黄片免| 一本一本综合久久| 国产精品一区二区性色av| 亚洲欧美日韩高清专用| 两个人的视频大全免费| 好男人在线观看高清免费视频| 国产一区二区三区视频了| 国产美女午夜福利| 亚洲精品在线观看二区| 欧美丝袜亚洲另类 | 色播亚洲综合网| 韩国av一区二区三区四区| 久久这里只有精品中国| 久久精品国产99精品国产亚洲性色| 亚洲成人精品中文字幕电影| 成人二区视频| 五月伊人婷婷丁香| 如何舔出高潮| 欧美日韩精品成人综合77777| 免费看日本二区| 深夜a级毛片| 女的被弄到高潮叫床怎么办 | 最新在线观看一区二区三区| av在线蜜桃| 国产淫片久久久久久久久| 欧美一区二区精品小视频在线| 能在线免费观看的黄片| 大型黄色视频在线免费观看| 在线免费观看不下载黄p国产 | 久9热在线精品视频| 人妻夜夜爽99麻豆av| 麻豆成人午夜福利视频| 午夜福利高清视频| 简卡轻食公司| 亚洲av中文av极速乱 | 夜夜看夜夜爽夜夜摸| 给我免费播放毛片高清在线观看| 国产高清视频在线播放一区| 老司机福利观看| 十八禁网站免费在线| 一个人看视频在线观看www免费| av在线天堂中文字幕| 一个人看的www免费观看视频| 成人性生交大片免费视频hd| 精品久久久久久,| 亚洲天堂国产精品一区在线| 国产精品日韩av在线免费观看| 在线播放无遮挡| 久久久久久久精品吃奶| 亚洲国产高清在线一区二区三| 乱系列少妇在线播放| av中文乱码字幕在线| 亚洲国产精品久久男人天堂| 久久人人爽人人爽人人片va| 老司机深夜福利视频在线观看| 国产精品久久视频播放| 人妻夜夜爽99麻豆av|