• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transcriptome Analysis Provides Novel Insights into Salt Stress Response in Two Egyptian Rice Varieties with Different Tolerance Levels

    2022-10-25 06:19:44ShehabMohamedIoveneMarinaCiancioAurelioColagieroMariantoniettaFinettiSialerMariella
    Rice Science 2022年6期

    Shehab Mohamed, Iovene Marina, Ciancio Aurelio, ColagieroMariantonietta, Finetti-Sialer Mariella

    Letter

    Transcriptome Analysis Provides Novel Insights into Salt Stress Response in Two Egyptian Rice Varieties with Different Tolerance Levels

    Shehab Mohamed1, Iovene Marina2, Ciancio Aurelio3, ColagieroMariantonietta3, Finetti-Sialer Mariella2

    (Kafr El-Sheikh 33717, Egypt; Institute of Biosciences and Bioresources, National Research Council, Bari 70126, Italy; Sustainable Plant Protection Institute, National Research Council, Bari 70126, Italy)

    The response of rice to salt stress (200 mmol/L NaCl) was investigated at the transcription level in Egyptian varieties Giza177 (salt sensitive variety) and Giza178 (salt tolerant variety). We applied a genome-wide RNA-Seq transcriptome study at 21-day-old seedlings of both varieties, exposed or not to salt stress for 24 h. Most differentially expressed genes (DEGs) between the two varieties in response to salt stress were related to the expression of genes active at the cell wall (CW) level, including wall modification, hemicellulose/cellulose synthesis and transcripts of the peroxidase family activated in response to oxidative stress/oxidation reduction, which were significantly more represented in Giza 178. Consistently, Gene Ontology (GO) analysis showed differentially expressed transcripts, involved in response to oxidative stress and chemical stimulus, directly implicated in salt stress response and up-regulated in Giza 178, as well as oxidoreductase, peroxidase and antioxidant activities. When the two varieties were directly compared in exposed or not to salt stress conditions, Giza 177 showed a higher number of differentially expressed and unique loci than Giza 178, including transposable elements (TE). However, Giza 178 showed a higher number of transcription factors (TF) expressed, mostly involving myeloblastosis (MYB) family members and bZIP elements, with annotated elements including zinc finger domain, kinase, expansin, cellulose, sucrose synthase, peroxidase precursor, dehalogenase-like hydrolase, and sodium/ calcium exchanger protein.

    Salinization exerts the most negative effect on rice worldwide, acting as an important limiting factor in production (Korres et al, 2019). Tolerance to salt stress in plants is a multigenic trait, whose mechanism is not yet fully decyphered. Salinity challenges plant metabolism by mostly provoking a growth reduction due to a shortage of available water, interfering with nutrient uptake, stomatal and mesophyll conductance, and ion toxicity (Munns and Tester, 2008). Several studies highlighted physiological and molecular changes underlying salt tolerance through unique adaptation mechanisms (Baldoni et al, 2016; Ghosh et al, 2016; Acosta-Motos et al, 2017). We investigated the response to salt stress of Egyptian rice varieties Giza 177 and Giza 178 by the RNA-Seq study, to identify the mechanisms underpinning their divergent performance. Computational and experimental approaches were combined to characterize the responsive genes. The raw transcript data produced are available at NCBI (Project Accession No. PRJNA782864). Different pipelines were applied to obtain high quality base sequences (Table S1).

    Global analyses and DEG mappings for the two varieties subjected to salt stress showed a diverse modulation, when compared to the corresponding control (Fig. S1). Giza 177 showed 2 629 up-regulated and 2 802 down-regulated genes in stressed plants (Table S2). Giza 178 displayed 2 997 up-regulated and 2 813 down-regulated genes in stressed plants (Table S3). Both varieties shared a common set of 1 612 genes (855 up- and 757 down-regulated), and a contrasting expression for 50 genes in Giza 178 and 43 genes in Giza 177, respectively (Fig. S1-A). MapMan analysis showed that differences in salt response between the two varieties were related to transcripts involved in the CW metabolism (Fig. S1-B and -C). In Giza 178, 30 DEGs involved in CW modification were up-regulated with at least a 2-fold change (2-FC), with only 3 genes down-regulated. Moreover, there were three and eight genes of the CW hemicellulose and cellulose synthesis pathways exceeding the 2-FC treshold, respectively. Giza 177 displayed less functional categories up-regulated in CW modification, with only 16 genes exceeding the 2-FC treshold, and 5 genes down-regulated. However, the CW hemicellulose synthesis pathway showed the same trend in bothvarieties. An affinity in regulated genes was shown for CW degradation i.e., mannan-xylose-arabinose-fucose, in which six genes were up-regulated in each variety, with two genes (and) regulated at the same extent (Tables S2 and S3). CW provides the first physical barrier to any environmental adversity. It deploys a relevant function in plant development, acting as an interface with the outer environment, mediating indispensable physiological and biochemical processes (Leschevin et al, 2021).

    Further, DEGs up-regulated in Giza 178 included TFs of the MYB, bZIP and histone families (Fig. 1-A and Fig. S2), as well as transcripts of the peroxidase family. In the peroxidase family, Giza 177 showed more down-regulated genes, with only five transcripts with at least 2-FC (Fig. 1-B). Further DEGs unique for Giza 178 included four zinc finger proteins, prevalently of the C3HC4 type domain (LOC_Os03g22830, LOC_Os03g24184,LOC_Os04g10680 and LOC_Os05g25180). These proteins form a finger-like structure and have the capability to bind Zn2+. They represent one of the largest transcriptional regulators in plants and are induced during growth and development, as well as under unfavorable conditions such as water deficiency and salinity (Han et al, 2020). Consistently with the different salt tolerance reported for the two varieties tested, MapMan analysis showed only 28 TFs (14 MYB, 3 bZIP, 2 WRKY and 1 BHLH) up-regulated in Giza 177 when compared to the control (Table S4). In Giza 178, a higher number (46) of TFs was found, including 15 MYB, 7 bZIP, 1 WRKY and 3 BHLH (Table S5). The activation of several TFs was reported in a pool of 306 rice accessions tested under salt stress (Patishtan et al, 2018). TE transcripts were also differentially expressed by the two varieties when stressed, with a double number of TE-related genes uniquely expressed by Giza 177 (8) vs Giza 178 (4) (with 2 in common). Transposons are involved in genetic re-structuring, in particular in self-fertilizing plants such as rice, and may be fundamental in a stress condition (Negi et al, 2016). Although no direct indication could be derived about the target genes or processes eventually affected, our data suggested that the expression of TE could be, at least in part, responsible for the higher sensitivity (or loss of tolerance) of Giza 177 to salt stress. This hypothesis, however, needs support by additional experimental evidence. DEGs associated to stress response in Giza 178 showed different groups associated to stress signaling, such as phosphatases, which are involved in different cell functions (Xue et al, 2008). Two phosphatases, LOC_Os01g37130 and LOC_Os02g55560, were present among the 54 genes uniquely expressed in Giza 178 under salt stress (Table S6). Phosphatases are regulatory proteins that sense and transduce environmental signals, and play a key role in the abiotic stress response, acting on the expression of downstream genes. They are correlated withthe higher plasticity shown by plants in a challenging environment (Fuchs et al, 2013; Singh et al, 2016).

    Fig. 1. Gene expression analysis between rice varieties Giza 177 and Giza 178 exposed or not to salinity stress.

    A and B, Differential expression (|fold change|2 and-value0.05) of up- and down-regulated genes in Giza 178 and Giza 177 under salt stress. Colors indicate transcripts up/down regulation (see legend). ABA, Abscisic acid; SA, Salicylic acid; JA, Jasmonic acid; HSPs, Heat shock proteins; PR, Pathogenesis related; MAPK, Mitogen-activated protein kinases; ERF, Ethylene-responsive element binding factor; DOF, DNA binding with one finger. C, Venn diagram showing the repartition of differentially expressed genes (DEGs) between Giza 177 and Giza 178 in control and salt stress treatments.D and E, Top 10 (out of 535) most significant DEGs between Giza 177 and Giza 178 in control (D) and salt stressed (E) plants.F, Most significant DEGs up-regulated in Giza 178 and Giza 177 under the salt stress condition. The columns show the mean, and the horizontal line represents means of three replicates.G, qRT-PCR data from total RNA showed consistent differential expression for 11 out of 16 loci tested (asterisks).

    Gene Ontology (GO) analysis of enriched terms was used to classify the DEG functions. Those involved in response to oxidative stress and chemical stimulus were directly implicated in salt stress response and were up-regulated in Giza 178, as did oxidoreductase, peroxidase and antioxidant activities (Fig. S3and Table S7). Comparisons between control and stress conditions, performed with STAMP (Statistical analysis of taxonomic and functional profiles, http://kiwi.cs.dal.ca/Software/STAMP), showed 535 (80.1%) DEGs in control and 265(67.6%) in salt stress, respectively (Fig. 1-C and Table S8), with 106 transcripts in common (Fig. 1-C). This comparative analysis showed a higher number of DEGs in Giza 177 underexposed or not to salt stress conditions (Fig. 1-D and -E). Most significant DEGs up-regulated by the salt stress in Giza 178 are shown in Fig. 1-F. Only 1 transcript annotated (LOC_Os12g36630)with the term ‘stress’ was found, expressed in both conditions, out of 79 genes with a ‘stress’ term in thegenome. The 265 DEGs betweenthe two varieties under salt stress included 14 transposons (5.2%, 8 unique for Giza 177 and 2 in common), 24 kinases (9.0%) and 15 transferases (5.6%) (Table S7). Giza 177 showed 105 of the 159 DEGs unique for the salt stress condition (Table S8). Giza 178 showed 66 (25%) up-regulated genes out of the 265 DEGs. The 54 DEGs unique for Giza 178 under salt stress showed 11 loci with annotation as expressed protein, followed by 4 loci with annotations including transposon, zinc finger domain and kinases, 2 with rust resistance and phosphatases, and 1 each with expansin, cellulose, sucrose synthase, peroxidase precursor, dehalogenase-like hydrolase and sodium/calcium exchanger protein (Table S8). In the stress treatment, their chromosome distribution showed a higher frequency for chromosomes 1, 3 and 5 (each with > 30), and a lower representation in chromosomes 7, 8 and 9 (< 12) (Fig. S4). Finally, the qRT-PCR data from total RNA showed consistent differential expression for 11 loci out of the 16 tested, shown in Fig. 1-G (annotations and corresponding FC in Table S9).

    In conclusion, global data analyses indicated that the different phenotypic responses observed for the two varieties are consistent with differences in a number of key metabolic processes (Fig. S5). Further network analyses may be needed to identify the loci progressively steering the plant metabolic pathways during their response to salt stress, which can be targeted in future selection programs.

    ACKNOWLEDGEMENTS

    This study was supported by the Ministry of Foreign Affairs, Directorate General for Development Cooperation, Italy and National Research Council, Rome, Italy (Grant No. 1654). The authors gratefully acknowledge Nicoletta Rapanà and Domenico De Paola (Institute of Biosciences and Bioresources, National Research Council, Bari, Italy) for the support and assistance.

    SUPPLEMENTAL DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/journal/rice-science; http://www.ricescience.org.

    File S1. Methods.

    Fig. S1. Global analysis of differently expressed genes between stressed and control plants of Giza 177 and Giza 178.

    Fig. S2. Up- and down-regulated transcription factors in Giza 177 and Giza 178 under salt stress condition.

    Fig. S3. Gene Onthology analysis of up-regulated molecular and cellular processes in Giza 177 and Giza 178 under salt stress condition.

    Fig. S4. Chromosome distribution of 265 differentially expressed genes between Giza 177 and Giza 178 stressed plants.

    Fig. S5. Crop performance of Giza 177 and Giza 178 in the field.

    Table S1. Number of reads and RNA mappings.

    Table S2. Differentially expressed genes in Giza 177 and their Gene Onthology analyses.

    Table S3. Differentially expressed genes in Giza 178 and their Gene Onthology analyses.

    Table S4. Differentially expressed genes identified by MapMan analysis in Giza 177 in different pathways.

    Table S5. Differentially expressed genes identified by MapMan analysis in Giza 178 in different pathways.

    Table S6. Differentially expressed loci unique for Giza 178 under salt stress condition.

    Table S7. List of 265 loci differentially expressed between Giza 177 and Giza 178 under salt stress condition.

    Table S8. Differentially expressed genes between Giza 177 and Giza 178, unique or in common between salt-stressed and control plants.

    Table S9. Loci selected for qRT-PCR validation and related annotations.

    Table S10. List of oligonucleotides used for qRT-PCR.

    Acosta-Motos J R, Ortu?o M F, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco M J, Hernandez J A. 2017. Plant responses to salt stress: Adaptive mechanisms., 7: 18.

    Baldoni E, Bagnaresi P, Locatelli F, Mattana M, Genga A. 2016. Comparative leaf and root transcriptomic analysis of two ricecultivars reveals major differences in the root early response to osmotic stress., 9(1): 25.

    Fuchs S, Grill E, Meskiene I, Schweighofer A. 2013. Type 2C protein phosphatases in plants., 280(2): 681–693.

    Ghosh B, Ali Md N, Gantait S. 2016. Response of rice under salinity stress: A review update., 4: 167.

    Han G L, Lu C X, Guo J R, Qiao Z Q, Sui N, Qiu N W, Wang B S. 2020. C2H2 zinc finger proteins: Master regulators of abiotic stress responses in plants., 11: 115.

    Korres N E, Varanasi V, Slaton N A, Price A J, Bararpour T M. 2019. Effects of salinity on rice and rice weeds: Short- and long-term adaptation strategies and weed management.: Hasanuzzaman M, Fujita M, Nahar K, Biswas J K. Advances in Rice Research for Abiotic Stress Tolerance. Oxford, UK: Woodhead Publishing: 159–176.

    Leschevin M, Ismael M, Quero A, San Clemente H, Roulard R, Bassard S, Marcelo P, Pageau K, Jamet E, Rayon C. 2021. Physiological and biochemical traits of two majoraccessions, Col-0 and Ws, under salinity., 12: 639154.

    Munns R, Tester M. 2008. Mechanisms of salinity tolerance., 59: 651–681.

    Negi P, Rai A N, Suprasanna P. 2016. Moving through the stressed genome: Emerging regulatory roles for transposons in plant stress response., 7: 1448.

    Patishtan J, Hartley T N, de Carvalho R F, Maathuis F J M. 2018. Genome-wide association studies to identify rice salt-tolerance markers., 41(5): 970–982.

    Singh A, Pandey A, Srivastava A K, Tran L S, Pandey G K. 2016. Plant protein phosphatases 2C: From genomic diversity to functional multiplicity and importance in stress management., 36(6): 1023–1035.

    Xue T T, Wang D, Zhang S Z, Ehlting J, Ni F, Jakab S, Zheng C C, Zhong Y. 2008. Genome-wide and expression analysis of protein phosphatase 2C in rice and., 9: 550.

    14 December 2021;

    12 March 2022

    Copyright ? 2022, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2022.09.001

    Finetti-Sialer Mariella (mariella.finetti@ibbr.cnr.it)

    无限看片的www在线观看| 久久久国产成人免费| avwww免费| 午夜激情av网站| 久久伊人香网站| 男女视频在线观看网站免费 | 中文字幕人妻丝袜一区二区| 不卡一级毛片| 人人妻人人澡欧美一区二区| 人人妻人人看人人澡| 精品第一国产精品| 国产高清有码在线观看视频 | 国产成年人精品一区二区| 亚洲人成网站在线播放欧美日韩| 久久午夜综合久久蜜桃| 亚洲精品久久国产高清桃花| 美女免费视频网站| www日本在线高清视频| 免费看日本二区| 欧美在线一区亚洲| 国产私拍福利视频在线观看| 国产爱豆传媒在线观看 | 欧美+亚洲+日韩+国产| 国产精品乱码一区二三区的特点| 九色国产91popny在线| 亚洲免费av在线视频| 久久精品国产亚洲av高清一级| 长腿黑丝高跟| 18禁观看日本| 国产精品国产高清国产av| 色尼玛亚洲综合影院| 后天国语完整版免费观看| 舔av片在线| 少妇被粗大的猛进出69影院| 老司机在亚洲福利影院| 欧美国产日韩亚洲一区| 桃红色精品国产亚洲av| 国产亚洲欧美在线一区二区| 日韩成人在线观看一区二区三区| 夜夜看夜夜爽夜夜摸| 国产精品电影一区二区三区| 99久久精品国产亚洲精品| 91av网站免费观看| 国产又色又爽无遮挡免费看| 国产一级毛片七仙女欲春2| 精品第一国产精品| 精品一区二区三区四区五区乱码| 欧美成人一区二区免费高清观看 | 亚洲专区中文字幕在线| 亚洲人成网站高清观看| 天天添夜夜摸| 日本 欧美在线| 大型黄色视频在线免费观看| 国产精品乱码一区二三区的特点| 精品国产乱子伦一区二区三区| 免费在线观看亚洲国产| 午夜福利在线观看吧| 亚洲av日韩精品久久久久久密| 99久久精品热视频| 日本五十路高清| 夜夜看夜夜爽夜夜摸| 男男h啪啪无遮挡| 亚洲欧洲精品一区二区精品久久久| 制服诱惑二区| 51午夜福利影视在线观看| 国产一区二区在线av高清观看| 男女下面进入的视频免费午夜| 亚洲人成网站在线播放欧美日韩| 国产亚洲精品av在线| 黄色丝袜av网址大全| 久99久视频精品免费| 亚洲精华国产精华精| 69av精品久久久久久| 俄罗斯特黄特色一大片| 亚洲18禁久久av| 久久婷婷人人爽人人干人人爱| 日韩精品青青久久久久久| 午夜激情av网站| 757午夜福利合集在线观看| 在线观看舔阴道视频| 国产激情偷乱视频一区二区| 欧美中文综合在线视频| 日本撒尿小便嘘嘘汇集6| 两性夫妻黄色片| 久久天躁狠狠躁夜夜2o2o| 国产精品精品国产色婷婷| 18禁国产床啪视频网站| 国产精品香港三级国产av潘金莲| 男人舔女人的私密视频| 久久久久久免费高清国产稀缺| 婷婷亚洲欧美| 岛国在线观看网站| 9191精品国产免费久久| 成人精品一区二区免费| 观看免费一级毛片| 久久久久精品国产欧美久久久| 国产v大片淫在线免费观看| 久久性视频一级片| 一个人观看的视频www高清免费观看 | АⅤ资源中文在线天堂| 国产又色又爽无遮挡免费看| 神马国产精品三级电影在线观看 | cao死你这个sao货| 国产伦人伦偷精品视频| 国产亚洲精品久久久久5区| 深夜精品福利| 少妇人妻一区二区三区视频| 好男人电影高清在线观看| 熟女电影av网| 日韩欧美国产一区二区入口| 国产一区在线观看成人免费| 欧美+亚洲+日韩+国产| 久久国产精品影院| 国产精品一区二区三区四区免费观看 | 久久久久久久精品吃奶| 欧美一区二区国产精品久久精品 | 日本 欧美在线| 两个人视频免费观看高清| АⅤ资源中文在线天堂| 国产精品九九99| 99精品欧美一区二区三区四区| 美女黄网站色视频| 18禁黄网站禁片免费观看直播| 国产精品久久久av美女十八| 久久人人精品亚洲av| 国产爱豆传媒在线观看 | 色播亚洲综合网| 色精品久久人妻99蜜桃| 日本 欧美在线| 18禁裸乳无遮挡免费网站照片| 国产成人精品久久二区二区91| 一个人免费在线观看电影 | 首页视频小说图片口味搜索| 可以在线观看的亚洲视频| xxxwww97欧美| 99热6这里只有精品| 欧美色视频一区免费| 成人手机av| 一本久久中文字幕| 一级片免费观看大全| 母亲3免费完整高清在线观看| av超薄肉色丝袜交足视频| 一本久久中文字幕| 制服诱惑二区| 精品熟女少妇八av免费久了| 在线观看免费午夜福利视频| 一本一本综合久久| 99精品久久久久人妻精品| 性欧美人与动物交配| 亚洲精品国产一区二区精华液| 国产又黄又爽又无遮挡在线| 欧美久久黑人一区二区| 亚洲av片天天在线观看| 中文资源天堂在线| 亚洲欧美日韩东京热| 国语自产精品视频在线第100页| 日本成人三级电影网站| 亚洲色图av天堂| 在线观看66精品国产| 国产一级毛片七仙女欲春2| 久久婷婷成人综合色麻豆| 男人舔女人的私密视频| 在线视频色国产色| 国产一区二区在线观看日韩 | 中文字幕人妻丝袜一区二区| 长腿黑丝高跟| 国产精品日韩av在线免费观看| 波多野结衣高清作品| 最近视频中文字幕2019在线8| 精品国产乱码久久久久久男人| 国产伦人伦偷精品视频| 欧美日韩亚洲综合一区二区三区_| 在线观看美女被高潮喷水网站 | 国产野战对白在线观看| 国产男靠女视频免费网站| 美女大奶头视频| av国产免费在线观看| 一区福利在线观看| 深夜精品福利| 长腿黑丝高跟| 欧美日韩中文字幕国产精品一区二区三区| АⅤ资源中文在线天堂| 久久精品国产亚洲av香蕉五月| 美女黄网站色视频| 日本精品一区二区三区蜜桃| 亚洲自拍偷在线| 国产精品一区二区三区四区免费观看 | 精品国产乱码久久久久久男人| 五月玫瑰六月丁香| 五月玫瑰六月丁香| 黄色视频不卡| 午夜福利免费观看在线| 九九热线精品视视频播放| 日韩欧美免费精品| 久久天躁狠狠躁夜夜2o2o| 可以在线观看的亚洲视频| 黄色片一级片一级黄色片| 久久久久国产一级毛片高清牌| 中文字幕最新亚洲高清| 一级毛片高清免费大全| 国内精品一区二区在线观看| 亚洲熟女毛片儿| 老汉色∧v一级毛片| 欧美日韩黄片免| 亚洲 国产 在线| 午夜影院日韩av| 精品乱码久久久久久99久播| 舔av片在线| 男女视频在线观看网站免费 | 成年版毛片免费区| 老熟妇仑乱视频hdxx| 久久精品夜夜夜夜夜久久蜜豆 | 老鸭窝网址在线观看| 真人一进一出gif抽搐免费| 精品一区二区三区四区五区乱码| 国产视频内射| 怎么达到女性高潮| 黄色成人免费大全| 一进一出抽搐gif免费好疼| 丁香欧美五月| 麻豆国产97在线/欧美 | 久久这里只有精品19| www.精华液| 久久久久久久久中文| 婷婷精品国产亚洲av| 黑人巨大精品欧美一区二区mp4| 国产精品爽爽va在线观看网站| 亚洲性夜色夜夜综合| 国产精华一区二区三区| 一级作爱视频免费观看| 亚洲欧美激情综合另类| 亚洲欧美日韩高清在线视频| 亚洲一区中文字幕在线| 老司机靠b影院| av欧美777| 亚洲av日韩精品久久久久久密| 日本一二三区视频观看| 性欧美人与动物交配| 可以在线观看毛片的网站| 成人18禁在线播放| 欧美一级a爱片免费观看看 | 身体一侧抽搐| 草草在线视频免费看| 亚洲国产欧美一区二区综合| 91大片在线观看| 久久久久久免费高清国产稀缺| 国产一区在线观看成人免费| 午夜福利免费观看在线| 禁无遮挡网站| 成人三级做爰电影| 色综合婷婷激情| 国产一区二区三区视频了| 免费电影在线观看免费观看| 狠狠狠狠99中文字幕| 国产视频内射| 黑人欧美特级aaaaaa片| 天天一区二区日本电影三级| 久久久久亚洲av毛片大全| 亚洲精品美女久久久久99蜜臀| 久久久久九九精品影院| 99热这里只有精品一区 | 欧美成狂野欧美在线观看| 国产久久久一区二区三区| 91在线观看av| 老汉色∧v一级毛片| 国产精品免费一区二区三区在线| 久久精品国产亚洲av高清一级| 久久香蕉激情| 欧美中文综合在线视频| 搞女人的毛片| 国产三级中文精品| 国产午夜精品久久久久久| 久久精品成人免费网站| 色综合欧美亚洲国产小说| www日本在线高清视频| 18禁观看日本| 91麻豆精品激情在线观看国产| cao死你这个sao货| 欧美黄色淫秽网站| 久久精品国产综合久久久| 亚洲一区二区三区色噜噜| 欧美午夜高清在线| 51午夜福利影视在线观看| 99热6这里只有精品| 夜夜躁狠狠躁天天躁| 亚洲专区国产一区二区| 男人舔女人下体高潮全视频| 国产精品精品国产色婷婷| 99久久综合精品五月天人人| 又黄又爽又免费观看的视频| 亚洲熟妇中文字幕五十中出| 很黄的视频免费| 9191精品国产免费久久| 999久久久精品免费观看国产| 色在线成人网| 国产亚洲精品久久久久5区| 真人一进一出gif抽搐免费| svipshipincom国产片| 国产伦在线观看视频一区| av中文乱码字幕在线| 90打野战视频偷拍视频| 国产成人av教育| 脱女人内裤的视频| 悠悠久久av| 国产私拍福利视频在线观看| av视频在线观看入口| 免费在线观看亚洲国产| 精品久久久久久久人妻蜜臀av| 悠悠久久av| 午夜免费观看网址| 在线观看午夜福利视频| 又粗又爽又猛毛片免费看| 久久天堂一区二区三区四区| 男女视频在线观看网站免费 | 国产精品99久久99久久久不卡| av在线播放免费不卡| 欧美成人性av电影在线观看| 欧美色欧美亚洲另类二区| 国产1区2区3区精品| 999久久久精品免费观看国产| 99热只有精品国产| 香蕉国产在线看| 午夜精品一区二区三区免费看| 日本黄大片高清| 国产精品日韩av在线免费观看| 可以在线观看的亚洲视频| 丁香六月欧美| 亚洲 欧美 日韩 在线 免费| 免费在线观看完整版高清| 久久九九热精品免费| 精品第一国产精品| 国产精品1区2区在线观看.| avwww免费| 色精品久久人妻99蜜桃| 精品久久久久久成人av| 欧美精品亚洲一区二区| 亚洲成人国产一区在线观看| 嫁个100分男人电影在线观看| 国产99久久九九免费精品| 一区二区三区高清视频在线| 国产一区二区激情短视频| 黄色片一级片一级黄色片| 欧美日本视频| 97人妻精品一区二区三区麻豆| 免费人成视频x8x8入口观看| 校园春色视频在线观看| 天堂影院成人在线观看| 国产伦一二天堂av在线观看| 中文字幕人成人乱码亚洲影| 一边摸一边抽搐一进一小说| 婷婷丁香在线五月| 国产精品一区二区三区四区免费观看 | 免费一级毛片在线播放高清视频| 18禁观看日本| 99国产综合亚洲精品| 校园春色视频在线观看| 精品福利观看| 97人妻精品一区二区三区麻豆| 久久精品91无色码中文字幕| www.熟女人妻精品国产| 久久精品91蜜桃| 色综合站精品国产| 性欧美人与动物交配| 欧美日韩精品网址| 黄色女人牲交| 日韩高清综合在线| 91老司机精品| 2021天堂中文幕一二区在线观| 搡老妇女老女人老熟妇| 亚洲国产中文字幕在线视频| 亚洲国产高清在线一区二区三| 国产亚洲欧美在线一区二区| 99久久精品国产亚洲精品| 国产精品乱码一区二三区的特点| 99热只有精品国产| av片东京热男人的天堂| 老司机在亚洲福利影院| 他把我摸到了高潮在线观看| 99在线视频只有这里精品首页| 中文字幕高清在线视频| 丁香欧美五月| 日本一二三区视频观看| 国产成人精品久久二区二区免费| 女人高潮潮喷娇喘18禁视频| 狠狠狠狠99中文字幕| 99热这里只有是精品50| www.自偷自拍.com| av视频在线观看入口| 级片在线观看| 亚洲熟女毛片儿| 久久久国产精品麻豆| 亚洲avbb在线观看| 成人特级黄色片久久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 女人被狂操c到高潮| av免费在线观看网站| 欧美黑人欧美精品刺激| 很黄的视频免费| 免费在线观看视频国产中文字幕亚洲| 日韩欧美一区二区三区在线观看| 精品欧美国产一区二区三| 亚洲va日本ⅴa欧美va伊人久久| www.999成人在线观看| 国产区一区二久久| 黑人巨大精品欧美一区二区mp4| 琪琪午夜伦伦电影理论片6080| 精品日产1卡2卡| 在线观看www视频免费| 91成年电影在线观看| 欧美国产日韩亚洲一区| 麻豆久久精品国产亚洲av| 精品免费久久久久久久清纯| 中文在线观看免费www的网站 | 国产av又大| 国产伦一二天堂av在线观看| 久久精品国产清高在天天线| 很黄的视频免费| 国产亚洲av高清不卡| or卡值多少钱| 观看免费一级毛片| 日韩欧美国产一区二区入口| 老鸭窝网址在线观看| 日日摸夜夜添夜夜添小说| 18禁黄网站禁片免费观看直播| 久久精品91无色码中文字幕| 看免费av毛片| 巨乳人妻的诱惑在线观看| 亚洲成av人片免费观看| 亚洲午夜理论影院| 久久99热这里只有精品18| 免费在线观看成人毛片| 亚洲一区中文字幕在线| 日韩三级视频一区二区三区| 欧美乱妇无乱码| 男女那种视频在线观看| 亚洲av成人不卡在线观看播放网| 哪里可以看免费的av片| 很黄的视频免费| 777久久人妻少妇嫩草av网站| 亚洲精品国产精品久久久不卡| 99热这里只有精品一区 | 脱女人内裤的视频| 亚洲国产看品久久| 欧美日韩福利视频一区二区| 午夜激情av网站| 黄色视频,在线免费观看| 桃红色精品国产亚洲av| 蜜桃久久精品国产亚洲av| 悠悠久久av| 免费搜索国产男女视频| 亚洲国产欧美网| 五月玫瑰六月丁香| 日韩欧美在线二视频| 国产野战对白在线观看| 精品熟女少妇八av免费久了| 熟女电影av网| 亚洲七黄色美女视频| 一级毛片精品| 久久这里只有精品中国| 亚洲人成伊人成综合网2020| 亚洲国产高清在线一区二区三| 99国产综合亚洲精品| 99热这里只有是精品50| 在线观看一区二区三区| 久99久视频精品免费| 精品少妇一区二区三区视频日本电影| 91成年电影在线观看| 九色国产91popny在线| 在线视频色国产色| 操出白浆在线播放| 欧美日韩精品网址| 精品久久久久久久毛片微露脸| 久久热在线av| 一区福利在线观看| 99久久精品国产亚洲精品| 人妻夜夜爽99麻豆av| 母亲3免费完整高清在线观看| 无限看片的www在线观看| 久久久久久国产a免费观看| 丰满人妻熟妇乱又伦精品不卡| 欧美+亚洲+日韩+国产| 好看av亚洲va欧美ⅴa在| 99在线人妻在线中文字幕| 久久人妻av系列| 两个人免费观看高清视频| 欧美一级毛片孕妇| 国产成人系列免费观看| 久久久国产成人精品二区| 久久久久亚洲av毛片大全| 午夜激情福利司机影院| 午夜福利高清视频| 久久香蕉激情| 老司机靠b影院| 国产欧美日韩一区二区精品| 妹子高潮喷水视频| 久久久久九九精品影院| 久久国产精品影院| 国产精品 国内视频| 欧美日韩精品网址| 啪啪无遮挡十八禁网站| 国产精品一区二区三区四区免费观看 | 色精品久久人妻99蜜桃| 国产精品综合久久久久久久免费| 婷婷丁香在线五月| 1024香蕉在线观看| 成人精品一区二区免费| 一级片免费观看大全| 国产精品综合久久久久久久免费| 人妻久久中文字幕网| 亚洲国产欧洲综合997久久,| 日韩国内少妇激情av| 毛片女人毛片| 亚洲国产精品sss在线观看| 九色国产91popny在线| 亚洲性夜色夜夜综合| 三级男女做爰猛烈吃奶摸视频| 可以在线观看的亚洲视频| 日韩 欧美 亚洲 中文字幕| 国内精品久久久久精免费| 91av网站免费观看| 久久久久久免费高清国产稀缺| 亚洲免费av在线视频| 久久中文看片网| 韩国av一区二区三区四区| 一边摸一边抽搐一进一小说| 午夜免费成人在线视频| 色尼玛亚洲综合影院| 欧美性猛交黑人性爽| 精品福利观看| 午夜老司机福利片| 少妇被粗大的猛进出69影院| 亚洲国产欧美网| 国模一区二区三区四区视频 | 国产精品精品国产色婷婷| 小说图片视频综合网站| 桃色一区二区三区在线观看| 久久中文看片网| 欧美日韩国产亚洲二区| 日韩高清综合在线| 久久人人精品亚洲av| 九色国产91popny在线| 国内毛片毛片毛片毛片毛片| 精品一区二区三区视频在线观看免费| 少妇的丰满在线观看| 五月玫瑰六月丁香| 亚洲国产精品合色在线| 亚洲成人久久爱视频| 久久精品aⅴ一区二区三区四区| 成人精品一区二区免费| 久久精品成人免费网站| 国产三级在线视频| 淫妇啪啪啪对白视频| 日本a在线网址| 两个人的视频大全免费| 蜜桃久久精品国产亚洲av| 欧美日韩中文字幕国产精品一区二区三区| 国产精品1区2区在线观看.| 久久这里只有精品19| 1024香蕉在线观看| 一本大道久久a久久精品| 后天国语完整版免费观看| 午夜福利欧美成人| 波多野结衣巨乳人妻| 一边摸一边抽搐一进一小说| 村上凉子中文字幕在线| 一级毛片女人18水好多| 啪啪无遮挡十八禁网站| 人人妻,人人澡人人爽秒播| 九色国产91popny在线| 男女之事视频高清在线观看| 日韩欧美 国产精品| 日韩欧美在线二视频| 亚洲狠狠婷婷综合久久图片| 亚洲电影在线观看av| 91麻豆av在线| 亚洲中文av在线| 小说图片视频综合网站| 久久久国产成人精品二区| АⅤ资源中文在线天堂| 婷婷精品国产亚洲av| 国产视频内射| www.999成人在线观看| 老熟妇乱子伦视频在线观看| 精品无人区乱码1区二区| 99热只有精品国产| 久久久久国产精品人妻aⅴ院| 99久久国产精品久久久| 精品乱码久久久久久99久播| 欧美日韩瑟瑟在线播放| 狂野欧美白嫩少妇大欣赏| 免费电影在线观看免费观看| 欧美精品啪啪一区二区三区| 狂野欧美白嫩少妇大欣赏| 国产精品免费一区二区三区在线| 亚洲va日本ⅴa欧美va伊人久久| 免费在线观看黄色视频的| 久久精品国产清高在天天线| 不卡av一区二区三区| 亚洲人与动物交配视频| 丰满人妻一区二区三区视频av | 午夜福利成人在线免费观看| 久久久久久大精品| 亚洲精品在线美女| 亚洲国产中文字幕在线视频| 极品教师在线免费播放| 悠悠久久av| 级片在线观看| 国产高清有码在线观看视频 | 制服诱惑二区| 久久这里只有精品中国| 成人永久免费在线观看视频| 成人av在线播放网站| 国产私拍福利视频在线观看| 成人高潮视频无遮挡免费网站| 美女 人体艺术 gogo|