• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genetic Dissection of Quantitative Trait Loci for Panicle Traits and Heat Tolerance by High-Density Bin Map in Rice

    2022-10-25 06:20:54LiuHongyanMaXiaosongLiEnxiZengXianjunLuoLijun
    Rice Science 2022年6期

    Liu Hongyan, MaXiaosong, Li Enxi, Zeng Xianjun,Luo Lijun, 4

    Letter

    Genetic Dissection of Quantitative Trait Loci for Panicle Traits and Heat Tolerance by High-Density Bin Map in Rice

    Liu Hongyan1, 2, MaXiaosong1, 2, Li Enxi1, 3, Zeng Xianjun1, 4,Luo Lijun1, 2, 4

    (Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; Hainan University, Haikou 570228, China; Huazhong Agricultural University, Wuhan 430070, China)

    A recombinant inbred line (RIL) with 179 lines derived from a cross between a heat tolerant line Huhan 1B and a heat sensitive line Hanhui 3 was used for QTL mapping for panicle traits and heat tolerance. A total of 52 QTLs were identified with LOD scores from 3.85 to 54.93, each explaining 0.70% to 21.48% of the phenotypic variances, including 11 for panicle length (PL), 11 for seed number per panicle (SN), 14 for spikelet number per panicle (SNPP), 6 for seed-setting rate (SSR) under normal conditions, and 5 for seed-setting rate (SSR_HT) and 5 for relative seed-setting rate (RSSR) under heat stress, respectively.located ininterval was predicted as a heat tolerant candidate gene. Haplotype analysis revealed thedifferentiation of,implying possible relation to temperature adaptability in rice. An insertion/deletion (InDel) marker HSP70-12 forand a cleavage-amplified polymorphic sequence (CAPS) marker SPKIE-299 forwere developed, and validated as co-segregating markers with heat tolerance or panicle traits in different populations. These two markers can be used to facilitate rice grain yield improvement or heat tolerance via marker-assisted selection (MAS) breeding.

    Rice yield is determined by the synergistic effect of the number of panicles, SN and grain weight. Among them, SN is mainly affected by PL, SNPP and SSR. Rice yield decreases significantly under high temperature stress at the heading and grain filling stages. Particularly, high temperature can cause premature degradation of the tapetum at the early uninuclear microspore stage (Ku et al, 2003), obstruction of pollen germination and pollen tube elongation, abortion of pollen mother cells, reduction of pollen vigor, and ultimately decline of spikelet fertility (Matsui et al, 2000, 2001; Prasad et al, 2006). Several studies aiming at dissecting the genetic bases of spikelet sensitivity to high temperature have been reported in the past decade. Heat tolerance, a complex quantitative trait, was controlled by multiple genes with cumulative effects (Li et al, 2015; Lafarge et al, 2017; Shanmugavadivel et al, 2017). QTLs identified for heat tolerance based on spikelet fertility in rice were first reported by Cao et al (2003) using a doubled haploid population derived from the IR64/Azucena cross. Thereafter, a number of QTLs for SSR have been identified under controlled thermal environments using RILs (Shanmugavadivel et al, 2017), backcross inbred lines (Ye et al, 2012), F2population(Ye et al, 2012), chromosome single segment substitution lines (Liu et al, 2017) and natural population (Lafarge et al, 2017).is fine mapped to a 1.2-Mb interval, and the superior alleles ofderived from N22 can increase spikelet fertility under heat stress at the flowering stage in rice (Ye et al, 2012). The effect ofevaluated with a BC5F2population shows approximately 15% increase in spikelet fertility (Ye et al, 2015).is fine mapped to a 47.1-kb interval using a set ofintrogression lines at the booting stage (Cao et al, 2020). Among eight putative genes located in the interval of, the expression levels of two candidate genes show significant changes under heat stress.gene is isolated from CG14 () by map-based cloning and demonstrated to enhance heat tolerance in rice (Li et al, 2015).

    In this study, a RIL population (HH13 RILs) derived from the cross between Huhan 1B and Hanhui 3 was grown under normal conditions in paddy fields and under heat stress in the greenhouse where the air temperatures at 10:00 am to 14:00 pm during the flowering stage reached 35 oC to 40 oC, with 3.5 oC and 3.1 oC on average higher than those in the open field in 2018 and 2019, respectively (Fig. S1 and Table S1). SSR and SSR_HT were measured under normal and heat stress conditions in 2018 and 2019, respectively (Table S2). RSSR, the ratio of SSR_HT to SSR, was used to evaluate heat tolerance (Table S2).

    As shown in Table S2, Hanhui 3 had little higher SSR (around 91%) than Huhan 1B (around 85%) under normal conditions, but Huhan 1B had much higher SSR_HT (around 63%) under heat stress than Hanhui 3 (around 22%). The RSSR of Huhan 1B (72.9% and 73.0%) was higher than that of Hanhui 3 (22.9% and 20.7%) in 2018 and 2019, respectively. For the panicle traits under normal conditions in 2018, 2019, and 2020, Hanhui 3 showed a longer PL and much more SN and SNPP (Table S2). These results indicated that Hanhui 3 was a large panicle but heat sensitive variety, while Huhan 1B was a heat tolerant variety.

    Both panicle traits and heat tolerant traits of HH13 RILs showed transgressive segregation (Table S2 and Fig. S2). Under the heat stress conditions, the SSR_HT of the HH13 RILs ranged from 1.6% to 90.0%, and from 1.3% to 86.2% in 2018 and 2019, respectively. The RSSR of the HH13 RILs ranged from 2.0% to 98.9%, and from 1.6% to 96.1% in 2018 and 2019, respectively. The coefficients of variation of SSR_HT and RSSR were both greater than 40%. These results indicated the drastic variations on heat tolerance among the HH13 RILs. The broad-sense heritabilities of PL, SN, SNPP and SSR were 0.31, 0.51, 0.45 and 0.96, respectively (Table S2). The highest broad-sense heritability of SSR indicated the genetical stability of SSR. Pearson’s correlation analysis of phenotypic traits showed that PL, SN, SNPP and SSR were significantly correlated (< 0.05) under normal conditions (Table S3). PL was positively correlated with SN and SNPP, but negatively correlated with SSR and RSSR in different years. RSSR was significantly positively correlated with SSR_HT, having Pearson’s correlation coefficient as high as 0.99 in both 2018 and 2019, implying that the variation in RSSR was mostly determined by the variation of SSR_HT.

    A high-density genetic map of the HH13 RIL (F10) population containing 2 806 bins was constructed using 41 063 single nucleotide polymorphisms (SNPs) (Fig. 1-A and Table S4). The number of bin markers varied from 124 (chromosome 12) to 365 (chromosome 1) with an average of 233 per chromosome. The maximum and the minimum distances between bin intervals were 7 538.77 kb and 5.00 kb, respectively, and the average distance was 135.05 kb.

    A total of 52 QTLs were identified for panicle traits and heat tolerance (Fig. 1-A and Table S5). Among them, 42 QTLs, including 11 QTLs for PL, 11 QTLs for SN, 14 QTLs for SNPP and 6 QTLs for SSR, were detected under normal conditions in 2018, 2019 and 2020. Under heat stress conditions, 10 QTLs for SSR_HT and RSSR were detected. Four QTLs,,,and, were repeatedly mapped in two years. The positive alleles of 35 QTLs for PL, SN, SNPP and SSR were derived from Hanhui 3. Among the 10 QTLs for heat tolerance, the positive effects of 6 QTLs were from Huhan 1B.

    There were 17 QTLsco-localized in 8 intervals, and 14 QTLs in 7 overlapping or adjacent intervals (Table S5), suggesting possibly shared genetic basis or pleiotropism among phenotypically correlated traits. For example, QTLs for PL, SN and SNPP were clustered in four chromosomal regions on chromosomes 1, 2, 4 and 5 (Fig. 1-A). These results indicated that SN is determined mainly by PL and SNPP as observed by previous studies (Xing and Zhang, 2010). QTLs for SSR, SSR_HT and RSSR were clustered in chromosomes 1 and 10 (Fig. 1-A), probably reflecting common genes or mechanism controlling the tightly correlated phenotypic traits.

    The chromosomal regions hosting 15 known genes were covered by 12 QTL intervals of corresponding traits (Table S6), partially endorsed the efficiency and accuracy of the QTL mapping approach used in this study. Thirty-eight QTLs have not been reported previously, for which putative candidate genes were predicted (Table S7).

    was repeatedly detected in 2018 and 2019 (Fig. 1-A and Table S5) within an interval of 19.025 kb where contains only four annotated genes. OsR498G0101910700.01 in theinterval, annotated as heat shock protein 70 (), is considered as a heat tolerance candidate gene (Table S7). Hsp70 family proteins are chaperones responsible for protein folding, assembly, translocation and degradation (Lüders et al, 2000; Shin et al, 2005; Hartl et al, 2011).plays a role in plant heat stress tolerance (Wang et al,2004; Montero-Barrientos et al, 2010). A 12-bp InDel at the coding region ofwas found between Huhan 1B and Hanhui 3 (Fig. 1-B). Compared with Hanhui 3, the deleted sequence caused deletion of four amino acids in Huhan 1B (Fig. 1-B). We further analyzed the haplotype ofbased on re-sequencing data of 4 726 rice accessions at http://ricevarmap. ncpgr.cn/. Eight haplotypes (Hap) based on 40 variation sites were found (Table S8). The distinct differentiation ofbetweenandwas revealed. Haps I and IV mainly containedsubpopulation, whereas Haps II, III, VII and VIII mainly containedsubpopulation (Fig. 1-C and Table S9). Huhan 1B and Hanhui 3 belonged to Hap II and Hap I, respectively. For Asian cultivated rice,rice that mainly grown in tropical and subtropical regions, is more tolerant to high temperature thanrice that is mainly grown in temperate region.SLG1allelefrom 9311 () is more thermo-tolerant thanSLG1allelefrom KY131 () at both seedling and reproductive stages, which is consistent with the unique geographical distribution ofandrice (Xu et al, 2020). Thedifferentiation ofmight be related to temperature adaptability. An InDel marker HSP70-12 was developed across the 12-bp InDel (Table S10) and was co-segregated with RSSR in the HH13 RILs (Fig. 1-D and -F). The RSSR ofgroup (118 lines, genotype of deletion, the same as Huhan 1B) was significantly higher than that ofgroup (56 lines, genotype of insertion, the same as Hanhui 3) (Fig. 1-D). In a natural population (mainly the mini core collection of Chinese rice germplasm), the RSSR ofgroup (71 accessions) was 39.81% while that ofgroup (79 accessions) was 52.11%, showing highly significant inter-group variation (9.44E-04, the Student’s-test) (Fig. 1-E). These results confirmed that the 12-bp InDel variation inwas associated with RSSR (i.e. the heat tolerance). HSP70-12 is a functional marker and the allele offrom Huhan 1B can be used for heat tolerance improvement via MAS in rice breeding programs.

    Several putative genes were screened as candidate genes based on the annotated gene functions and research reports of expression responses to heat stress or tissue-specific expression (Table S7). We noticed that 11 candidate genes encoding NB- ARC domain containing proteins were found in heat stress tolerance QTL intervals of,and. NB-ARC domain is a type of STAND (signal transduction ATPases with numerous domains) protein, which is involved in regulation of programmed cell death (PCD) (Leipe et al, 2004). Heat stress is one of the environmental factors that can trigger PCD in plant cells (Zuppini et al, 2006). Whether these NB-ARC domain genes located in the RSSR- related QTL intervals are involved in high temperature-induced PCD or other regulations in response to high temperature needs further experimental verification.located in the interval ofwas reported to be up- regulated under high temperature (Li et al, 2018).andin theinterval can be activated by H2O2signaling in rice seedlings suffering heat stress (Chou et al, 2012). A putative gene annotated as OVATE family protein 17 () located in theinterval preferentially expresses in the young panicle tissue (Yu et al, 2015). OFP proteins are plant-specific regulatory proteins (Hackbusch et al, 2005). AtOFPs as transcriptional repressors regulate multiple aspects of growth and development (Wang et al, 2011).ishighly homologous to, and overexpression ofresults in later flowering and reduced fertility in(Wang et al, 2011). We thus speculated thatmight be a candidate gene for panicle traits. Two adjacent QTLs,and, contain eight putative genes, annotated as GDSL-like lipase/acylhydrolase, express at high levels in flowers and panicles (Chepyshko et al, 2012; Shen et al, 2022). GELPs (GDSL esterase/lipase protein) have been reported to be involved in anther and pollen development inand rice (Zhu et al, 2020).

    Fig. 1. QTLs detected for panicle traits and heat tolerance, and haplotype analysis and marker validation for candidate gene.

    A, QTLs detected for panicle traits and heat tolerance. B, Insertion/deletion (InDel) and amino acid variations ofbetween Huhan 1B and Hanhui 3. The blue box indicates coding region, the white boxes indicate non-coding regions and the lines indicate introns. C, Haplotypes ofin rice. Numbers in parentheses indicate the number of rice accessions. D, RSSR of HH13 recombinant inbred lines in 2018 and 2019. E, RSSR of core collection population of Chinese rice germplasm in 2019. ‘+’ represents mean values in D and E. F, Schematic representation of polyacrylamide electrophoresis of InDel marker HSP70-12. The marker ladder was in the leftmost lane., Allele ofin Hanhui 3 with 12 bp insertion;, Allele ofin Huhan 1B with 12 bp deletion. SN, Seed number per panicle; SNPP, Spikelet number per panicle; PL, Panicle length; SSR, Seed-setting rate under normal conditions; SSR_HT, Seed-setting rate under heat stress conditions; RSSR, Relative seed-setting rate.

    Furthermore, in the co-localized interval ofand, we found an important yield related gene, whichregulates PL, SN and SNPP (Fujita et al, 2013; Zhang et al, 2014) (Table S6). There is a single nucleotide substitution in the coding region ofbetween Hanhui 3 and Huhan 1B, forming a restriction site forI (GGTGCC/GGCGCC) in Huhan 1B. Based on this SNP, a CAPS marker SPKIE-299 was developed (Fig. S3 and Table S10). The size of the PCR product of SPKIE-299 was 299 bp. For Huhan 1B (CC-type), the PCR product can be digested withI to generate 189 bp and 110 bp bands, but not for Hanhui 3 (TT-type). SPKIE-299 was co-segregated with SN and SNPP in the HH13 RILs (Fig. S3). We also validated SPKIE-299 with HY73 RIL population (Fig. S3). Both SN and SNPP of the TT-type lines (616 lines) were significantly higher than those of CC-type lines (648 lines), withvalues of 1.35E-19 and 1.34E-26 in 2019, and 6.25E-45 and 4.44E-45 in 2020, respectively. These results clearly confirmed thatallele from Hanhui 3 exhibits higher SN and SNPP and the CAPS marker SPKIE-299 is a usable functional marker for improving SN and SNPP via MAS in rice.

    QTLs and candidate genes identified in this study provide information for dissecting the genetic basis of panicle traits and heat tolerance. It has been preliminarily verified that theallele from Huhan 1B and theallele from Hanhui 3 had positive effects on heat tolerance and panicle traits, respectively. The role of these two functional markers in MAS breeding practices can be further assessed.

    ACKNOWLEDGEMENTS

    This study was supported by the Natural Science Foundation of Shanghai, China (Grant Nos. 18ZR1433500 and 19ZR1446700), and Runup Talent Project of Shanghai Academy of Agricultural Sciences Program, China (Grant No. ZP21231). We thank Professor Yu Xinqiao for providing seeds of Hanhui 3, Huhan 1B and Huhan 7A.

    SUPPLEMENTAL DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/journal/rice-science; http://www.ricescience.org.

    File S1. Methods.

    Fig. S1. Temperatures under normal and heat stress conditions at heading and flowering stages.

    Fig. S2. Distribution frequencies of panicle traits and heat tolerant traits in HH13 recombinant inbred line population.

    Fig. S3. Genotype assay and phenotype analysis of molecular marker SPKIE-299 in HH13 and HY73 recombinant inbred lines.

    Table S1. Temperatures inside and outside greenhouse at heading and flowering stages.

    Table S2. Phenotypic variations of panicle traits and heat tolerant traits.

    Table S3. Correlations among panicle traits and heat tolerant traits in HH13 recombinant inbred line population.

    Table S4. Information of genetic linkage map.

    Table S5. QTLs identified for panicle traits and heat tolerance.

    Table S6. Known genes in QTL intervals.

    Table S7. Candidate genes for panicle traits and heat tolerance.

    Table S8. Single nucleotide polymorphism (SNP) information of.

    Table S9. Haplotype ofin rice.

    Table S10. Primers of gene markers.

    Cao L Y, Zhao J G, Zhan X D, Li D L, He L B, Cheng S H. 2003. Mapping QTLs for heat tolerance and correlation between heat tolerance and photosynthetic rate in rice., 17: 223–227. (in Chinese with English abstract)

    Cao Z B, Li Y, Tang H W, Zeng B H, Tang X Y, Long Q Z, Wu X F, Cai Y H, Yuan L F, Wan J L. 2020. Fine mapping of theQTL, which confers heat tolerance at the booting stage, using anGriff. introgression line., 133(4): 1161–1175.

    Chepyshko H, Lai C P, Huang L M, Liu J H, Shaw J F. 2012. Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (L.) genome: New insights from bioinformatics analysis., 13: 309.

    Chou T S, Chao Y Y, Kao C H. 2012. Involvement of hydrogen peroxide in heat shock- and cadmium-induced expression of ascorbate peroxidase and glutathione reductase in leaves of rice seedlings., 169(5): 478–486.

    Fujita D, Trijatmiko K R, Tagle A G, Sapasap M V, Koide Y, Sasaki K, Tsakirpaloglou N, Gannaban R B, Nishimura T, Yanagihara S, Fukuta Y, Koshiba T, Slamet-Loedin I H, Ishimaru T, Kobayashi N. 2013.allele from a rice landrace greatly increases yield in moderncultivars., 110(51): 20431–20436.

    Hackbusch J, Richter K, Müller J, Salamini F, Uhrig J F. 2005. A central role ofovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins., 102(13): 4908–4912.

    Hartl F U, Bracher A, Hayer-Hartl M. 2011. Molecular chaperones in protein folding and proteostasis., 475: 324–332.

    Ku S J, Yoon H, Suh H S, Chung Y Y. 2003. Male-sterility of thermo- sensitive genic male-sterile rice is associated with premature programmed cell death of the tapetum., 217(4): 559–565.

    Lafarge T, Bueno C, Frouin J, Jacquin L, Courtois B, Ahmadi N. 2017. Genome-wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses., 12(2): e0171254.

    Leipe D D, Koonin E V, Aravind L. 2004. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: Multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer., 343(1): 1–28.

    Li L H, Lv M M, Li X, Ye T Z, He X, Rong S H, Dong Y L, Guan Y, Gao X L, Zhu J Q, Xu Z J. 2018. The ricefamily: OsDUF810.7 may be involved in the tolerance to salt and drought., 52(4): 489–496.

    Li X M, Chao D Y, Wu Y, Huang X H, Chen K, Cui L G, Su L, Ye W W, Chen H, Chen H C, Dong N Q, Guo T, Shi M, Feng Q, Zhang P, Han B, Shan J X, Gao J P, Lin H X. 2015. Natural alleles of a proteasome α2 subunit gene contribute to thermo- tolerance and adaptation of African rice., 47(7): 827–833.

    Liu Q, Yang T F, Yu T, Zhang S H, Mao X X, Zhao J L, Wang X F, Dong J F, Liu B. 2017. Integrating small RNA sequencing with QTL mapping for identification of miRNAs and their target genes associated with heat tolerance at the flowering stage in rice., 8: 43.

    Lüders J, Demand J, H?hfeld J. 2000. The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome., 275(7): 4613–4617.

    Matsui T, Omasa K, Horie T. 2000. High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice (L.)., 3(4): 430–434.

    Matsui T, Omasa K, Horie T. 2001. The difference in sterility due to high temperatures during the flowering period among- rice varieties., 4(2): 90–93.

    Montero-Barrientos M, Hermosa R, Cardoza R E, Gutiérrez S, Nicolás C, Monte E. 2010. Transgenic expression of thegene increasesresistance to heat and other abiotic stresses., 167(8): 659–665.

    Prasad P V V, Boote K J, Jr Allen L H, Sheehy J E, Thomas J M G. 2006. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress., 95(2/3): 398–411.

    Shanmugavadivel P S, Amitha Mithra S V, Chandra P, Ramkumar M K, Ratan T, Trilochan M, Nagendra K S. 2017. High resolution mapping of QTLs for heat tolerance in rice using a 5K SNP array., 10: 28.

    Shen G D, Sun W L, Chen Z C, Shi L, Hong J, Shi J X. 2022. Plant GDSL esterases/lipases: Evolutionary, physiological and molecular functions in plant development., 11(4): 468.

    Shin Y, Klucken J, Patterson C, Hyman B T, McLean P J. 2005. The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways., 280(25): 23727–23734.

    Wang S C, Chang Y, Guo J J, Zeng Q N, Ellis B E, Chen J G. 2011.ovate family proteins, a novel transcriptional repressorfamily, control multiple aspects of plant growth and development., 6(8): e23896.

    Wang W X, Vinocur B, Shoseyov O, Altman A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response., 9(5): 244–252.

    Xing Y Z, Zhang Q F. 2010. Genetic and molecular bases of rice yield., 61: 421–442.

    Xu Y F, Zhang L, Ou S J, Wang R C, Wang Y M, Chu C C, Yao S G. 2020. Natural variations ofconfer high-temperature tolerance inrice., 11(1): 5441.

    Ye C R, Argayoso M A, Redo?a E D, Sierra S N, Laza M A, Dilla C J, Mo Y, Thomson M J, Chin J, Delavi?a C B, Diaz G Q, Hernandez J E. 2012. Mapping QTL for heat tolerance at flowering stage in rice using SNP markers., 131(1): 33–41.

    Ye C R, Tenorio F A, Redo?a E D, Morales-Cortezano P S, Cabrega G A, Jagadish K S V, Gregorio G B. 2015. Fine-mapping and validatingto increase spikelet fertility under heat stress at flowering in rice., 128(8): 1507–1517.

    Yu H, Jiang W Z, Liu Q, Zhang H, Piao M X, Chen Z D, Bian M D. 2015. Expression pattern and subcellular localization of the ovate protein family in rice., 10(3): e0118966.

    Zhang G H, Li S Y, Wang L, Ye W J, Zeng D L, Rao Y C, Peng Y L, Hu J, Yang Y L, Xu J, Ren D Y, Gao Z Y, Zhu L, Dong G J, Hu X M, Yan M X, Guo L B, Li C Y, Qian Q. 2014.fromcultivar, which is allelic to, increases yield ofsuper rice 93-11., 7(8): 1350–1364.

    Zhu J, Lou Y, Shi Q S, Zhang S, Zhou W T, Yang J, Zhang C, Yao X Z, Xu T, Liu J L, Zhou L, Hou J Q, Wang J Q, Wang S, Huang X H, Yang Z N. 2020. Slowing development restores the fertility of thermo-sensitive male-sterile plant lines., 6(4): 360–367.

    Zuppini A, Bugno V, Baldan B. 2006. Monitoring programmed cell death triggered by mild heat shock in soybean-cultured cells., 33(7): 617–627.

    26 May 2022;

    15 July 2022

    Copyright ? 2022, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2022.07.008

    MaXiaosong (mxs09@sagc.org.cn); Luo Lijun (lijun@sagc.org.cn)

    亚洲精品成人久久久久久| 小说图片视频综合网站| 国产在视频线在精品| 中文字幕精品亚洲无线码一区| 18禁裸乳无遮挡免费网站照片| 卡戴珊不雅视频在线播放| 一区二区三区四区激情视频| 欧美性感艳星| 日韩强制内射视频| 国产精品三级大全| 长腿黑丝高跟| 国产国拍精品亚洲av在线观看| 七月丁香在线播放| 国产精品,欧美在线| 黑人高潮一二区| 国产精品,欧美在线| 亚洲熟妇中文字幕五十中出| 国产欧美另类精品又又久久亚洲欧美| 亚洲自偷自拍三级| 亚洲18禁久久av| 亚州av有码| 国国产精品蜜臀av免费| 欧美性猛交╳xxx乱大交人| 欧美激情在线99| av卡一久久| 性插视频无遮挡在线免费观看| 亚洲精品国产av成人精品| 久久久色成人| 少妇人妻精品综合一区二区| 国产精品熟女久久久久浪| 免费看av在线观看网站| 老司机福利观看| 老师上课跳d突然被开到最大视频| 一级毛片aaaaaa免费看小| 日韩一区二区视频免费看| 日韩欧美在线乱码| 久久久久久久久久成人| 伦精品一区二区三区| 大香蕉久久网| 日本免费在线观看一区| 国产女主播在线喷水免费视频网站 | 中文字幕久久专区| 国产精品美女特级片免费视频播放器| 久久国内精品自在自线图片| 亚洲国产色片| 成年免费大片在线观看| 久久草成人影院| 一卡2卡三卡四卡精品乱码亚洲| 中文在线观看免费www的网站| av专区在线播放| 国产大屁股一区二区在线视频| 中文字幕制服av| 成人二区视频| 久久精品国产鲁丝片午夜精品| 国产精品麻豆人妻色哟哟久久 | 日韩视频在线欧美| 熟妇人妻久久中文字幕3abv| 免费av不卡在线播放| 亚洲精品亚洲一区二区| 亚洲自拍偷在线| 亚洲美女视频黄频| 中文精品一卡2卡3卡4更新| 中文字幕熟女人妻在线| 免费观看人在逋| 国产在视频线精品| 成人性生交大片免费视频hd| 韩国高清视频一区二区三区| 国产91av在线免费观看| 男女那种视频在线观看| 99久久精品一区二区三区| 欧美日本视频| 欧美最新免费一区二区三区| 1000部很黄的大片| 日本色播在线视频| 亚洲国产精品专区欧美| 亚洲精品国产成人久久av| 免费观看人在逋| 国产老妇伦熟女老妇高清| 中文字幕亚洲精品专区| 内地一区二区视频在线| 日韩欧美在线乱码| 大香蕉久久网| 蜜臀久久99精品久久宅男| 亚洲成色77777| 日韩一本色道免费dvd| 精品久久久久久久久亚洲| 一边亲一边摸免费视频| 性插视频无遮挡在线免费观看| 简卡轻食公司| 日本三级黄在线观看| 大又大粗又爽又黄少妇毛片口| 两性午夜刺激爽爽歪歪视频在线观看| 最近中文字幕2019免费版| 久久精品人妻少妇| 国内揄拍国产精品人妻在线| 色综合亚洲欧美另类图片| 激情 狠狠 欧美| 国产精品嫩草影院av在线观看| 99久国产av精品| 亚洲人成网站高清观看| 久久久久免费精品人妻一区二区| 夫妻性生交免费视频一级片| 久久热精品热| 美女国产视频在线观看| 久久久久久伊人网av| 亚洲欧美成人综合另类久久久 | 亚洲成人久久爱视频| 国产片特级美女逼逼视频| 亚洲av不卡在线观看| 国产欧美日韩精品一区二区| 成年版毛片免费区| 在线观看av片永久免费下载| 国产不卡一卡二| 我要搜黄色片| 久久久色成人| 国产69精品久久久久777片| 久久久a久久爽久久v久久| 午夜免费男女啪啪视频观看| 人妻制服诱惑在线中文字幕| 亚洲中文字幕一区二区三区有码在线看| 美女大奶头视频| 国产精品人妻久久久影院| 一级毛片电影观看 | 亚洲久久久久久中文字幕| 波多野结衣巨乳人妻| 色网站视频免费| ponron亚洲| 久久这里只有精品中国| 亚洲欧洲日产国产| 能在线免费看毛片的网站| 日韩一区二区三区影片| 国产日韩欧美在线精品| 亚洲欧美日韩东京热| 久久欧美精品欧美久久欧美| 日韩制服骚丝袜av| 偷拍熟女少妇极品色| 在线免费观看不下载黄p国产| 天堂影院成人在线观看| 搞女人的毛片| 日韩一本色道免费dvd| 久久婷婷人人爽人人干人人爱| 国产一区二区在线av高清观看| 日日摸夜夜添夜夜爱| 少妇人妻精品综合一区二区| 中文字幕久久专区| 国产免费福利视频在线观看| 色综合亚洲欧美另类图片| 欧美成人a在线观看| 免费看日本二区| 内射极品少妇av片p| 国产极品天堂在线| 又粗又硬又长又爽又黄的视频| 我要看日韩黄色一级片| 一级黄片播放器| 91精品一卡2卡3卡4卡| 22中文网久久字幕| 亚洲精品色激情综合| 岛国在线免费视频观看| 久久人人爽人人片av| 亚洲三级黄色毛片| 精品99又大又爽又粗少妇毛片| av在线亚洲专区| 又粗又爽又猛毛片免费看| av免费在线看不卡| av视频在线观看入口| 国产片特级美女逼逼视频| av在线老鸭窝| 国产探花在线观看一区二区| 国产午夜福利久久久久久| 精华霜和精华液先用哪个| 久久久久久国产a免费观看| 亚洲av免费高清在线观看| 熟女人妻精品中文字幕| 午夜久久久久精精品| 国产精品.久久久| 欧美日本亚洲视频在线播放| 久久久久久国产a免费观看| 麻豆成人午夜福利视频| av黄色大香蕉| 熟妇人妻久久中文字幕3abv| 村上凉子中文字幕在线| 久久综合国产亚洲精品| 人妻系列 视频| 在线播放无遮挡| 日本免费一区二区三区高清不卡| 亚洲内射少妇av| 美女cb高潮喷水在线观看| 精品人妻一区二区三区麻豆| 国产成人一区二区在线| 国内精品美女久久久久久| 热99在线观看视频| 久久6这里有精品| 韩国高清视频一区二区三区| 人人妻人人看人人澡| 成人毛片a级毛片在线播放| 99久久中文字幕三级久久日本| 少妇猛男粗大的猛烈进出视频 | 日本-黄色视频高清免费观看| 亚洲精品,欧美精品| 91av网一区二区| 国产亚洲最大av| 日韩亚洲欧美综合| 国产在视频线在精品| 国产白丝娇喘喷水9色精品| 国产精品福利在线免费观看| 少妇的逼好多水| 熟女人妻精品中文字幕| 欧美97在线视频| 午夜福利在线观看免费完整高清在| 成人国产麻豆网| 性插视频无遮挡在线免费观看| 91精品国产九色| 熟妇人妻久久中文字幕3abv| 亚洲精品日韩在线中文字幕| 国产一区亚洲一区在线观看| 久久综合国产亚洲精品| 桃色一区二区三区在线观看| 国产日韩欧美在线精品| 午夜福利高清视频| 国产一区二区亚洲精品在线观看| 久久久国产成人免费| 亚洲三级黄色毛片| 欧美三级亚洲精品| 国产一区亚洲一区在线观看| 国产老妇伦熟女老妇高清| 国产淫语在线视频| 身体一侧抽搐| 黑人高潮一二区| 麻豆成人午夜福利视频| 亚洲人成网站高清观看| 又粗又爽又猛毛片免费看| 美女xxoo啪啪120秒动态图| 如何舔出高潮| 亚洲最大成人中文| 亚洲激情五月婷婷啪啪| 欧美一区二区国产精品久久精品| 熟女人妻精品中文字幕| av专区在线播放| 在线观看av片永久免费下载| 深爱激情五月婷婷| 国产精品伦人一区二区| 国产探花在线观看一区二区| 中文字幕av成人在线电影| av在线天堂中文字幕| 免费在线观看成人毛片| 人人妻人人看人人澡| 精华霜和精华液先用哪个| 欧美激情在线99| 蜜桃久久精品国产亚洲av| 免费av不卡在线播放| 亚洲av男天堂| 插阴视频在线观看视频| 亚洲av不卡在线观看| 午夜免费激情av| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一区二区三区四区免费观看| 国产 一区精品| 两个人视频免费观看高清| 欧美成人精品欧美一级黄| 亚洲av二区三区四区| av国产免费在线观看| av在线播放精品| 直男gayav资源| 亚洲电影在线观看av| 国产高清国产精品国产三级 | 国产单亲对白刺激| 内射极品少妇av片p| 少妇被粗大猛烈的视频| 亚洲精品国产av成人精品| a级一级毛片免费在线观看| av播播在线观看一区| 欧美成人a在线观看| 亚洲在线观看片| 日韩一本色道免费dvd| 99久久无色码亚洲精品果冻| 欧美成人免费av一区二区三区| 99久久九九国产精品国产免费| 亚洲美女视频黄频| 亚洲婷婷狠狠爱综合网| 又爽又黄a免费视频| 亚洲中文字幕一区二区三区有码在线看| 国产精品一区二区三区四区久久| 亚洲国产精品成人久久小说| 国产精品野战在线观看| 亚洲精品乱码久久久久久按摩| 国产视频首页在线观看| 婷婷色av中文字幕| 欧美激情久久久久久爽电影| 国产精品av视频在线免费观看| 美女cb高潮喷水在线观看| 一级毛片aaaaaa免费看小| 日韩精品青青久久久久久| 一夜夜www| 精品人妻一区二区三区麻豆| 亚洲国产高清在线一区二区三| 一边亲一边摸免费视频| 国产乱来视频区| 亚洲最大成人中文| 久久久久久伊人网av| 国产美女午夜福利| 麻豆成人av视频| 精品国产三级普通话版| 久久午夜福利片| av在线老鸭窝| 91午夜精品亚洲一区二区三区| 欧美性感艳星| 99久久人妻综合| 大话2 男鬼变身卡| 成人特级av手机在线观看| 秋霞在线观看毛片| 人人妻人人看人人澡| eeuss影院久久| 亚洲综合精品二区| 国产欧美日韩精品一区二区| 色噜噜av男人的天堂激情| 毛片女人毛片| 亚洲国产日韩欧美精品在线观看| 免费观看a级毛片全部| 久久久久九九精品影院| 99热精品在线国产| 日韩欧美精品v在线| videossex国产| 啦啦啦观看免费观看视频高清| 2021天堂中文幕一二区在线观| 欧美zozozo另类| 精品国内亚洲2022精品成人| 婷婷色麻豆天堂久久 | 国产精品.久久久| 成年女人永久免费观看视频| 蜜桃亚洲精品一区二区三区| 99视频精品全部免费 在线| 色综合站精品国产| 特大巨黑吊av在线直播| 国产成人精品久久久久久| av在线天堂中文字幕| 欧美成人午夜免费资源| 日本免费一区二区三区高清不卡| 最近中文字幕高清免费大全6| 又黄又爽又刺激的免费视频.| 欧美又色又爽又黄视频| 亚洲五月天丁香| 久久久精品大字幕| 亚洲激情五月婷婷啪啪| 99国产精品一区二区蜜桃av| 欧美97在线视频| 亚洲欧美精品专区久久| 69av精品久久久久久| 欧美97在线视频| 亚洲欧美精品专区久久| 丰满少妇做爰视频| 天堂av国产一区二区熟女人妻| 免费看a级黄色片| 一区二区三区免费毛片| 波多野结衣巨乳人妻| 亚洲精品成人久久久久久| 美女cb高潮喷水在线观看| 91狼人影院| 菩萨蛮人人尽说江南好唐韦庄 | 久久久久久久久中文| 久久精品久久久久久噜噜老黄 | 亚洲av日韩在线播放| 一夜夜www| 欧美97在线视频| av国产免费在线观看| 亚洲欧美日韩高清专用| 久久久久免费精品人妻一区二区| 菩萨蛮人人尽说江南好唐韦庄 | 97超碰精品成人国产| 国产精品av视频在线免费观看| 国产美女午夜福利| 亚洲国产精品合色在线| 亚洲av福利一区| 国产亚洲一区二区精品| 老司机影院毛片| 亚洲国产欧美人成| 如何舔出高潮| 永久免费av网站大全| 色播亚洲综合网| 国产精品人妻久久久久久| 亚洲av成人av| 中文字幕免费在线视频6| 91午夜精品亚洲一区二区三区| 18禁在线无遮挡免费观看视频| 天堂av国产一区二区熟女人妻| 免费播放大片免费观看视频在线观看 | 色尼玛亚洲综合影院| 久久久久久九九精品二区国产| av在线播放精品| 成人一区二区视频在线观看| 精品久久久久久久久亚洲| 亚洲国产色片| 大香蕉久久网| 丰满乱子伦码专区| 中文在线观看免费www的网站| 日本与韩国留学比较| 久久久久九九精品影院| 99久久精品一区二区三区| www.色视频.com| 干丝袜人妻中文字幕| 国产极品精品免费视频能看的| 搡老妇女老女人老熟妇| 久久这里有精品视频免费| 国产伦精品一区二区三区视频9| 亚洲成人久久爱视频| www.av在线官网国产| 有码 亚洲区| 亚洲不卡免费看| 自拍偷自拍亚洲精品老妇| 99在线视频只有这里精品首页| 欧美激情久久久久久爽电影| 成人特级av手机在线观看| 精品人妻一区二区三区麻豆| 欧美日韩在线观看h| 久久久色成人| 亚洲av二区三区四区| 国产亚洲最大av| 国产成人精品一,二区| 免费观看a级毛片全部| 人妻少妇偷人精品九色| .国产精品久久| 久久久久久久亚洲中文字幕| 日本午夜av视频| 热99re8久久精品国产| 永久网站在线| 嫩草影院入口| 国产午夜精品论理片| 国国产精品蜜臀av免费| 99久久人妻综合| 自拍偷自拍亚洲精品老妇| 熟女人妻精品中文字幕| 欧美区成人在线视频| 青青草视频在线视频观看| 亚洲在线观看片| 亚洲伊人久久精品综合 | 97超碰精品成人国产| 国产精品国产三级国产av玫瑰| 一级av片app| 天堂中文最新版在线下载 | 91狼人影院| 听说在线观看完整版免费高清| 亚洲在线自拍视频| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久久久免| 身体一侧抽搐| 一区二区三区四区激情视频| 波多野结衣巨乳人妻| 欧美精品国产亚洲| 久久久a久久爽久久v久久| 国产精品久久久久久精品电影| 国产精品蜜桃在线观看| av播播在线观看一区| a级毛色黄片| 国产毛片a区久久久久| 99久久精品热视频| 国产黄色小视频在线观看| 成人漫画全彩无遮挡| 综合色av麻豆| 精品免费久久久久久久清纯| 国产伦精品一区二区三区四那| 国语自产精品视频在线第100页| 久久人人爽人人爽人人片va| 亚洲精品乱码久久久v下载方式| 国产精品无大码| 国产片特级美女逼逼视频| 小说图片视频综合网站| 国产免费视频播放在线视频 | 免费无遮挡裸体视频| 两个人视频免费观看高清| 国产亚洲精品av在线| 久久久精品94久久精品| 精品久久久噜噜| 99久久中文字幕三级久久日本| 精品久久久久久成人av| 国产亚洲5aaaaa淫片| 久久人人爽人人片av| 男人舔奶头视频| 国产精品久久久久久精品电影小说 | 亚洲久久久久久中文字幕| 欧美日韩在线观看h| 久久人人爽人人片av| 三级国产精品欧美在线观看| 日韩欧美精品免费久久| 一个人看的www免费观看视频| 中国国产av一级| 人人妻人人看人人澡| 色哟哟·www| 日韩一区二区视频免费看| av又黄又爽大尺度在线免费看 | 高清午夜精品一区二区三区| 久久99热这里只频精品6学生 | 精品人妻偷拍中文字幕| 一本一本综合久久| 欧美三级亚洲精品| 最后的刺客免费高清国语| 亚洲成人av在线免费| 69av精品久久久久久| 一个人看视频在线观看www免费| 亚洲av电影在线观看一区二区三区 | 欧美一区二区精品小视频在线| 免费观看的影片在线观看| 日本免费在线观看一区| 亚洲综合精品二区| 欧美日韩综合久久久久久| 亚洲五月天丁香| 人人妻人人澡人人爽人人夜夜 | a级毛片免费高清观看在线播放| 联通29元200g的流量卡| 精品午夜福利在线看| 啦啦啦韩国在线观看视频| 亚洲自偷自拍三级| 国产精品一二三区在线看| 成人毛片a级毛片在线播放| 日韩亚洲欧美综合| 日本黄大片高清| 国产精品嫩草影院av在线观看| 国产熟女欧美一区二区| 一级毛片我不卡| 国产av码专区亚洲av| 亚洲欧美清纯卡通| 国产一级毛片七仙女欲春2| 久久国内精品自在自线图片| 国产一级毛片七仙女欲春2| 国内精品宾馆在线| 日本黄色视频三级网站网址| 日本欧美国产在线视频| 国产老妇女一区| 一本久久精品| 成人亚洲欧美一区二区av| 能在线免费看毛片的网站| 色网站视频免费| 国语对白做爰xxxⅹ性视频网站| 人体艺术视频欧美日本| 91精品伊人久久大香线蕉| av天堂中文字幕网| 最后的刺客免费高清国语| 中文亚洲av片在线观看爽| 亚洲婷婷狠狠爱综合网| 在线a可以看的网站| 18禁裸乳无遮挡免费网站照片| 国产高清不卡午夜福利| 嫩草影院入口| 夫妻性生交免费视频一级片| av国产久精品久网站免费入址| 最近中文字幕2019免费版| 国产精华一区二区三区| 国内精品美女久久久久久| 亚洲av免费高清在线观看| 国产精品综合久久久久久久免费| 亚洲欧美中文字幕日韩二区| 成人毛片a级毛片在线播放| 狂野欧美白嫩少妇大欣赏| 91午夜精品亚洲一区二区三区| 国产精品国产三级国产专区5o | 国产乱来视频区| 自拍偷自拍亚洲精品老妇| 久久久国产成人精品二区| 亚洲欧美日韩无卡精品| 蜜桃亚洲精品一区二区三区| 五月伊人婷婷丁香| 国产久久久一区二区三区| 国产伦精品一区二区三区视频9| 久久精品国产鲁丝片午夜精品| 精品一区二区免费观看| 午夜久久久久精精品| 亚洲av免费在线观看| 国产一区有黄有色的免费视频 | 97人妻精品一区二区三区麻豆| 精品久久久久久成人av| 久久久久久伊人网av| 99热这里只有是精品50| 亚洲一级一片aⅴ在线观看| 十八禁国产超污无遮挡网站| 99在线人妻在线中文字幕| 精品久久久久久久人妻蜜臀av| 欧美性猛交╳xxx乱大交人| 日韩,欧美,国产一区二区三区 | 网址你懂的国产日韩在线| 午夜老司机福利剧场| 国产极品精品免费视频能看的| 在线免费十八禁| av在线观看视频网站免费| 免费看日本二区| 成人国产麻豆网| 久久人妻av系列| 色综合站精品国产| 欧美人与善性xxx| 性插视频无遮挡在线免费观看| 在线天堂最新版资源| 国产精品久久久久久精品电影小说 | 你懂的网址亚洲精品在线观看 | 男女啪啪激烈高潮av片| a级毛色黄片| 亚洲av成人精品一二三区| 一级爰片在线观看| 久久久久久久午夜电影| 亚洲,欧美,日韩| 久久午夜福利片| 纵有疾风起免费观看全集完整版 | 六月丁香七月| 亚洲欧美精品自产自拍| 国产精品美女特级片免费视频播放器| 麻豆久久精品国产亚洲av| 少妇熟女欧美另类| 亚洲精品日韩av片在线观看| 日本三级黄在线观看| 亚洲内射少妇av| 精品少妇黑人巨大在线播放 | 精品不卡国产一区二区三区| 麻豆成人午夜福利视频| 村上凉子中文字幕在线| 直男gayav资源| 国产av不卡久久| 在线播放无遮挡| 亚洲国产精品成人综合色| av在线蜜桃|