• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unexpected high-temperature brittleness of a Mg-Gd-Y-Ag alloy

    2022-10-24 13:25:58LirongXioXuefeiChenHuiynNingPingJingYiLiuBinChenDongiYinHoZhouYuntinZhu
    Journal of Magnesium and Alloys 2022年9期

    Lirong Xio ,Xuefei Chen, ,Huiyn Ning ,Ping Jing ,Yi Liu ,Bin Chen ,Dongi Yin,Ho Zhou,*,Yuntin Zhu,f

    a Nano and Heterogeneous Materials Center,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    b State Key Laboratory of Nonlinear Mechanics,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China

    c School of Mechanical and Electrical Engineering,Heilongjiang Institute of Technology,Harbin 150050,China

    d ThermoFisher Scientific,Shanghai 201210,China

    e Key Laboratory of Advanced Technologies of Materials,Ministry of Education,School of Materials Science and Engineering,Southwest Jiaotong University,Chengdu,Sichuan 610031,China

    fDepartment of Materials Science and Engineering,City University of Hong Kong,Hong Kong 999077,China

    Abstract Rare earth (RE) can produce excellent precipitation hardening in Mg alloys.However,when forming a solid solution,it also deteriorates formability,a problem that can usually be overcome by raising deformation temperature.Here we report an unexpected observation of high temperature brittleness in a Mg-Gd-Y-Ag alloy.As the temperature reached 500 °C,the formability decreased drastically,leading to severe intergranular fracture under only 0.5% strain.This was caused by failure of grain boundaries,which are weakened by segregated interfacial compounds.

    Keyword: Interfacial compounds;Formability;High temperature brittleness;Grain boundary sliding.

    1.Introduction

    Environmental pollution and energy source exhaustion are becoming severe crises that threat the well-being of humanity.As the lightest metallic materials,magnesium and its alloys have potential applications in many industries such as automobile,ship-building and aerospace [1–3].Extensive investigations on alloy design,forming technology and deformation mechanism of wrought Mg alloys have been carried out to expand their applications in load-bearing components [4–9].Especially,it has been found that the Mg-RE alloys can be effectively strengthened by age hardening [10–12],in which the dispersed nano precipitates block the slip of dislocations to enhance strength [13–16].In addition,it has been reported that other strengthening mechanisms,such as grain refinement and solid solution,can also improve the strength of Mg-RE alloys in conjunction with precipitation hardening [17,18].

    Industrial applications of Mg alloys are severely hindered by their poor formability at room temperature [19,20].In addition,dislocation pinning by solution atoms in Mg-RE alloys further deteriorates their formability [21,22].Therefore,high temperature deformations,which can activate more slip systems,are frequently employed to process Mg-RE alloys[23–25],although RE addition has negative effects on grain refinement in Mg alloys,which leads to higher critical temperatures for recrystallization[26,27]and changes of deformation mechanisms [28,29].Recrystallization is known as effective way to reduce the dislocation density and consequently improve formability during hot deformation.

    In this work,the deformation behaviors of Mg-Gd-Y-Ag alloy at a series of elevated temperatures were comparatively studied.It is found that the critical recrystallization temperature of Mg-Gd-Y-Ag alloy is ?440 °C.Stable rolling deformation to 80% of thickness reduction without any cracking was successfully achieved at this temperature.However,to our surprise,we found unexpected brittleness when the alloy was deformed at higher temperature of 500 °C.Severe cracking occurred in the sample that was rolled for only 0.5% of thickness reduction.This interesting phenomenon is against our current understanding of hot deformation.It is widely accepted that increasing temperature promotes the plastic deformation of most Mg alloys [30,31].Thus,detailed microstructure evolutions of the alloys deformed at 440 °C and 500 °C were comparatively investigated using EBSD and TEM.It is found that the underlying mechanism of the high temperature brittleness of Mg-Gd-Y-Ag alloy was induced by segregated compounds (the Mg3RE and Mg2REAg phases) along the grain boundaries.

    2.Materials and methods

    The composition of Mg-RE alloy was Mg-10Gd-3Y-2Ag in weight percentage (wt.%).The as-cast ingot was cut into plates with dimensions of 30 mm × 20 mm × 2 mm,followed by a homogenization treatment at 500°C for 12 h,then quenched to room temperature in silicon oil (T4 treatment).Rolling deformation was performed at 440 °C or 500 °C with a rolling speed of 20 mm/s.Before each pass,the samples were pre-heated for 30 min in a resistance furnace.The thickness reduction between each pass was ?0.1 mm.

    To reveal the microstructural evolution with different rolling conditions,electron back-scattered diffraction (EBSD)characterization was performed in a scanning electron microscope (SEM,FEI Quanta 250 FEG).EBSD samples were cut from the rolling sheets.Transverse direction was set as the observation direction.The scanning step sizes are 4 μm,0.5 μm and 0.3 μm for the sample in T4,440 °C and 500 °C conditions.Kernel average misorientation (KAM) analysis was carried out near the cracks to reveal the nature of strain hardening [32].Transmission electron microscopy (TEM) specimens were cut parallel to the normal plane and gently thinned to a thickness of ?25 μm.Perforation by ion milling was performed on a cold stage (?50 °C) with a low angle (<3.5°) and low energy ion beam (<3 keV).Atomic-resolution high-angle annular dark field (HAADF) observations were performed in an aberration-corrected scanning transmission electron microscope(STEM,FEI Titan G2 60-300)operated at 300 kV.Digital Micrograph plug-in was used for geometric phase analysis(GPA) to measure strain field from high-resolution TEM images.For simplicity,all the zone axes and crystal planes are hereafter referred to as those of theα-Mg matrix.

    3.Results and discussions

    Fig.1a is an EBSD inverse pole figure (IPF) map of Mg-Gd-Y-Ag alloy,showing a random texture in the T4 treated sample.The grain size distribution is plotted in Fig.1c,indicating an average grain sizeof ?86 μm.The microstructure is of a typical annealed equiaxed grains with relatively clean grain interior.Fig.1b shows the EBSD grain boundaries(GBs) map in the same observation area.Althrough the sample is well homogenized at 500°C for 12 h(T4),there are still some compounds in local regions.HAADF-STEM and TEM images(Fig.1d and e)reveal that the compounds exist mostly along grain boundaries,which are also frequently observed in other solid solute treated Mg-RE alloys with high RE contents [33,34].X-ray diffraction (XRD) analysis indicates that the compounds are mostly the Mg3RE and Mg2REAg phases(Fig.1f).These compounds are segregated at grain boundaries,but can be fragmented,refined and even dissolved during the subsequent plastic deformations [35].

    Owing to their insufficient number of slip systems,Mg alloys usually show poor formability at room temperature[19,20].We performed cold rolling on this T4 treated sample,and found that not surprisingly,cracking occurred when the thickness reduction reached 20%.To improve the formability,high temperature deformation is usually employed to activate more non-basal slip systems [30,31].Fig.2 shows the IPF maps of samples rolled at 440 °C with thickness reductions from 20% to 80%.During the hot deformation,defects in grain interior are significantly cleaned up through dynamic recrystallization [36,37].Compared to the T4 sample,significant grain refinement occurred in the 20% hot rolled sample,showing an average grain size of ?33 μm (Fig.2a).The grain size is inhomogeneous,exhibiting co-existence of coarse grains (>100 μm) and fine grains (<10 μm),which indicates that the grain refinement of 20% rolled sample is not uniform.Further deformation reduces the average grain sizes to ?25 μm,?21 μm and ?13 μm after 40%,60% and 80% rolling strain,as shown in Fig.2b–d,respectively.The grain size distributions indicate that the homogeneity of grain size is improved with increasing rolling strain.Thus,Mg-Gd-Y-Ag alloys exhibit excellent formability at 440 °C,due to dynamic recrystallization.The samples are able to sustain up to 80% rolling reduction without any cracking.Similar result was also reported in the Ref.[34].

    In sharp contrast,the deformation at 500 °C induced an intergranular fracture,as shown in Fig.3a.Surprisingly,the limit of rolling reduction at 500 °C is extremely low: severe fracture occurred with only 0.5% of thickness reduction.This observation is against our general understanding that higher temperature typically improves the formability of Mg alloys.The GB map (Fig.3b) indicates that recrystallization did not occur when the sample was deformed at 500 °C.The average grain size is ?75 μm (Fig.3f),which is close to that of the T4 sample (?86 μm).

    Fig.1.Microstructure of as-received (T4 treated at 500 °C for 12 h) Mg-Gd-Y-Ag alloy: (a) IPF map,(b) GB map,(c) statistical histogram of grain size distribution,(d) HAADF-STEM image at GB,(e) bright-field TEM image at GB,(f) XRD pattern of phase constitution.

    Fig.2.EBSD IPF maps and corresponding grain size distributions of Mg-Gd-Y-Ag alloy rolled at 440 °C: (a) 20%,(b) 40%,(c) 60%,and (d) 80% of the thickness reductions.

    Fig.3.Microstructure of the cracked Mg-Gd-Y-Ag alloy sample rolled at 500 °C: (a) IPF map,(b) grain boundary map,(c) TEM bright field image and corresponding diffraction pattern of twinning,(d) and (e) closed-up KAM and Schmid factor maps of the white rectangle region in (a),(f) statistical histogram of grain size distribution.

    Fig.4.Atomic-scale microstructure of the segregated compound in GB: (a) low magnification HAADF-STEM image,(b) EDS map of a specific compound,(c) high magnification HAADF-STEM image,(d) GPA analysis of lattice strain map,(e) interface between the segregated compound and matrix,(f) twodimensional unit cell marked on a HAADF-STEM image.

    It is well understood that the activation of dynamic recrystallization requires two essential conditions: (1) The deformation temperature is higher than the critical recrystallization temperature;(2) The continuous straining to introduce the high density of defects.In this case,500 °C is higher than the recrystallization temperature (440 °C).However,the defect accumulation in grain interior is very slow.Only some deformation twins are observed in the grains along the cracks.As shown in Fig.3c,the bright-field TEM image and corresponding SAED pattern indicate that most of them are{102}twins.Detailed analysis of deformation was carried out in the white rectangle area of Fig.3a,using a much smaller step size of scanning.As shown in Fig.3d,the high KAM value regions mainly distribute along the grain boundaries (7?17°),especially along the cracks,while the KAM value in grain interior is relatively low (mostly below 2°).The Schmid factor map shows that grains (IV to VII) on both sides of the crack are below 0.3,which is unfavorable to slip activation(Fig.3e).Fortunately,the crack growth is blocked by the grains (I to III) with higher Schmid factor (0.4?0.5),which are easier for dislocation slip.Therefore,grain boundary sliding appear to be the main deformation mode at such a high temperature.

    As mentioned above,segregated compounds exist in the T4 treated samples (Fig.1d and e).Fig.4a shows the HAADFSTEM image of segregated compound,which is responsible for the high temperature brittleness.The compositions of the compound have high atomic numbers,thus exhibiting a brighter contrast than that of Mg matrix [38–41].We performed energy-dispersive X-ray spectroscopy(EDS)anaylsis,and detected all the three alloying elements in the compound(Fig.4b).The color of the maps indicates that the concentration of Y is lower than those of Gd and Ag in the compound.Enlarged HAADF-STEM image shows that the segregated compound has a periodic structure,which has a three-fold symmetry in this zone axis(Fig.4c).Due to the different orientations on both sides of the GB,the lattice structure of the compound is not perfect,which has lower ordering structure in some local areas.Fig.4d is the GPA analysis of the same region,showing that the distibtion of high strain regions exist inside this compound.Owing to the high interfacial energy in disordered structure,they could be the strat area for softening at high temperature.As shown in Fig.4e,the atomic-scale morphology of the interface between matrix and the segregated compound show a zigzag morphology,but is highly coherent in the lattice.Based on the three-fold symmetry in this zone axis,the two-dimensional unit cell of the compound is proposed as a hexagonal structure,as marked in Fig.4f.

    The segregated compounds on the grain boundary results in serious cracking,when the samples were deformed at 500 °C.Fig.5a and b shows the segregated compounds looks like split and molten during high temperature deformation,which could be the main reason for the high temperature brittleness of the Mg-Gd-Y-Ag alloy.In general,grain boundary sliding is helpful for plastic deformation in metals,which is well studied in the researches of superplastic deformation [42–45].However,in this specific case,the softening of the compound on the GB is equivalent to crack formation on the GB,because the molten phase can carry little stress.This statement is supported by HAADF-STEM observations that the cracking initiation occurred at the interface of segregated compounds(Fig.5b).

    Fig.5c shows the stress-strain curves of the Mg-Gd-Y-Ag alloy compressed at 440 °C and 500 °C,respectively.The test was performed on a Gleeble-3500 thermo-mechanical simulator at a strain rate of 0.001 s-1.The alloy compressed at 440 °C shows stable flow stress,which has a yield strength of ?50 MPa.Due to the dynamic recrystallization,the flow stress shows a slight decrease after yielding,and then tends to be stable.In contrast,the stress-strain curve of the sample compressed at 500 °C shows a drastic wobble,which is resulted from the severe cracking during the plastic deformation.

    Fig.5.Mechanism of high temperature brittleness in Mg-Gd-Y-Ag alloy: (a) HAADF-STEM of a GB,(b) growth GB cracks,(c) true stress-strain curves of hot compression at a strain rate of 0.001 s-1,(d) schematic diagram of microstructure evolution deformed at 440 °C and 500 °C,respectively.

    Fig.5d illustrates the deformation mechanism of Mg-Gd-Y-Ag alloy rolled at 440 °C and 500 °C,respectively.Stable plastic deformation at 440 °C is dominated by dislocation slip and deformation twinning.Formability of the alloy is significantly improved by dynamic recrystallization,leading to grain refinement from 86 μm to 13 μm.In contrsat,at 500 °C,the softening of the compounds significnalty weakens the grain boundary,which makes it easier for the GB to slide and for the GB cracks to form,which consequently fails the sample,leading to the high temperature brittleness in the Mg-Gd-Y-Ag alloy.

    To solve the high temperature brittleness,the following two methods are suggested for the processing of Mg-Gd-Y-Ag alloy.First,the content of rare earth elements in Mg-Gd-Y-Ag alloys should be reduced,which will reduce the formation of the segregated compounds along GBs.Previous work revealed that deformation of pure Mg was stable at 500 °C,even to a very high strain [46].Second,lower the deformation temperature to avoid the softening of the compounds segregated to the GBs.

    4.Conclusions

    In summary,an unexpected high temperature brittleness was found in a Mg-Gd-Y-Ag alloy,which induced severe cracking under a very low deformation strain.The deformation mechanisms at different temperatures were studied.The key findings are summarized below:

    (1) Segregated compound is responsible for the high temperature brittleness,which became soften during deformation at 500 °C.Cracking initiation occurs at the interface of segregated compounds.The severe cracking during deformation leads to a drastic wobble of flow stress.

    (2) At 500 °C,the weakening of the grain boundaries by the softening segregated compounds led to easy grain boundary sliding.As a result,dislocation slip and accumulation in the grain interior became more difficult because the deformation was carried out largely at grain boundaries.Together with premature failure of the sample at low strain,there was not enough defects accumulated in the grain interior to initiate dynamic crystallization before sample fracture.

    (3) The compositions of segregated compound have Gd,Ag and Y elements,in which the concentration of Y is lower than that of Gd and Ag.The compound has a periodic structure,which has a three-fold symmetry in the observed direction.The interface between matrix and the compound is zigzag,but is highly coherent in the lattice.The two-dimensional unit cell of the compound is proposed as have a hexagonal structure.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China (Grant numbers 52071178,51901103,51931003,51601003,51401172),the National Key Research and Development Program of China (Grant number 2017YFA0204403),Project of Natural Science Foundation of Heilongjiang Province (grant number LH2019E080).The authors wish to express their appreciation to the Jiangsu Key Laboratory of Advanced Micro&Nano Materials and Technology.EBSD and TEM experiments were performed at the Materials Characterization and Research Center of Nanjing University of Science and Technology.

    国产精品 欧美亚洲| 亚洲专区字幕在线| 男女国产视频网站| 热99re8久久精品国产| 1024视频免费在线观看| 国内毛片毛片毛片毛片毛片| 国产欧美亚洲国产| 在线观看免费视频网站a站| 天天躁狠狠躁夜夜躁狠狠躁| 成年av动漫网址| 国产成人欧美| 侵犯人妻中文字幕一二三四区| 无限看片的www在线观看| 男男h啪啪无遮挡| 国产成人精品久久二区二区免费| 国产成人av激情在线播放| 高清av免费在线| 777米奇影视久久| 色综合欧美亚洲国产小说| 十分钟在线观看高清视频www| 欧美精品一区二区免费开放| 国产精品久久久久久人妻精品电影 | 亚洲av国产av综合av卡| 中文字幕人妻丝袜制服| 91成年电影在线观看| 国产免费av片在线观看野外av| 欧美av亚洲av综合av国产av| 黑人巨大精品欧美一区二区蜜桃| 亚洲成人免费电影在线观看| 黑人巨大精品欧美一区二区mp4| 中文字幕高清在线视频| 黄色毛片三级朝国网站| 考比视频在线观看| 久久久精品区二区三区| 动漫黄色视频在线观看| 黑人巨大精品欧美一区二区mp4| 美女国产高潮福利片在线看| 99热全是精品| 亚洲中文字幕日韩| 日韩 亚洲 欧美在线| 九色亚洲精品在线播放| 777久久人妻少妇嫩草av网站| 成年人午夜在线观看视频| 中文字幕精品免费在线观看视频| 亚洲欧美清纯卡通| 精品国产国语对白av| 老司机亚洲免费影院| 在线观看舔阴道视频| 9191精品国产免费久久| 咕卡用的链子| 男人爽女人下面视频在线观看| 午夜激情av网站| 亚洲专区国产一区二区| 国产高清视频在线播放一区 | 欧美日韩中文字幕国产精品一区二区三区 | 在线观看一区二区三区激情| 国产精品麻豆人妻色哟哟久久| 精品一品国产午夜福利视频| 久久中文看片网| 亚洲视频免费观看视频| 国产欧美日韩精品亚洲av| 欧美日韩亚洲综合一区二区三区_| 天天操日日干夜夜撸| 亚洲人成电影观看| 超色免费av| 欧美日韩视频精品一区| 久久久国产成人免费| 夜夜夜夜夜久久久久| 久久久久国产一级毛片高清牌| 亚洲精品国产一区二区精华液| 在线观看免费午夜福利视频| 99热网站在线观看| av又黄又爽大尺度在线免费看| 亚洲国产欧美在线一区| 丰满人妻熟妇乱又伦精品不卡| 91老司机精品| 亚洲国产欧美在线一区| 精品国产乱码久久久久久小说| 久9热在线精品视频| 午夜精品久久久久久毛片777| 在线观看免费午夜福利视频| 午夜久久久在线观看| 久久综合国产亚洲精品| 国产精品久久久久成人av| 韩国高清视频一区二区三区| 99久久人妻综合| 国产精品久久久人人做人人爽| 91精品三级在线观看| 国产精品久久久久久人妻精品电影 | 亚洲久久久国产精品| 精品久久久久久久毛片微露脸 | 欧美精品av麻豆av| 丝袜美足系列| 丝袜脚勾引网站| 韩国精品一区二区三区| 亚洲国产看品久久| 99精品欧美一区二区三区四区| 男女床上黄色一级片免费看| 免费观看av网站的网址| 色精品久久人妻99蜜桃| 久久精品成人免费网站| 中文字幕人妻熟女乱码| 欧美另类一区| 一级毛片女人18水好多| 在线十欧美十亚洲十日本专区| 不卡一级毛片| 久久精品国产a三级三级三级| 国产av一区二区精品久久| 叶爱在线成人免费视频播放| 欧美日韩中文字幕国产精品一区二区三区 | 一区福利在线观看| 十八禁高潮呻吟视频| 午夜视频精品福利| 在线观看一区二区三区激情| 国产欧美日韩一区二区三 | 亚洲美女黄色视频免费看| 国产精品秋霞免费鲁丝片| 人人妻人人澡人人看| 少妇的丰满在线观看| 国产精品欧美亚洲77777| 国产成人a∨麻豆精品| a 毛片基地| 国产欧美日韩一区二区三区在线| 国产精品影院久久| 人妻 亚洲 视频| 午夜福利免费观看在线| 亚洲一区二区三区欧美精品| 国产精品免费大片| 中文字幕av电影在线播放| 曰老女人黄片| 天天躁夜夜躁狠狠躁躁| 欧美精品高潮呻吟av久久| 91精品三级在线观看| 欧美精品人与动牲交sv欧美| 日本wwww免费看| 精品一区在线观看国产| 亚洲第一欧美日韩一区二区三区 | 国产黄频视频在线观看| 十分钟在线观看高清视频www| 亚洲色图综合在线观看| a 毛片基地| 天天躁狠狠躁夜夜躁狠狠躁| 男女床上黄色一级片免费看| 男女之事视频高清在线观看| 欧美人与性动交α欧美精品济南到| 少妇的丰满在线观看| 欧美另类一区| 一二三四在线观看免费中文在| 国产精品久久久av美女十八| 欧美激情极品国产一区二区三区| 国产精品久久久久久人妻精品电影 | 国产精品久久久人人做人人爽| 亚洲成av片中文字幕在线观看| 成年美女黄网站色视频大全免费| 成年人黄色毛片网站| 日本猛色少妇xxxxx猛交久久| 国产免费一区二区三区四区乱码| 亚洲熟女毛片儿| 精品视频人人做人人爽| 国产三级黄色录像| 黄频高清免费视频| 一区在线观看完整版| 国产亚洲午夜精品一区二区久久| 国产成+人综合+亚洲专区| 亚洲全国av大片| 黄片小视频在线播放| 国产精品久久久久久人妻精品电影 | 午夜福利免费观看在线| 欧美亚洲 丝袜 人妻 在线| 午夜久久久在线观看| 黑丝袜美女国产一区| 欧美变态另类bdsm刘玥| 日韩视频一区二区在线观看| 波多野结衣一区麻豆| 欧美中文综合在线视频| 男女国产视频网站| 国产免费视频播放在线视频| 天堂俺去俺来也www色官网| 日本91视频免费播放| 国产主播在线观看一区二区| 俄罗斯特黄特色一大片| 亚洲色图 男人天堂 中文字幕| 久久影院123| 9热在线视频观看99| 极品少妇高潮喷水抽搐| 十八禁网站免费在线| 中国美女看黄片| 亚洲欧洲日产国产| 午夜福利视频精品| 美女视频免费永久观看网站| av视频免费观看在线观看| 肉色欧美久久久久久久蜜桃| 国产欧美日韩综合在线一区二区| www.熟女人妻精品国产| 丝袜美足系列| 999精品在线视频| 亚洲男人天堂网一区| 亚洲精品中文字幕一二三四区 | 日本av免费视频播放| 午夜精品久久久久久毛片777| 亚洲成国产人片在线观看| 欧美日韩国产mv在线观看视频| 日韩制服丝袜自拍偷拍| kizo精华| 国产福利在线免费观看视频| 欧美黄色淫秽网站| 国产免费一区二区三区四区乱码| 亚洲精品国产av蜜桃| 欧美黑人欧美精品刺激| 视频在线观看一区二区三区| 亚洲欧洲日产国产| 不卡av一区二区三区| www.自偷自拍.com| 午夜福利,免费看| 日韩人妻精品一区2区三区| 日韩大片免费观看网站| 色视频在线一区二区三区| 老司机影院成人| 国产日韩欧美亚洲二区| 美女高潮喷水抽搐中文字幕| 狠狠婷婷综合久久久久久88av| 免费观看a级毛片全部| 国产激情久久老熟女| 日日摸夜夜添夜夜添小说| 一边摸一边做爽爽视频免费| 99国产极品粉嫩在线观看| 久久精品国产亚洲av香蕉五月 | 久久人人爽av亚洲精品天堂| 老司机影院成人| 乱人伦中国视频| 久久av网站| 母亲3免费完整高清在线观看| 18禁黄网站禁片午夜丰满| 黑人猛操日本美女一级片| 中文字幕人妻熟女乱码| 精品久久久久久电影网| 正在播放国产对白刺激| 日韩免费高清中文字幕av| 老熟妇仑乱视频hdxx| 黄片小视频在线播放| 最近最新中文字幕大全免费视频| 国产av又大| 亚洲情色 制服丝袜| 丝袜脚勾引网站| 丝袜喷水一区| 国产免费现黄频在线看| 别揉我奶头~嗯~啊~动态视频 | 久久精品熟女亚洲av麻豆精品| 国产在线免费精品| 亚洲熟女精品中文字幕| 在线av久久热| 色视频在线一区二区三区| 欧美日韩av久久| 欧美97在线视频| 叶爱在线成人免费视频播放| 免费观看a级毛片全部| www.熟女人妻精品国产| 丝袜美足系列| 亚洲av成人不卡在线观看播放网 | 人人澡人人妻人| av免费在线观看网站| 精品国产一区二区三区四区第35| 国产精品自产拍在线观看55亚洲 | 久久久精品区二区三区| 日韩电影二区| 亚洲av日韩在线播放| 色婷婷av一区二区三区视频| 亚洲成人手机| 精品国产超薄肉色丝袜足j| 国产av一区二区精品久久| 99国产精品一区二区蜜桃av | 国产成人系列免费观看| 国产精品一区二区在线观看99| 波多野结衣一区麻豆| av天堂久久9| 国产亚洲一区二区精品| 日韩欧美一区二区三区在线观看 | 久久国产精品人妻蜜桃| 欧美精品亚洲一区二区| 精品视频人人做人人爽| 精品国产乱码久久久久久男人| 久久久国产成人免费| 日本av手机在线免费观看| 久久久精品区二区三区| 99国产精品免费福利视频| 18在线观看网站| 黑人猛操日本美女一级片| 日韩一区二区三区影片| 国产淫语在线视频| 国产成人精品无人区| 操美女的视频在线观看| 在线 av 中文字幕| 亚洲第一av免费看| 香蕉丝袜av| 精品久久蜜臀av无| 老司机影院成人| 久热爱精品视频在线9| 亚洲国产看品久久| 日本av免费视频播放| www日本在线高清视频| 成年动漫av网址| 两性夫妻黄色片| 国产免费一区二区三区四区乱码| 欧美在线黄色| 如日韩欧美国产精品一区二区三区| 精品久久久精品久久久| 一区二区日韩欧美中文字幕| 亚洲色图 男人天堂 中文字幕| 夜夜骑夜夜射夜夜干| 国产av一区二区精品久久| 男人操女人黄网站| 91九色精品人成在线观看| 午夜福利乱码中文字幕| 汤姆久久久久久久影院中文字幕| 精品少妇久久久久久888优播| videos熟女内射| 久久精品亚洲av国产电影网| 9191精品国产免费久久| 日韩 欧美 亚洲 中文字幕| tocl精华| 精品国产国语对白av| 久久久精品免费免费高清| 日本av免费视频播放| 一区二区三区乱码不卡18| 日本91视频免费播放| 久久久久国内视频| 高潮久久久久久久久久久不卡| 十八禁高潮呻吟视频| 欧美精品一区二区大全| 日日夜夜操网爽| 国产日韩欧美在线精品| 日本av免费视频播放| 我要看黄色一级片免费的| 在线永久观看黄色视频| 一进一出抽搐动态| 国产一区二区在线观看av| 黄色怎么调成土黄色| 丝瓜视频免费看黄片| 亚洲激情五月婷婷啪啪| 色播在线永久视频| 欧美老熟妇乱子伦牲交| 日韩一卡2卡3卡4卡2021年| 亚洲欧美日韩另类电影网站| 久久精品人人爽人人爽视色| 亚洲精品国产一区二区精华液| 国产精品国产三级国产专区5o| 亚洲av电影在线进入| 777米奇影视久久| 亚洲av成人不卡在线观看播放网 | 亚洲综合色网址| 飞空精品影院首页| 啪啪无遮挡十八禁网站| 日日摸夜夜添夜夜添小说| 人妻 亚洲 视频| 亚洲国产av影院在线观看| 亚洲欧美精品综合一区二区三区| 人妻一区二区av| 在线观看免费午夜福利视频| 亚洲av片天天在线观看| 91成人精品电影| 久久99一区二区三区| 国产精品1区2区在线观看. | 久久久水蜜桃国产精品网| 中国美女看黄片| 国产人伦9x9x在线观看| 欧美亚洲日本最大视频资源| 亚洲中文av在线| 十分钟在线观看高清视频www| 99国产精品一区二区三区| 搡老岳熟女国产| 51午夜福利影视在线观看| 欧美中文综合在线视频| 亚洲欧美精品综合一区二区三区| 亚洲精品一二三| 99香蕉大伊视频| 美国免费a级毛片| 精品亚洲成a人片在线观看| 最近中文字幕2019免费版| 亚洲av男天堂| 美女国产高潮福利片在线看| 欧美午夜高清在线| 超色免费av| 国产精品一区二区免费欧美 | av福利片在线| 在线十欧美十亚洲十日本专区| 国产精品久久久人人做人人爽| 性少妇av在线| 99热全是精品| 99精国产麻豆久久婷婷| 大片电影免费在线观看免费| 女人被躁到高潮嗷嗷叫费观| 满18在线观看网站| 丰满迷人的少妇在线观看| 老汉色∧v一级毛片| 欧美黄色片欧美黄色片| bbb黄色大片| 美女国产高潮福利片在线看| 两个人免费观看高清视频| 成年人黄色毛片网站| 国产免费一区二区三区四区乱码| 国产精品久久久av美女十八| 日韩大码丰满熟妇| 真人做人爱边吃奶动态| 国产一区有黄有色的免费视频| 又大又爽又粗| 91精品伊人久久大香线蕉| 亚洲少妇的诱惑av| 欧美日本中文国产一区发布| 亚洲欧美成人综合另类久久久| 国产精品久久久久成人av| www.自偷自拍.com| 亚洲精品自拍成人| 国产av国产精品国产| 国产淫语在线视频| 亚洲天堂av无毛| 高清欧美精品videossex| 欧美激情 高清一区二区三区| 热99re8久久精品国产| 在线 av 中文字幕| 老汉色av国产亚洲站长工具| 女人精品久久久久毛片| 亚洲欧美激情在线| 亚洲九九香蕉| 成人影院久久| 国产日韩欧美亚洲二区| 国产精品自产拍在线观看55亚洲 | 国产视频一区二区在线看| 91精品三级在线观看| 桃花免费在线播放| 国产亚洲av高清不卡| 女人久久www免费人成看片| 国产麻豆69| 手机成人av网站| 国产欧美亚洲国产| 午夜老司机福利片| av电影中文网址| 国产91精品成人一区二区三区 | 久久免费观看电影| 高潮久久久久久久久久久不卡| 午夜免费成人在线视频| 国产成人精品久久二区二区91| 亚洲欧美日韩高清在线视频 | 午夜两性在线视频| 国产精品.久久久| 黑人猛操日本美女一级片| 亚洲国产欧美日韩在线播放| 亚洲性夜色夜夜综合| 青春草亚洲视频在线观看| 亚洲 国产 在线| 天天操日日干夜夜撸| 我的亚洲天堂| 亚洲欧美色中文字幕在线| 美女主播在线视频| 岛国在线观看网站| www.av在线官网国产| 夫妻午夜视频| 亚洲精品国产av蜜桃| 中文字幕色久视频| 成人国产av品久久久| 黄片大片在线免费观看| 亚洲欧洲日产国产| 男人爽女人下面视频在线观看| 欧美97在线视频| 51午夜福利影视在线观看| 欧美大码av| av在线app专区| 国产伦人伦偷精品视频| 成年女人毛片免费观看观看9 | 国产又爽黄色视频| 91国产中文字幕| 超碰成人久久| 日韩三级视频一区二区三区| 色综合欧美亚洲国产小说| 999久久久精品免费观看国产| 久久精品国产亚洲av高清一级| 精品国产乱子伦一区二区三区 | 久久久精品国产亚洲av高清涩受| 欧美日韩av久久| 国产精品自产拍在线观看55亚洲 | 蜜桃在线观看..| 国产成人影院久久av| 50天的宝宝边吃奶边哭怎么回事| 一区福利在线观看| av片东京热男人的天堂| 亚洲中文字幕日韩| 国产av精品麻豆| 国产高清国产精品国产三级| 天天躁狠狠躁夜夜躁狠狠躁| 国产黄频视频在线观看| 亚洲va日本ⅴa欧美va伊人久久 | a在线观看视频网站| 免费日韩欧美在线观看| 99国产综合亚洲精品| 欧美精品av麻豆av| 在线观看免费视频网站a站| 亚洲免费av在线视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品日韩在线中文字幕| 亚洲精品国产av成人精品| 捣出白浆h1v1| 亚洲欧洲日产国产| 日韩制服丝袜自拍偷拍| 黄片大片在线免费观看| 男人爽女人下面视频在线观看| 黑丝袜美女国产一区| 成人影院久久| 午夜福利乱码中文字幕| 老司机福利观看| 久久人人爽人人片av| 国产精品一区二区在线观看99| 99国产精品99久久久久| 亚洲中文av在线| 亚洲国产欧美网| 亚洲av日韩精品久久久久久密| 黄色a级毛片大全视频| 热99久久久久精品小说推荐| 国产成人啪精品午夜网站| 一区福利在线观看| 国产精品欧美亚洲77777| 久热这里只有精品99| 精品久久蜜臀av无| 波多野结衣av一区二区av| 国产男人的电影天堂91| 一个人免费看片子| 色综合欧美亚洲国产小说| 男人添女人高潮全过程视频| 久久久久国产一级毛片高清牌| 波多野结衣av一区二区av| 亚洲精品乱久久久久久| av在线老鸭窝| 精品久久蜜臀av无| 国产亚洲av片在线观看秒播厂| 国产成人av教育| 三上悠亚av全集在线观看| 午夜精品久久久久久毛片777| 婷婷色av中文字幕| 久9热在线精品视频| 欧美日韩亚洲高清精品| 一区二区三区精品91| 婷婷色av中文字幕| 久久香蕉激情| 欧美亚洲日本最大视频资源| 久久久国产成人免费| 天天躁夜夜躁狠狠躁躁| 少妇人妻久久综合中文| 亚洲欧美色中文字幕在线| 美女扒开内裤让男人捅视频| 久久毛片免费看一区二区三区| 亚洲情色 制服丝袜| 精品人妻熟女毛片av久久网站| 日日摸夜夜添夜夜添小说| 女性生殖器流出的白浆| 真人做人爱边吃奶动态| 黑丝袜美女国产一区| 亚洲欧美清纯卡通| 香蕉丝袜av| 黄色视频在线播放观看不卡| 最近最新免费中文字幕在线| 黄网站色视频无遮挡免费观看| 国产成人影院久久av| 另类精品久久| 女警被强在线播放| 中文字幕制服av| 免费不卡黄色视频| 国产一级毛片在线| 亚洲天堂av无毛| 久热爱精品视频在线9| 丝袜美腿诱惑在线| av在线播放精品| 中文字幕精品免费在线观看视频| 悠悠久久av| 国产亚洲欧美在线一区二区| kizo精华| 在线观看免费午夜福利视频| 男女高潮啪啪啪动态图| 伊人久久大香线蕉亚洲五| 午夜福利免费观看在线| 男女国产视频网站| 精品国产超薄肉色丝袜足j| 国产精品.久久久| 国产成人免费无遮挡视频| av视频免费观看在线观看| 麻豆国产av国片精品| 丰满饥渴人妻一区二区三| 日韩熟女老妇一区二区性免费视频| 黄色a级毛片大全视频| 啦啦啦 在线观看视频| 国产区一区二久久| 国产日韩欧美视频二区| 在线观看一区二区三区激情| 亚洲激情五月婷婷啪啪| 久久精品亚洲熟妇少妇任你| 丝袜在线中文字幕| 99国产精品一区二区蜜桃av | 夜夜夜夜夜久久久久| 久热爱精品视频在线9| 日韩大码丰满熟妇| 久久久久久免费高清国产稀缺| 免费高清在线观看日韩| 99久久综合免费| 好男人电影高清在线观看| 黄色片一级片一级黄色片| 97人妻天天添夜夜摸| 黄片大片在线免费观看| 免费在线观看视频国产中文字幕亚洲 | 少妇粗大呻吟视频| 日韩人妻精品一区2区三区| 999久久久精品免费观看国产| 欧美xxⅹ黑人| 少妇猛男粗大的猛烈进出视频| 精品人妻在线不人妻| 久久久久久久久免费视频了| 热99久久久久精品小说推荐| 99香蕉大伊视频| 黄网站色视频无遮挡免费观看|