• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PID Control of Planar Nonlinear Uncertain Systems in the Presence of Actuator Saturation

    2022-10-26 12:23:48XujunLyuandZongliLin
    IEEE/CAA Journal of Automatica Sinica 2022年1期

    Xujun Lyu and Zongli Lin,

    Abstract—This paper investigates PID control design for a class of planar nonlinear uncertain systems in the presence of actuator saturation. Based on the bounds on the growth rates of the nonlinear uncertain function in the system model, the system is placed in a linear differential inclusion. Each vertex system of the linear differential inclusion is a linear system subject to actuator saturation. By placing the saturated PID control into a convex hull formed by the PID controller and an auxiliary linear feedback law, we establish conditions under which an ellipsoid is contractively invariant and hence is an estimate of the domain of attraction of the equilibrium point of the closed-loop system. The equilibrium point corresponds to the desired set point for the system output. Thus, the location of the equilibrium point and the size of the domain of attraction determine, respectively, the set point that the output can achieve and the range of initial conditions from which this set point can be reached. Based on these conditions, the feasible set points can be determined and the design of the PID control law that stabilizes the nonlinear uncertain system at a feasible set point with a large domain of attraction can then be formulated and solved as a constrained optimization problem with constraints in the form of linear matrix inequalities (LMIs). Application of the proposed design to a magnetic suspension system illustrates the design process and the performance of the resulting PID control law.

    I. INTRODUCTION

    PID control has been reported to be the most widely adopted controller in engineering practice [1]. Analysis and design of PID control systems as well as the relationship of PID control with other control design methods continue to be an active research area (see, [2]–[10], for a small sample of the literature). Recently, the design of PID controllers for a class of second order nonlinear uncertain systems was investigated in [11]. Based on the bounds of the growth rates of the nonlinear uncertain function, a 3-dimensional manifold was constructed within which the three PID control coefficients can be chosen arbitrarily that guarantee global asymptotic stability of the closed-loop system at an equilibrium point corresponding to a desired set point for the output. The work of [11] has since motivated further works(see, for example, [12]–[14]).

    Inspired by [11], [15], this paper considers the design of PID control for nonlinear uncertain systems in the presence of actuator saturation. Actuator saturation is ubiquitous in realworld control systems. The integral action in a PID controller causes the control input signal to continue to increase even when the system is operating in the vicinity of its steady state,making the actuator in a PID control system especially prone to saturation. It is well-known that actuator saturation degrades the performance of the closed-loop system and, in a severe situation, may even cause the loss of stability. As a result, there have been continual efforts spent in addressing issues associated with actuator saturation (see, for example,[16]–[19], for a small sample of the literature).

    The systems we consider will be the same as in [11].Because of the presence of actuator saturation, we are no longer able to achieve global asymptotic stabilization at an equilibrium point as in [11] or may not even be able to achieve local asymptotic stability at some equilibrium points.The location of the equilibrium point and the size of the domain of attraction determine the set point that the output can achieve and the range of initial conditions from which this set point can be reached. Thus, our design goal is to determine feasible set points for the output and the PID coefficients that will achieve local asymptotic stability at the equilibrium point corresponding to a feasible set point for the output with a large domain of attraction.

    To meet our design goal, we will first place the system in a linear differential inclusion based on the growth rates of the nonlinear uncertain function in the system model. Each vertex system of the linear differential inclusion is a linear system subject to actuator saturation. Then, by placing the saturated PID control into a convex hull formed by the PID controller and an auxiliary linear feedback law, we establish conditions under which an ellipsoid is contractively invariant and hence is an estimate of the domain of attraction of the equilibrium point of the closed-loop system. Based on these conditions,determination of feasible set points and design of the PID control law that stabilizes the nonlinear uncertain system at a feasible equilibrium point with a large domain of attraction can then be formulated and solved as an optimization with constraints in the form of linear matrix inequalities (LMIs).The PID control coefficients as obtained from solving this constrained optimization problem are shown to take positive values.

    Our design algorithm, which involves only solving an LMI problem, would result in a PID controller that stabilizes the system at a feasible equilibrium point corresponding to a feasible set point for the output with the estimate of the domain of attraction maximized. The resulting PID controller is robust with respect to system uncertainties in the sense that it causes the output of any nonlinear system in the class of nonlinear uncertain systems to track the given constant reference. It is expected that the proposed design can be enhanced to achieve performance beyond tracking, such as fast tracking and disturbance rejection.

    The remainder of the paper is organized as follows. In Section II, we formulate the problem to be studied in the paper and recall a technical tool that is needed to solve the problem formulated. In Section III, we present our main results on the solution of the problem. Section IV presents an application of the proposed design algorithm to a magnetic suspension test rig. Simulation results are presented that illustrate the effectiveness of the resulting PID controller. Section V draws conclusions to the paper.

    II. PROBLEM FORMULATION AND PRELIMINARIES

    Consider a planar nonlinear system of the form

    where s at is a saturation function defined as

    for some known positive scalar ? , andf(x1,x2,t) is a nonlinear function that contains uncertainties of the system.We assume that the functionf, withf(0,0,t)=0 andf(x1,0,t)=f(x1,0,0), is locally Lipschitz inx1andx2uniformly intand piecewise continuous int. We also assume that the growth rates offare bounded, that is,

    for some known nonnegative constantsL1andL2.

    System (1) is commonly found in practice. Examples of such a system include mechanical systems that obey Newton’s second law of motion, such as the magnetic suspension test rig considered in Section IV.

    The control objective is to cause the system outputyto track a given constant referencey?by using a PID controller of the form

    wheree(t)=y(t)?y?, andKP,KI, andKDare the controller coefficients whose values are to be determined. Because of the presence of actuator saturation, we cannot expect that such tracking will occur for any reference outputy?and from any initial condition of the closed-loop system. Thus, the design objective is to achieve tracking for a largey?and from a large set of initial conditions.

    To deal with the saturation nonlinearity, we adapt from [8]the convex hull representation of a single input saturated linear feedback law.

    Lemma 1:LetK,H∈R1×nand δ ∈R. Let

    Then, for anyx∈L(H),

    where co stands for convex hull.

    III. MAIN RESULTS

    The closed-loop system under the PID controller (4) can be written as

    which, in the absence of saturation, has a unique equilibrium at

    where, by (3),

    |f(y?,0,0)|≤L1|y?|.

    We define the following new state variables:

    In these new state variables, the closed-loop system can be written as

    We note that the tracking problem for system (5) becomes the stabilization problem for system (6) in the new state variables, and. The tracking ability of system (5),b oth the reference outputy?the system can track and the initial conditions from which the tracking can be achieved, is reflected in the asymptotic stability and the domain of attraction of system (6). Thus, in what follows, we will develop a design algorithm that achieves asymptotic stabilization of system (6) with a large domain of attraction.

    where co denotes a convex hull. Thus, the state equation in (6)belongs to the following linear differential inclusion (LDI):

    withA(t)∈co{A1,A2,A3,A3}, belongs to the LDI (7).

    We have the following result on the asymptotic stability and the domain of attraction of the origin of the state space of the LDI (7). Note that convergence of the stateto the origin implies asymptotic tracking of the desired reference outputy?by the system output.

    Theorem 1:Consider a system described by the LDI (7). LetP∈R3×3be a positive definite matrix and

    Suppose that there exists matrixHsuch that

    then, the system is asymptotically stable at the origin with Ω(P) contained in the domain of attraction.

    Proof:Consider a Lyapunov function candidate

    The directive ofValong the trajectory of the closed-loop system (7) within the level set Ω (P)?L(H) is given by

    Hence, the closed-loop system is asymptotically stable at the origin with Ω (P) contained in the domain of attraction. ■

    Corollary 1:Condition (8) of Theorem 1 implies that all elements ofK=[KPKDKI] are positive.

    Proof:SincePis positive definite, Condition (8) fori=1 implies thatA1?bBKis a Hurwitz matrix, that is, the coefficients of its characteristic polynomial

    are all positive. Thus, all elements ofK,KP,KD, andKIare positive. Based on the conditions established in Theorem 1, the design of the PID control coefficients

    can be formulated as a constrained optimization problem,

    We note that, by Corollary 1, Constraint b) in the optimization problem (12) ensures that all elements ofKare positive. Thus the positiveness of three PID control coefficientsKP,KD, andKIare automatically satisfied by any solution of the optimization problem.

    In the optimization problem, R, referred to a shape reference set, is a pre-specified set used to measure the size of the ellipsoid Ω (P) against. A larger value of α implies a larger set αR that would fit inside Ω(P), which, in turn, implies a larger Ω(P). Examples of the shape reference sets R include a polyhedron

    R=co{r1,r2,...,rl}

    r1,r2,...,rl∈R3

    for some given vectors , and an ellipsoid

    for some given positive definite matrixR∈R3×3.

    To solve the optimization problem (12), we will transform all its constraints into linear matrix inequalities. If R is a polyhedron, then Constraint a) is equivalent to [17]

    where γ =1/α2andQ=P?1. If R is an ellipsoid, Constraint a)is equivalent to

    Constraint b) is equivalent to

    whereZ=KQ. Similarly, Constraint c) is equivalent to

    whereY=HQ.

    Finally, recalling that

    we have that Constraint d) is implied by

    which is equivalent to

    With the above transformations, all constraints in (12) are LIMs in the variablesQ,Z,Y, and γ . Thus, when R is a polyhedron, the optimization problem (12) can be transformed into the following LMI problem:

    which can be readily solved numerically.

    Similarly, when R is an ellipsoid, the optimization problem(12) can be transformed into the following LMI problem:

    Let (γ?,Q?,Y?,Z?) be the solution of the optimization problem (13) or (14), then, we have

    IV. APPLICATION TO A MAGNETIC SUSPENSION SYSTEM

    Consider the magnetic suspension test rig shown in Fig. 1.The test rig is composed of a beam sitting on a pivot at its center of mass, two active electromagnets located at each end of the beam and non-contacting displacement sensors. The test rig has two rails, mechanical stops at the ends that limit the range of angular motion of the beam to ±0.013 rad(≈ 0.7448°), to protect the coils from being damaged. A motor with an unbalance attached to the shaft is mounted on a track on top of the beam and is removable.

    Fig. 1. The beam balancing test rig.

    This test rig has been constructed for testing solutions to control problems [20]. In particular, the removable motor with the unbalance, when mounted at different locations along the beam and operated at different rotating speeds, generates periodic signals with different frequencies and magnitudes and thus emulates an exosystem in an output regulation problem [21].

    The operation of the test rig is illustrated in Fig. 2. In the figure,I1andI2are the currents in the coils,T1andT2are the torques generated by the electromagnets,Tmis the constant torque induced by the mass of the motor, andTdis a sinusoidal torque caused by the centripetal force keeping the unbalance on its orbit.

    Fig. 2. An illustrative diagram for the beam balancing test rig.

    The dynamics of the beam, in the absence of the removable motor, can be modeled by the following differential equation:

    where θ is the angle between the beam and the horizontal direction,T1andT2are the torques generated by the two electromagnets with the total net torque provided by the electromagnets given byT=T2?T1,Jbis the moment of inertia,kis the stiffness, andDis the damping due to air and pivot friction.

    The torquesT1andT2are determined from the air gap fluxes in terms of the coil currentsI1andI2and the beam angle θ as follows:

    whereg0is the maximal angle which is reached when one end of the beam touches a rail andcis constant.

    Since an electromagnetic force only attracts and cannot repel, the bidirectional total net torque is generated by a differential current. A conventional way to create the differential current is to introduce a bias currentIB>0 and letI1andI2operate symmetrically aroundIB, i.e.,

    I1=IB+I

    I2=IB?I

    where the perturbation currentI, which is small relative to the biased currentIB, is used as a control input that produces the net torque on the beam.

    Based on the above derivation, a nominal mathematical model of the test rig was calculated in [22]. This model, in the form of (1), is given as follows:

    wherex1=θ,x2=,u=I,a1=9248 ,a2=?1.6335,b=281.9, and ?=1 A. Because of the inaccuracy in determining the stiffnesskand dampingDof the system, we assume that that the functionfin (1) satisfies (3) withL1=9500 andL2=2.

    Suppose that we would like to stabilize the beam at an angley?=0.003 rad. We will design a PID controller that, given the actuator capacity limited by a saturation function of saturation level of ?=1 A, causes stabilization from a large set of the initial conditions. In the mean time, for safety considerations,the beam should not hit the mechanical stops, that is,|θ(t)|<0.013,t≥0.

    We will carry out our design by solving the constrained optimization problem (13). For Constraint a), we let

    R={r1,r2}

    withr1=[1 0 0]Tandr2=[0 1 0]T, to reflect the design objective of controlling the beam from both a large initial angle and a large initial angular velocity.

    For Constraints b) and c), we have

    andb=281.9.

    For Constraint d), we have ?=1,L1=9500,y?=0.003,andb=281.9.

    To ensure that the beam would not hit the mechanical stops,we impose that |x1|<0.013 rad, which can be met by

    whereM=[1 0 0]. As a result, we have the following additional constraint for the optimization problem (13):

    For practical consideration, we also limit the angular velocity to |x2|≤0.4 rad/sec, which can be met by

    whereN=[0 1 0]. Thus, we have another constraint for the optimization problem,

    Solving the optimization problem (13) with the additional Constraints e) and f), we obtain

    Shown in Fig. 3 is the projection of Ω(P?) on theplane. As is clear in the figure, both Constraints e) and f) are respected. That is, for any initial condition inside Ω(P?), the state trajectory will stay inside and the beam would not hit the mechanical stops that protect the coils from being damaged, and the angular velocity of the beam will remain within the range of ± 0.4 rad/sec.

    Fig. 3. The projection of Ω (P?) on the=(θ ?0.003,θ˙) plane.

    Fig. 4. The evolution of the output (beam angle) of the nominal system,showing asymptotic tracking of the desired output y ?=0.003 rad.

    Fig. 5. The evolution of the beam angular velocity of the nominal system,showing convergence to zero.

    Shown in Figs. 4 and 5 are respectively the evolutions of the system outputy(beam angle) and the statex2(beam angular velocity) from an initial condition within Ω (P?),

    In this simulation, we use the nominal values of the system parameters, that is,

    As is clear from the simulation results, the PID controller we have designed achieves our design objectives. We note that our design is not by saturation avoidance. We allow the control input to saturate the actuator for full utilization of the actuator capacity, as shown in Fig. 6.

    Fig. 6. The evolution of the saturated control input corresponding to the evolutions in Figs. 4 and 5.

    To show the robustness of the design to uncertainties in the system, we simulate again withA=A1. The evolutions of the system outputy(beam angle) and the statex2(beam angular velocity) from an initial condition within Ω (P?),

    are shown in Figs. 7 and 8, respectively. The evolution of the actuator output is shown in Fig. 9. These simulation results clearly show the ability of the system output to track its desired value ofy?=0.003 rad despite the change in the system dynamics.

    Fig. 7. The evolution of the output of a system (beam angle) with A = A1,showing asymptotic tracking of the desired output y ?=0.003 rad.

    Fig. 8. The evolution of the beam angular velocity of a system with A=A1,showing convergence to zero.

    Fig. 9. The evolution of the saturated control input corresponding to the evolutions in Figs. 7 and 8.

    Fig. 10. The evolution of the beam angle of a system with A=(1?sint)A1+(1+sint)A2, showing asymptotic tracking of the desired output y ?=0.003 rad.

    Fig. 11. The evolution of the beam angular velocity of a system with A=(1?sint)A1+(1+sint)A2, showing convergence to zero.

    Fig. 12. The evolution of the saturated input corresponding to the evolutions in Figs. 10 and 11.

    Fig. 13. The evolution of the beam angle of the nominal system in the presence of nonlinear damping, showing asymptotic tracking of the desired output y ?=0.003 rad.

    Fig. 14. The evolution of the beam angular velocity of the nominal system in the presence of nonlinear damping, showing convergence to zero.

    Fig. 15. The evolution of the saturated input corresponding to the evolutions in Figs. 13 and 14.

    To show that the design is also effective when the system parameters are time varying, we simulate with

    The evolutions of the beam angle, beam angular velocity and the actuator output of the closed-loop system operating from an initial condition within Ω (P?),

    are shown in Figs. 10–12, respectively. These simulation results again show the ability of the system output to track its desired value ofy?=0.003 rad even when the system dynamics is time-varying.

    Finally, we would like to examine the performance of the closed-loop system in the face of nonlinearity in the open-loop system. In particular, we assume that there is nonlinear damping on the beam that has been neglected in the nominal model, that is, the open-loop system is given by

    wherex1=θ,x2=,u=I,a1=9248,a2=?1.6335,a3=0.1,andb=281.9. It can be readily verified that, within the invariant level set Ω (P?), this nonlinear system still belongs to the same LDI for which the PID control coefficients have been designed, and thus the PID controller is valid. To verify this, we simulate the closed-loop system with an initial condition within Ω (P?),

    The evolutions of the system output (beam angle), the beam angular velocity and the actuator output are shown in Figs. 13–15. Once again, we see asymptotic tracking of the desired reference outputy?by the system output.

    V. CONCLUSIONS

    In this paper, we revisited the PID control design for a class of planar nonlinear uncertain systems. Motivated by a recent result on the characterization of stabilizing PID control coefficients for a class of planar nonlinear uncertain systems,we considered PID control design in the presence of actuator saturation for such systems. Based on the growth rates of the nonlinear uncertain function in the system model that defines the class of systems, we formulated a constrained optimization problem that searches for the PID control coefficients that, in the presence of actuator saturation, stabilize any nonlinear system in the class with the domain of attraction maximized.The optimization problem was shown to be solvable as an LMI problem. The proposed design algorithm is tested on a magnetic suspension system, which has been constructed for testing solutions to control problems. Extensive simulation results show the effectiveness of the design algorithm.

    99久久中文字幕三级久久日本| av网站免费在线观看视频| 午夜日本视频在线| av免费在线看不卡| 久久国产亚洲av麻豆专区| 麻豆精品久久久久久蜜桃| 黄色欧美视频在线观看| 女性生殖器流出的白浆| 免费大片黄手机在线观看| 亚洲精品视频女| 一本—道久久a久久精品蜜桃钙片| 噜噜噜噜噜久久久久久91| 一本大道久久a久久精品| 九九爱精品视频在线观看| 国产成人一区二区在线| 国产成人精品无人区| 少妇人妻 视频| 免费观看性生交大片5| 国产日韩欧美视频二区| 精品一区二区三卡| 熟女电影av网| 亚洲伊人久久精品综合| 国产成人免费无遮挡视频| 美女视频免费永久观看网站| 尾随美女入室| 日日啪夜夜撸| 亚洲欧洲日产国产| 好男人视频免费观看在线| 极品教师在线视频| 国产伦在线观看视频一区| freevideosex欧美| 一级毛片电影观看| 国产精品一区www在线观看| 国产高清三级在线| 九九在线视频观看精品| 菩萨蛮人人尽说江南好唐韦庄| 国产av国产精品国产| 妹子高潮喷水视频| 蜜桃在线观看..| 日韩av在线免费看完整版不卡| 日韩av免费高清视频| 日韩欧美精品免费久久| 亚洲图色成人| 女性生殖器流出的白浆| 国产欧美日韩综合在线一区二区 | 久久久久国产精品人妻一区二区| 精品一区二区三卡| 在线看a的网站| 日韩三级伦理在线观看| 中文字幕精品免费在线观看视频 | 亚洲国产欧美日韩在线播放 | 亚洲综合精品二区| 观看免费一级毛片| 国产熟女欧美一区二区| 女人精品久久久久毛片| 性色avwww在线观看| 亚洲精品一区蜜桃| 伦理电影大哥的女人| 精华霜和精华液先用哪个| 最近中文字幕高清免费大全6| 亚洲av综合色区一区| 午夜福利,免费看| 在线观看免费日韩欧美大片 | 免费看av在线观看网站| 国产伦在线观看视频一区| 国产精品成人在线| 青青草视频在线视频观看| 久久99热6这里只有精品| 中国美白少妇内射xxxbb| 蜜臀久久99精品久久宅男| 日韩强制内射视频| 久久人人爽人人片av| av视频免费观看在线观看| 久久热精品热| 亚洲精品国产成人久久av| 午夜激情福利司机影院| 在线播放无遮挡| 亚洲精品亚洲一区二区| 91久久精品国产一区二区三区| 日韩一区二区三区影片| 色5月婷婷丁香| 国产精品偷伦视频观看了| 国产日韩一区二区三区精品不卡 | 又爽又黄a免费视频| 人人妻人人澡人人爽人人夜夜| 搡女人真爽免费视频火全软件| av卡一久久| 日日啪夜夜爽| 亚洲电影在线观看av| 久久久久视频综合| 老司机影院成人| 日韩电影二区| 天天躁夜夜躁狠狠久久av| 色哟哟·www| 少妇 在线观看| 97超碰精品成人国产| 久久热精品热| av天堂久久9| 色视频www国产| 内射极品少妇av片p| 精华霜和精华液先用哪个| 91精品国产国语对白视频| 久久精品国产亚洲av天美| 国产高清不卡午夜福利| 十分钟在线观看高清视频www | 欧美+日韩+精品| 免费高清在线观看视频在线观看| 成人特级av手机在线观看| 91在线精品国自产拍蜜月| 国产精品一二三区在线看| 十八禁高潮呻吟视频 | 卡戴珊不雅视频在线播放| 精品99又大又爽又粗少妇毛片| 精品人妻熟女av久视频| 日本欧美视频一区| 亚洲av欧美aⅴ国产| 激情五月婷婷亚洲| 韩国高清视频一区二区三区| 欧美人与善性xxx| 久久久久精品久久久久真实原创| av卡一久久| 亚洲人成网站在线播| 黑丝袜美女国产一区| 亚洲国产欧美在线一区| 亚洲欧美一区二区三区国产| 久久亚洲国产成人精品v| 亚洲天堂av无毛| 91精品伊人久久大香线蕉| 国产91av在线免费观看| 全区人妻精品视频| 亚洲内射少妇av| 建设人人有责人人尽责人人享有的| 不卡视频在线观看欧美| 亚洲美女视频黄频| 国产精品嫩草影院av在线观看| 欧美变态另类bdsm刘玥| 国产精品无大码| 91精品国产国语对白视频| 老女人水多毛片| 男的添女的下面高潮视频| 在线观看国产h片| 纯流量卡能插随身wifi吗| 精品国产露脸久久av麻豆| 国产男人的电影天堂91| 国产日韩欧美视频二区| 看十八女毛片水多多多| 一本色道久久久久久精品综合| 乱系列少妇在线播放| 亚洲国产精品999| 亚洲美女视频黄频| 成年人午夜在线观看视频| 国产午夜精品一二区理论片| 欧美日韩精品成人综合77777| 午夜91福利影院| 久久精品熟女亚洲av麻豆精品| 汤姆久久久久久久影院中文字幕| 嫩草影院新地址| 亚洲av在线观看美女高潮| 国产女主播在线喷水免费视频网站| 久久ye,这里只有精品| 91精品国产九色| 成人免费观看视频高清| 黑人高潮一二区| 久久久久国产精品人妻一区二区| 黄色配什么色好看| 十分钟在线观看高清视频www | 在线看a的网站| 丰满迷人的少妇在线观看| 中文字幕免费在线视频6| 成年美女黄网站色视频大全免费 | 99热这里只有是精品在线观看| 人妻制服诱惑在线中文字幕| 中国三级夫妇交换| 精品人妻熟女av久视频| av在线老鸭窝| 丝瓜视频免费看黄片| 成人漫画全彩无遮挡| 永久网站在线| 国产女主播在线喷水免费视频网站| 日韩三级伦理在线观看| 国产老妇伦熟女老妇高清| 成年女人在线观看亚洲视频| 大陆偷拍与自拍| 26uuu在线亚洲综合色| 免费av中文字幕在线| 国产 精品1| 欧美精品亚洲一区二区| 国产美女午夜福利| 国产精品久久久久久久久免| 亚洲国产精品国产精品| 亚洲人成网站在线观看播放| 成人免费观看视频高清| 亚洲av二区三区四区| 纵有疾风起免费观看全集完整版| 国产精品成人在线| 国产一区亚洲一区在线观看| 一本—道久久a久久精品蜜桃钙片| 国产高清国产精品国产三级| 欧美日韩视频高清一区二区三区二| 99久国产av精品国产电影| 欧美成人精品欧美一级黄| 不卡视频在线观看欧美| 在线观看免费日韩欧美大片 | 日韩av在线免费看完整版不卡| 国产一区亚洲一区在线观看| 国产免费一区二区三区四区乱码| 精品99又大又爽又粗少妇毛片| 伊人久久精品亚洲午夜| av在线观看视频网站免费| 男女边吃奶边做爰视频| 五月天丁香电影| 91成人精品电影| 99视频精品全部免费 在线| 日韩不卡一区二区三区视频在线| 高清不卡的av网站| 国产色爽女视频免费观看| 国产黄色免费在线视频| 国产成人a∨麻豆精品| a级一级毛片免费在线观看| 国产极品粉嫩免费观看在线 | 99热这里只有精品一区| 国产免费一级a男人的天堂| 久久97久久精品| 亚洲三级黄色毛片| av福利片在线| 麻豆成人午夜福利视频| 精品酒店卫生间| 有码 亚洲区| 免费黄网站久久成人精品| 久久久亚洲精品成人影院| 热re99久久国产66热| 国产午夜精品一二区理论片| 我的女老师完整版在线观看| 丰满饥渴人妻一区二区三| 天堂中文最新版在线下载| 天堂8中文在线网| 一级爰片在线观看| 国产 一区精品| 国产片特级美女逼逼视频| 成人美女网站在线观看视频| 日韩人妻高清精品专区| 亚洲国产精品专区欧美| 97在线视频观看| 极品教师在线视频| 亚洲一级一片aⅴ在线观看| 性色avwww在线观看| 日本欧美视频一区| 天堂中文最新版在线下载| 色哟哟·www| 久久精品国产亚洲网站| 久久久国产精品麻豆| 亚洲国产精品专区欧美| 中文字幕av电影在线播放| 秋霞在线观看毛片| 伊人久久国产一区二区| 精品酒店卫生间| 日本午夜av视频| 久久6这里有精品| 国产一级毛片在线| 看十八女毛片水多多多| 国产精品人妻久久久影院| 国产精品一区二区在线不卡| 久久久a久久爽久久v久久| 五月伊人婷婷丁香| 欧美精品亚洲一区二区| 美女脱内裤让男人舔精品视频| 免费大片18禁| 男人添女人高潮全过程视频| 亚洲美女视频黄频| 国产精品久久久久久精品古装| 人妻夜夜爽99麻豆av| 少妇猛男粗大的猛烈进出视频| 另类亚洲欧美激情| 精品午夜福利在线看| 亚洲av不卡在线观看| 男女边摸边吃奶| 亚洲欧美清纯卡通| 大香蕉久久网| 偷拍熟女少妇极品色| 大又大粗又爽又黄少妇毛片口| 视频区图区小说| 久久精品国产亚洲网站| 两个人的视频大全免费| 亚洲va在线va天堂va国产| 十八禁网站网址无遮挡 | 久久久国产欧美日韩av| 欧美bdsm另类| 热re99久久精品国产66热6| 伊人亚洲综合成人网| 亚洲综合精品二区| 久久久国产精品麻豆| 国产综合精华液| 一级毛片aaaaaa免费看小| 亚洲国产av新网站| 免费看日本二区| 亚洲精品视频女| 99久久精品国产国产毛片| h日本视频在线播放| 亚洲情色 制服丝袜| 免费人成在线观看视频色| 一级毛片 在线播放| 亚洲人成网站在线播| 久久99精品国语久久久| 最近2019中文字幕mv第一页| 久久99一区二区三区| 一级毛片我不卡| 伦理电影大哥的女人| 日韩成人av中文字幕在线观看| 80岁老熟妇乱子伦牲交| 2018国产大陆天天弄谢| 午夜影院在线不卡| 日韩大片免费观看网站| 国产在线一区二区三区精| 看非洲黑人一级黄片| 国产69精品久久久久777片| 91午夜精品亚洲一区二区三区| 五月天丁香电影| 高清午夜精品一区二区三区| 六月丁香七月| 黄色配什么色好看| 日本av手机在线免费观看| 国产午夜精品一二区理论片| 一级a做视频免费观看| 国产日韩欧美在线精品| 97超视频在线观看视频| 新久久久久国产一级毛片| 亚洲欧美成人综合另类久久久| 妹子高潮喷水视频| 欧美精品一区二区大全| 久久国内精品自在自线图片| 美女脱内裤让男人舔精品视频| 少妇猛男粗大的猛烈进出视频| 国产一区二区三区综合在线观看 | 一级片'在线观看视频| av在线app专区| 亚洲av成人精品一二三区| 男人狂女人下面高潮的视频| 免费人妻精品一区二区三区视频| 99热6这里只有精品| 91久久精品电影网| 五月天丁香电影| 成年美女黄网站色视频大全免费 | 久久国产精品男人的天堂亚洲 | 精品一区二区免费观看| 亚洲图色成人| 草草在线视频免费看| 晚上一个人看的免费电影| 亚洲精品,欧美精品| 免费在线观看成人毛片| 亚洲精品日韩在线中文字幕| 亚洲精品成人av观看孕妇| 一级,二级,三级黄色视频| 亚洲国产色片| 高清黄色对白视频在线免费看 | 日本av免费视频播放| 成年人午夜在线观看视频| 老司机影院毛片| 久久 成人 亚洲| 国产一区二区三区综合在线观看 | av天堂久久9| kizo精华| 久久影院123| 在线播放无遮挡| av一本久久久久| 午夜免费男女啪啪视频观看| 欧美少妇被猛烈插入视频| 精品一品国产午夜福利视频| 日韩av免费高清视频| 日韩电影二区| 欧美国产精品一级二级三级 | 黄色毛片三级朝国网站 | 男人爽女人下面视频在线观看| 三级国产精品欧美在线观看| 在现免费观看毛片| 天天操日日干夜夜撸| 曰老女人黄片| 欧美精品人与动牲交sv欧美| 国产 精品1| 久久免费观看电影| 最近2019中文字幕mv第一页| freevideosex欧美| 建设人人有责人人尽责人人享有的| 一区二区三区精品91| 国产69精品久久久久777片| 街头女战士在线观看网站| 少妇 在线观看| 国产黄色免费在线视频| 最后的刺客免费高清国语| 午夜精品国产一区二区电影| 久久精品夜色国产| 久久久久久久久久人人人人人人| 一级二级三级毛片免费看| 黑人巨大精品欧美一区二区蜜桃 | videossex国产| 久久婷婷青草| 我的女老师完整版在线观看| 成人二区视频| 永久免费av网站大全| 日本爱情动作片www.在线观看| 国产成人精品一,二区| 亚洲精品aⅴ在线观看| 日本爱情动作片www.在线观看| 性色av一级| 在线观看av片永久免费下载| 一区二区三区乱码不卡18| 国产免费又黄又爽又色| 少妇被粗大猛烈的视频| av国产久精品久网站免费入址| 亚洲精华国产精华液的使用体验| 亚洲国产精品专区欧美| 成人二区视频| 我的老师免费观看完整版| 午夜老司机福利剧场| 久久久久久久久久成人| 亚洲精品国产成人久久av| 精品人妻一区二区三区麻豆| 美女主播在线视频| 狂野欧美激情性bbbbbb| 边亲边吃奶的免费视频| 国产综合精华液| 国产淫语在线视频| 欧美日韩在线观看h| 午夜激情福利司机影院| 国产成人精品无人区| 一区二区三区免费毛片| 国产精品.久久久| 青春草亚洲视频在线观看| 久热这里只有精品99| 色吧在线观看| 纯流量卡能插随身wifi吗| 永久免费av网站大全| 午夜老司机福利剧场| 欧美老熟妇乱子伦牲交| 色哟哟·www| 国产亚洲av片在线观看秒播厂| 色婷婷av一区二区三区视频| 自线自在国产av| av免费观看日本| 午夜激情福利司机影院| 边亲边吃奶的免费视频| 插阴视频在线观看视频| 欧美激情极品国产一区二区三区 | 人体艺术视频欧美日本| av卡一久久| 日韩熟女老妇一区二区性免费视频| 日本爱情动作片www.在线观看| 欧美老熟妇乱子伦牲交| 男女国产视频网站| 80岁老熟妇乱子伦牲交| 国产亚洲欧美精品永久| 免费黄频网站在线观看国产| www.色视频.com| 亚洲国产精品国产精品| 免费观看a级毛片全部| 熟女人妻精品中文字幕| 在线看a的网站| 99久国产av精品国产电影| 欧美三级亚洲精品| 午夜福利影视在线免费观看| 伦理电影大哥的女人| 免费av中文字幕在线| 男女无遮挡免费网站观看| 十分钟在线观看高清视频www | 欧美日本中文国产一区发布| 欧美少妇被猛烈插入视频| 午夜免费观看性视频| 日韩三级伦理在线观看| av在线app专区| 人人妻人人澡人人看| 久久久久久久大尺度免费视频| 国产精品99久久久久久久久| 高清在线视频一区二区三区| 看非洲黑人一级黄片| 国产精品伦人一区二区| 深夜a级毛片| 国产精品一二三区在线看| 自拍偷自拍亚洲精品老妇| 日本黄色片子视频| 日本与韩国留学比较| 青春草国产在线视频| 一级,二级,三级黄色视频| 乱系列少妇在线播放| 欧美精品人与动牲交sv欧美| 女性被躁到高潮视频| 99精国产麻豆久久婷婷| 91久久精品国产一区二区成人| 亚洲久久久国产精品| 久久午夜综合久久蜜桃| 大又大粗又爽又黄少妇毛片口| 久久久久视频综合| 久久久久久久久久久丰满| 国产一区二区在线观看日韩| a级毛色黄片| 亚洲精品视频女| 熟女人妻精品中文字幕| 亚洲精品aⅴ在线观看| 国产精品嫩草影院av在线观看| 精品国产露脸久久av麻豆| 美女内射精品一级片tv| 黄色一级大片看看| 一级二级三级毛片免费看| 亚洲精品一二三| av天堂久久9| 一级毛片aaaaaa免费看小| 日韩av免费高清视频| 亚洲三级黄色毛片| 久久影院123| 国产男女超爽视频在线观看| 简卡轻食公司| 99热国产这里只有精品6| 国产日韩欧美在线精品| 色视频在线一区二区三区| 在线天堂最新版资源| 最近的中文字幕免费完整| 免费播放大片免费观看视频在线观看| 一级毛片aaaaaa免费看小| 最近中文字幕高清免费大全6| 久久人妻熟女aⅴ| 国产日韩欧美视频二区| 女人精品久久久久毛片| 熟女av电影| 一区二区三区乱码不卡18| 最新的欧美精品一区二区| 久久久久久久久久久丰满| 成人特级av手机在线观看| 色94色欧美一区二区| 亚洲欧美一区二区三区国产| 日韩不卡一区二区三区视频在线| 日韩欧美一区视频在线观看 | 亚洲精品一二三| 毛片一级片免费看久久久久| 男女边摸边吃奶| 老熟女久久久| 免费av中文字幕在线| 人人妻人人澡人人爽人人夜夜| 欧美精品亚洲一区二区| 一区二区av电影网| 国产精品人妻久久久久久| 国模一区二区三区四区视频| 亚洲av中文av极速乱| 伊人久久国产一区二区| 成人18禁高潮啪啪吃奶动态图 | av在线观看视频网站免费| 国产在线一区二区三区精| 搡老乐熟女国产| 国产av码专区亚洲av| 亚洲精品第二区| 国产极品粉嫩免费观看在线 | 免费大片黄手机在线观看| 麻豆成人午夜福利视频| 国内揄拍国产精品人妻在线| 青春草视频在线免费观看| 人人妻人人添人人爽欧美一区卜| 日本-黄色视频高清免费观看| 啦啦啦啦在线视频资源| 自拍欧美九色日韩亚洲蝌蚪91 | 五月天丁香电影| 看非洲黑人一级黄片| 人妻 亚洲 视频| videossex国产| 国产精品福利在线免费观看| 国产成人精品一,二区| 久久97久久精品| 久久久久久久久久久久大奶| 亚洲美女搞黄在线观看| 伦理电影免费视频| 日本免费在线观看一区| 如何舔出高潮| 欧美少妇被猛烈插入视频| 大陆偷拍与自拍| 国产无遮挡羞羞视频在线观看| 黑人高潮一二区| 免费大片黄手机在线观看| 最近2019中文字幕mv第一页| 亚洲av男天堂| 国产探花极品一区二区| 国产精品久久久久久精品电影小说| 少妇丰满av| 国产又色又爽无遮挡免| 中文字幕精品免费在线观看视频 | 日产精品乱码卡一卡2卡三| 又黄又爽又刺激的免费视频.| 亚洲精品久久午夜乱码| 在线观看av片永久免费下载| 中文字幕人妻熟人妻熟丝袜美| 综合色丁香网| 亚洲精品aⅴ在线观看| 久久久久久久久久久丰满| 久久人人爽av亚洲精品天堂| 亚洲第一区二区三区不卡| 亚洲国产欧美日韩在线播放 | 看十八女毛片水多多多| 人妻系列 视频| 自拍欧美九色日韩亚洲蝌蚪91 | a 毛片基地| 久久久久久久久大av| 十八禁网站网址无遮挡 | 国产极品粉嫩免费观看在线 | 成人亚洲欧美一区二区av| 妹子高潮喷水视频| 一级a做视频免费观看| 美女脱内裤让男人舔精品视频| 亚洲精品456在线播放app| 一级毛片电影观看| 免费观看在线日韩| 精品99又大又爽又粗少妇毛片| 久久午夜综合久久蜜桃| 三级国产精品欧美在线观看| av线在线观看网站| 人人妻人人添人人爽欧美一区卜| 精品人妻偷拍中文字幕| 久久久a久久爽久久v久久| 黄色毛片三级朝国网站 | 伊人久久国产一区二区| 校园人妻丝袜中文字幕|