• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unexpected high-temperature brittleness of a Mg-Gd-Y-Ag alloy

    2022-10-24 13:25:58LirongXioXuefeiChenHuiynNingPingJingYiLiuBinChenDongiYinHoZhouYuntinZhu
    Journal of Magnesium and Alloys 2022年9期

    Lirong Xio ,Xuefei Chen, ,Huiyn Ning ,Ping Jing ,Yi Liu ,Bin Chen ,Dongi Yin,Ho Zhou,*,Yuntin Zhu,f

    a Nano and Heterogeneous Materials Center,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    b State Key Laboratory of Nonlinear Mechanics,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China

    c School of Mechanical and Electrical Engineering,Heilongjiang Institute of Technology,Harbin 150050,China

    d ThermoFisher Scientific,Shanghai 201210,China

    e Key Laboratory of Advanced Technologies of Materials,Ministry of Education,School of Materials Science and Engineering,Southwest Jiaotong University,Chengdu,Sichuan 610031,China

    fDepartment of Materials Science and Engineering,City University of Hong Kong,Hong Kong 999077,China

    Abstract Rare earth (RE) can produce excellent precipitation hardening in Mg alloys.However,when forming a solid solution,it also deteriorates formability,a problem that can usually be overcome by raising deformation temperature.Here we report an unexpected observation of high temperature brittleness in a Mg-Gd-Y-Ag alloy.As the temperature reached 500 °C,the formability decreased drastically,leading to severe intergranular fracture under only 0.5% strain.This was caused by failure of grain boundaries,which are weakened by segregated interfacial compounds.

    Keyword: Interfacial compounds;Formability;High temperature brittleness;Grain boundary sliding.

    1.Introduction

    Environmental pollution and energy source exhaustion are becoming severe crises that threat the well-being of humanity.As the lightest metallic materials,magnesium and its alloys have potential applications in many industries such as automobile,ship-building and aerospace [1–3].Extensive investigations on alloy design,forming technology and deformation mechanism of wrought Mg alloys have been carried out to expand their applications in load-bearing components [4–9].Especially,it has been found that the Mg-RE alloys can be effectively strengthened by age hardening [10–12],in which the dispersed nano precipitates block the slip of dislocations to enhance strength [13–16].In addition,it has been reported that other strengthening mechanisms,such as grain refinement and solid solution,can also improve the strength of Mg-RE alloys in conjunction with precipitation hardening [17,18].

    Industrial applications of Mg alloys are severely hindered by their poor formability at room temperature [19,20].In addition,dislocation pinning by solution atoms in Mg-RE alloys further deteriorates their formability [21,22].Therefore,high temperature deformations,which can activate more slip systems,are frequently employed to process Mg-RE alloys[23–25],although RE addition has negative effects on grain refinement in Mg alloys,which leads to higher critical temperatures for recrystallization[26,27]and changes of deformation mechanisms [28,29].Recrystallization is known as effective way to reduce the dislocation density and consequently improve formability during hot deformation.

    In this work,the deformation behaviors of Mg-Gd-Y-Ag alloy at a series of elevated temperatures were comparatively studied.It is found that the critical recrystallization temperature of Mg-Gd-Y-Ag alloy is ?440 °C.Stable rolling deformation to 80% of thickness reduction without any cracking was successfully achieved at this temperature.However,to our surprise,we found unexpected brittleness when the alloy was deformed at higher temperature of 500 °C.Severe cracking occurred in the sample that was rolled for only 0.5% of thickness reduction.This interesting phenomenon is against our current understanding of hot deformation.It is widely accepted that increasing temperature promotes the plastic deformation of most Mg alloys [30,31].Thus,detailed microstructure evolutions of the alloys deformed at 440 °C and 500 °C were comparatively investigated using EBSD and TEM.It is found that the underlying mechanism of the high temperature brittleness of Mg-Gd-Y-Ag alloy was induced by segregated compounds (the Mg3RE and Mg2REAg phases) along the grain boundaries.

    2.Materials and methods

    The composition of Mg-RE alloy was Mg-10Gd-3Y-2Ag in weight percentage (wt.%).The as-cast ingot was cut into plates with dimensions of 30 mm × 20 mm × 2 mm,followed by a homogenization treatment at 500°C for 12 h,then quenched to room temperature in silicon oil (T4 treatment).Rolling deformation was performed at 440 °C or 500 °C with a rolling speed of 20 mm/s.Before each pass,the samples were pre-heated for 30 min in a resistance furnace.The thickness reduction between each pass was ?0.1 mm.

    To reveal the microstructural evolution with different rolling conditions,electron back-scattered diffraction (EBSD)characterization was performed in a scanning electron microscope (SEM,FEI Quanta 250 FEG).EBSD samples were cut from the rolling sheets.Transverse direction was set as the observation direction.The scanning step sizes are 4 μm,0.5 μm and 0.3 μm for the sample in T4,440 °C and 500 °C conditions.Kernel average misorientation (KAM) analysis was carried out near the cracks to reveal the nature of strain hardening [32].Transmission electron microscopy (TEM) specimens were cut parallel to the normal plane and gently thinned to a thickness of ?25 μm.Perforation by ion milling was performed on a cold stage (?50 °C) with a low angle (<3.5°) and low energy ion beam (<3 keV).Atomic-resolution high-angle annular dark field (HAADF) observations were performed in an aberration-corrected scanning transmission electron microscope(STEM,FEI Titan G2 60-300)operated at 300 kV.Digital Micrograph plug-in was used for geometric phase analysis(GPA) to measure strain field from high-resolution TEM images.For simplicity,all the zone axes and crystal planes are hereafter referred to as those of theα-Mg matrix.

    3.Results and discussions

    Fig.1a is an EBSD inverse pole figure (IPF) map of Mg-Gd-Y-Ag alloy,showing a random texture in the T4 treated sample.The grain size distribution is plotted in Fig.1c,indicating an average grain sizeof ?86 μm.The microstructure is of a typical annealed equiaxed grains with relatively clean grain interior.Fig.1b shows the EBSD grain boundaries(GBs) map in the same observation area.Althrough the sample is well homogenized at 500°C for 12 h(T4),there are still some compounds in local regions.HAADF-STEM and TEM images(Fig.1d and e)reveal that the compounds exist mostly along grain boundaries,which are also frequently observed in other solid solute treated Mg-RE alloys with high RE contents [33,34].X-ray diffraction (XRD) analysis indicates that the compounds are mostly the Mg3RE and Mg2REAg phases(Fig.1f).These compounds are segregated at grain boundaries,but can be fragmented,refined and even dissolved during the subsequent plastic deformations [35].

    Owing to their insufficient number of slip systems,Mg alloys usually show poor formability at room temperature[19,20].We performed cold rolling on this T4 treated sample,and found that not surprisingly,cracking occurred when the thickness reduction reached 20%.To improve the formability,high temperature deformation is usually employed to activate more non-basal slip systems [30,31].Fig.2 shows the IPF maps of samples rolled at 440 °C with thickness reductions from 20% to 80%.During the hot deformation,defects in grain interior are significantly cleaned up through dynamic recrystallization [36,37].Compared to the T4 sample,significant grain refinement occurred in the 20% hot rolled sample,showing an average grain size of ?33 μm (Fig.2a).The grain size is inhomogeneous,exhibiting co-existence of coarse grains (>100 μm) and fine grains (<10 μm),which indicates that the grain refinement of 20% rolled sample is not uniform.Further deformation reduces the average grain sizes to ?25 μm,?21 μm and ?13 μm after 40%,60% and 80% rolling strain,as shown in Fig.2b–d,respectively.The grain size distributions indicate that the homogeneity of grain size is improved with increasing rolling strain.Thus,Mg-Gd-Y-Ag alloys exhibit excellent formability at 440 °C,due to dynamic recrystallization.The samples are able to sustain up to 80% rolling reduction without any cracking.Similar result was also reported in the Ref.[34].

    In sharp contrast,the deformation at 500 °C induced an intergranular fracture,as shown in Fig.3a.Surprisingly,the limit of rolling reduction at 500 °C is extremely low: severe fracture occurred with only 0.5% of thickness reduction.This observation is against our general understanding that higher temperature typically improves the formability of Mg alloys.The GB map (Fig.3b) indicates that recrystallization did not occur when the sample was deformed at 500 °C.The average grain size is ?75 μm (Fig.3f),which is close to that of the T4 sample (?86 μm).

    Fig.1.Microstructure of as-received (T4 treated at 500 °C for 12 h) Mg-Gd-Y-Ag alloy: (a) IPF map,(b) GB map,(c) statistical histogram of grain size distribution,(d) HAADF-STEM image at GB,(e) bright-field TEM image at GB,(f) XRD pattern of phase constitution.

    Fig.2.EBSD IPF maps and corresponding grain size distributions of Mg-Gd-Y-Ag alloy rolled at 440 °C: (a) 20%,(b) 40%,(c) 60%,and (d) 80% of the thickness reductions.

    Fig.3.Microstructure of the cracked Mg-Gd-Y-Ag alloy sample rolled at 500 °C: (a) IPF map,(b) grain boundary map,(c) TEM bright field image and corresponding diffraction pattern of twinning,(d) and (e) closed-up KAM and Schmid factor maps of the white rectangle region in (a),(f) statistical histogram of grain size distribution.

    Fig.4.Atomic-scale microstructure of the segregated compound in GB: (a) low magnification HAADF-STEM image,(b) EDS map of a specific compound,(c) high magnification HAADF-STEM image,(d) GPA analysis of lattice strain map,(e) interface between the segregated compound and matrix,(f) twodimensional unit cell marked on a HAADF-STEM image.

    It is well understood that the activation of dynamic recrystallization requires two essential conditions: (1) The deformation temperature is higher than the critical recrystallization temperature;(2) The continuous straining to introduce the high density of defects.In this case,500 °C is higher than the recrystallization temperature (440 °C).However,the defect accumulation in grain interior is very slow.Only some deformation twins are observed in the grains along the cracks.As shown in Fig.3c,the bright-field TEM image and corresponding SAED pattern indicate that most of them are{102}twins.Detailed analysis of deformation was carried out in the white rectangle area of Fig.3a,using a much smaller step size of scanning.As shown in Fig.3d,the high KAM value regions mainly distribute along the grain boundaries (7?17°),especially along the cracks,while the KAM value in grain interior is relatively low (mostly below 2°).The Schmid factor map shows that grains (IV to VII) on both sides of the crack are below 0.3,which is unfavorable to slip activation(Fig.3e).Fortunately,the crack growth is blocked by the grains (I to III) with higher Schmid factor (0.4?0.5),which are easier for dislocation slip.Therefore,grain boundary sliding appear to be the main deformation mode at such a high temperature.

    As mentioned above,segregated compounds exist in the T4 treated samples (Fig.1d and e).Fig.4a shows the HAADFSTEM image of segregated compound,which is responsible for the high temperature brittleness.The compositions of the compound have high atomic numbers,thus exhibiting a brighter contrast than that of Mg matrix [38–41].We performed energy-dispersive X-ray spectroscopy(EDS)anaylsis,and detected all the three alloying elements in the compound(Fig.4b).The color of the maps indicates that the concentration of Y is lower than those of Gd and Ag in the compound.Enlarged HAADF-STEM image shows that the segregated compound has a periodic structure,which has a three-fold symmetry in this zone axis(Fig.4c).Due to the different orientations on both sides of the GB,the lattice structure of the compound is not perfect,which has lower ordering structure in some local areas.Fig.4d is the GPA analysis of the same region,showing that the distibtion of high strain regions exist inside this compound.Owing to the high interfacial energy in disordered structure,they could be the strat area for softening at high temperature.As shown in Fig.4e,the atomic-scale morphology of the interface between matrix and the segregated compound show a zigzag morphology,but is highly coherent in the lattice.Based on the three-fold symmetry in this zone axis,the two-dimensional unit cell of the compound is proposed as a hexagonal structure,as marked in Fig.4f.

    The segregated compounds on the grain boundary results in serious cracking,when the samples were deformed at 500 °C.Fig.5a and b shows the segregated compounds looks like split and molten during high temperature deformation,which could be the main reason for the high temperature brittleness of the Mg-Gd-Y-Ag alloy.In general,grain boundary sliding is helpful for plastic deformation in metals,which is well studied in the researches of superplastic deformation [42–45].However,in this specific case,the softening of the compound on the GB is equivalent to crack formation on the GB,because the molten phase can carry little stress.This statement is supported by HAADF-STEM observations that the cracking initiation occurred at the interface of segregated compounds(Fig.5b).

    Fig.5c shows the stress-strain curves of the Mg-Gd-Y-Ag alloy compressed at 440 °C and 500 °C,respectively.The test was performed on a Gleeble-3500 thermo-mechanical simulator at a strain rate of 0.001 s-1.The alloy compressed at 440 °C shows stable flow stress,which has a yield strength of ?50 MPa.Due to the dynamic recrystallization,the flow stress shows a slight decrease after yielding,and then tends to be stable.In contrast,the stress-strain curve of the sample compressed at 500 °C shows a drastic wobble,which is resulted from the severe cracking during the plastic deformation.

    Fig.5.Mechanism of high temperature brittleness in Mg-Gd-Y-Ag alloy: (a) HAADF-STEM of a GB,(b) growth GB cracks,(c) true stress-strain curves of hot compression at a strain rate of 0.001 s-1,(d) schematic diagram of microstructure evolution deformed at 440 °C and 500 °C,respectively.

    Fig.5d illustrates the deformation mechanism of Mg-Gd-Y-Ag alloy rolled at 440 °C and 500 °C,respectively.Stable plastic deformation at 440 °C is dominated by dislocation slip and deformation twinning.Formability of the alloy is significantly improved by dynamic recrystallization,leading to grain refinement from 86 μm to 13 μm.In contrsat,at 500 °C,the softening of the compounds significnalty weakens the grain boundary,which makes it easier for the GB to slide and for the GB cracks to form,which consequently fails the sample,leading to the high temperature brittleness in the Mg-Gd-Y-Ag alloy.

    To solve the high temperature brittleness,the following two methods are suggested for the processing of Mg-Gd-Y-Ag alloy.First,the content of rare earth elements in Mg-Gd-Y-Ag alloys should be reduced,which will reduce the formation of the segregated compounds along GBs.Previous work revealed that deformation of pure Mg was stable at 500 °C,even to a very high strain [46].Second,lower the deformation temperature to avoid the softening of the compounds segregated to the GBs.

    4.Conclusions

    In summary,an unexpected high temperature brittleness was found in a Mg-Gd-Y-Ag alloy,which induced severe cracking under a very low deformation strain.The deformation mechanisms at different temperatures were studied.The key findings are summarized below:

    (1) Segregated compound is responsible for the high temperature brittleness,which became soften during deformation at 500 °C.Cracking initiation occurs at the interface of segregated compounds.The severe cracking during deformation leads to a drastic wobble of flow stress.

    (2) At 500 °C,the weakening of the grain boundaries by the softening segregated compounds led to easy grain boundary sliding.As a result,dislocation slip and accumulation in the grain interior became more difficult because the deformation was carried out largely at grain boundaries.Together with premature failure of the sample at low strain,there was not enough defects accumulated in the grain interior to initiate dynamic crystallization before sample fracture.

    (3) The compositions of segregated compound have Gd,Ag and Y elements,in which the concentration of Y is lower than that of Gd and Ag.The compound has a periodic structure,which has a three-fold symmetry in the observed direction.The interface between matrix and the compound is zigzag,but is highly coherent in the lattice.The two-dimensional unit cell of the compound is proposed as have a hexagonal structure.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China (Grant numbers 52071178,51901103,51931003,51601003,51401172),the National Key Research and Development Program of China (Grant number 2017YFA0204403),Project of Natural Science Foundation of Heilongjiang Province (grant number LH2019E080).The authors wish to express their appreciation to the Jiangsu Key Laboratory of Advanced Micro&Nano Materials and Technology.EBSD and TEM experiments were performed at the Materials Characterization and Research Center of Nanjing University of Science and Technology.

    亚洲内射少妇av| 男女国产视频网站| 777米奇影视久久| 国产97色在线日韩免费| av免费在线看不卡| 国产精品亚洲av一区麻豆 | 波多野结衣一区麻豆| 日韩中字成人| 亚洲伊人久久精品综合| 国产男人的电影天堂91| 成人18禁高潮啪啪吃奶动态图| 久久 成人 亚洲| 亚洲一区二区三区欧美精品| 国产精品偷伦视频观看了| 国产欧美日韩一区二区三区在线| 久久影院123| 亚洲天堂av无毛| 久久精品人人爽人人爽视色| 97在线人人人人妻| 久久国内精品自在自线图片| 日本猛色少妇xxxxx猛交久久| 国产黄色免费在线视频| 国产探花极品一区二区| 国产乱人偷精品视频| 婷婷色av中文字幕| 王馨瑶露胸无遮挡在线观看| 亚洲欧洲精品一区二区精品久久久 | 叶爱在线成人免费视频播放| 午夜福利视频在线观看免费| 人妻系列 视频| 亚洲一区中文字幕在线| 中文字幕精品免费在线观看视频| 亚洲欧洲精品一区二区精品久久久 | 99久国产av精品国产电影| 久久综合国产亚洲精品| 久久ye,这里只有精品| 亚洲精品国产色婷婷电影| 国产男女内射视频| 国产在线免费精品| 国产亚洲一区二区精品| 人妻少妇偷人精品九色| 日本欧美国产在线视频| 国产老妇伦熟女老妇高清| 国产精品99久久99久久久不卡 | 久久青草综合色| 卡戴珊不雅视频在线播放| 最近中文字幕高清免费大全6| xxx大片免费视频| 在线观看三级黄色| av一本久久久久| 搡老乐熟女国产| 亚洲精品久久午夜乱码| 男女国产视频网站| 亚洲人成电影观看| 欧美日韩一区二区视频在线观看视频在线| 国产熟女欧美一区二区| 久久99一区二区三区| 国产福利在线免费观看视频| 精品人妻在线不人妻| 三上悠亚av全集在线观看| 成年人午夜在线观看视频| 国产1区2区3区精品| 中国国产av一级| 在线观看三级黄色| 亚洲美女视频黄频| 这个男人来自地球电影免费观看 | 欧美日韩亚洲高清精品| 一区二区av电影网| 亚洲欧美精品自产自拍| 不卡视频在线观看欧美| 国产成人精品一,二区| 超碰97精品在线观看| 亚洲精品日本国产第一区| 啦啦啦在线免费观看视频4| 大码成人一级视频| 精品国产乱码久久久久久小说| 伊人亚洲综合成人网| 90打野战视频偷拍视频| 18禁国产床啪视频网站| 国产又爽黄色视频| 中文字幕制服av| 欧美日韩精品网址| 一区二区三区乱码不卡18| 亚洲精品av麻豆狂野| 97在线视频观看| av片东京热男人的天堂| 人人妻人人澡人人看| 男女啪啪激烈高潮av片| 99精国产麻豆久久婷婷| 男人添女人高潮全过程视频| 免费少妇av软件| 赤兔流量卡办理| 亚洲男人天堂网一区| 国产午夜精品一二区理论片| 老汉色∧v一级毛片| 香蕉精品网在线| 精品99又大又爽又粗少妇毛片| 老熟女久久久| 波多野结衣av一区二区av| 日日啪夜夜爽| 丝袜喷水一区| 欧美精品高潮呻吟av久久| 男人添女人高潮全过程视频| 国产伦理片在线播放av一区| av视频免费观看在线观看| 三级国产精品片| 成年人午夜在线观看视频| 中文字幕精品免费在线观看视频| 五月天丁香电影| 丝袜在线中文字幕| videos熟女内射| 精品亚洲成a人片在线观看| 免费少妇av软件| 国产成人一区二区在线| 日韩欧美一区视频在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲精品一二三| 看十八女毛片水多多多| 国产福利在线免费观看视频| 男女啪啪激烈高潮av片| 亚洲av日韩在线播放| 免费高清在线观看日韩| 亚洲经典国产精华液单| 久久久久久久久久人人人人人人| 99精国产麻豆久久婷婷| 天天躁夜夜躁狠狠久久av| 日韩中字成人| 欧美精品一区二区免费开放| 视频在线观看一区二区三区| 久久精品国产亚洲av高清一级| 大陆偷拍与自拍| 国产1区2区3区精品| 我的亚洲天堂| 久久99热这里只频精品6学生| 天堂8中文在线网| 久久人人爽av亚洲精品天堂| 久久久久久久精品精品| 五月天丁香电影| 午夜福利视频在线观看免费| 99国产精品免费福利视频| 成人免费观看视频高清| 亚洲精品aⅴ在线观看| 亚洲精品视频女| 满18在线观看网站| 免费女性裸体啪啪无遮挡网站| 亚洲经典国产精华液单| 看十八女毛片水多多多| 大香蕉久久网| 你懂的网址亚洲精品在线观看| 人体艺术视频欧美日本| 天天操日日干夜夜撸| 香蕉国产在线看| 精品午夜福利在线看| 男女高潮啪啪啪动态图| 欧美日韩亚洲国产一区二区在线观看 | 国产日韩欧美亚洲二区| 亚洲第一av免费看| 精品视频人人做人人爽| 亚洲精品美女久久久久99蜜臀 | 天美传媒精品一区二区| 国产精品偷伦视频观看了| 岛国毛片在线播放| av在线老鸭窝| 男女无遮挡免费网站观看| 熟女av电影| 国产成人精品久久久久久| 日本vs欧美在线观看视频| 最近最新中文字幕免费大全7| 国产高清国产精品国产三级| 亚洲精品av麻豆狂野| 国产免费一区二区三区四区乱码| 日韩免费高清中文字幕av| 在线免费观看不下载黄p国产| 亚洲精品国产av蜜桃| 日韩欧美一区视频在线观看| 国产淫语在线视频| 一区二区日韩欧美中文字幕| 男女无遮挡免费网站观看| 黄片小视频在线播放| 免费高清在线观看日韩| 国产精品一国产av| 日日撸夜夜添| 色吧在线观看| 国产精品免费大片| 免费av中文字幕在线| 久久久久人妻精品一区果冻| 亚洲精品国产色婷婷电影| 久久青草综合色| av电影中文网址| 水蜜桃什么品种好| 另类精品久久| 少妇精品久久久久久久| 久久久久国产网址| 美女大奶头黄色视频| 国产精品国产三级专区第一集| 亚洲精品久久久久久婷婷小说| 国产 一区精品| 中文字幕人妻熟女乱码| 中文字幕人妻熟女乱码| 亚洲伊人久久精品综合| 精品午夜福利在线看| 多毛熟女@视频| 青春草亚洲视频在线观看| av国产精品久久久久影院| 久久精品国产综合久久久| 女性被躁到高潮视频| 狂野欧美激情性bbbbbb| 久久久久久免费高清国产稀缺| 国产精品久久久久久久久免| 久久久久久人妻| 日本91视频免费播放| 在线观看免费视频网站a站| 免费在线观看完整版高清| 免费大片黄手机在线观看| 国产男女超爽视频在线观看| 成人毛片60女人毛片免费| 永久免费av网站大全| 亚洲精品久久久久久婷婷小说| 亚洲av男天堂| 亚洲色图综合在线观看| 在现免费观看毛片| 亚洲国产色片| 妹子高潮喷水视频| 人人妻人人爽人人添夜夜欢视频| 欧美日韩成人在线一区二区| 久久影院123| 久久97久久精品| 精品久久久精品久久久| 妹子高潮喷水视频| 免费少妇av软件| 美女脱内裤让男人舔精品视频| 国产男女内射视频| 黄片播放在线免费| 免费黄色在线免费观看| 欧美精品高潮呻吟av久久| 高清视频免费观看一区二区| 天天操日日干夜夜撸| 极品人妻少妇av视频| 久久 成人 亚洲| 欧美日韩亚洲高清精品| 免费看不卡的av| 国产av码专区亚洲av| 91午夜精品亚洲一区二区三区| 91国产中文字幕| xxx大片免费视频| 亚洲情色 制服丝袜| 狂野欧美激情性bbbbbb| 免费黄频网站在线观看国产| 伦理电影大哥的女人| 亚洲精品日韩在线中文字幕| 美女国产视频在线观看| 色视频在线一区二区三区| 亚洲精品成人av观看孕妇| 国产在线一区二区三区精| 亚洲,欧美精品.| 叶爱在线成人免费视频播放| 日本午夜av视频| 国产片内射在线| 热99国产精品久久久久久7| 久久久久久久大尺度免费视频| 男人舔女人的私密视频| 秋霞伦理黄片| 成人毛片60女人毛片免费| 成年女人毛片免费观看观看9 | 国产有黄有色有爽视频| 亚洲精品视频女| 爱豆传媒免费全集在线观看| 青青草视频在线视频观看| 国产精品熟女久久久久浪| 免费黄网站久久成人精品| 国产又色又爽无遮挡免| 午夜福利在线观看免费完整高清在| 国产欧美日韩综合在线一区二区| 搡老乐熟女国产| 精品少妇一区二区三区视频日本电影 | 国产高清不卡午夜福利| 亚洲av欧美aⅴ国产| av福利片在线| www.精华液| av国产久精品久网站免费入址| 一边摸一边做爽爽视频免费| 国产亚洲av片在线观看秒播厂| 国产伦理片在线播放av一区| 日本-黄色视频高清免费观看| 亚洲色图 男人天堂 中文字幕| 精品午夜福利在线看| 一二三四中文在线观看免费高清| 9热在线视频观看99| 亚洲伊人色综图| 久久av网站| 美女大奶头黄色视频| 国产国语露脸激情在线看| 久久99热这里只频精品6学生| 亚洲国产成人一精品久久久| 日韩熟女老妇一区二区性免费视频| 99热国产这里只有精品6| 国精品久久久久久国模美| 国产成人aa在线观看| 黄色 视频免费看| 一区二区日韩欧美中文字幕| 丝袜人妻中文字幕| 制服人妻中文乱码| 建设人人有责人人尽责人人享有的| 久久鲁丝午夜福利片| 亚洲欧美成人综合另类久久久| 日韩欧美精品免费久久| 久久精品国产亚洲av天美| 亚洲成av片中文字幕在线观看 | 亚洲内射少妇av| 欧美精品亚洲一区二区| 蜜桃在线观看..| 国产一区二区三区av在线| 天堂8中文在线网| 天堂俺去俺来也www色官网| 老女人水多毛片| 99国产精品免费福利视频| 精品人妻偷拍中文字幕| 亚洲成国产人片在线观看| av不卡在线播放| 精品视频人人做人人爽| 母亲3免费完整高清在线观看 | 国产1区2区3区精品| 免费黄网站久久成人精品| 久久女婷五月综合色啪小说| 搡女人真爽免费视频火全软件| 亚洲色图综合在线观看| 久久久久久免费高清国产稀缺| 美女高潮到喷水免费观看| 99久久中文字幕三级久久日本| 久久国内精品自在自线图片| 午夜福利乱码中文字幕| 日韩人妻精品一区2区三区| 成人影院久久| 免费黄色在线免费观看| 国产精品蜜桃在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产成人精品久久二区二区91 | 1024视频免费在线观看| 综合色丁香网| 国产在线一区二区三区精| 在线天堂中文资源库| av在线观看视频网站免费| 有码 亚洲区| 黄色视频在线播放观看不卡| 国产免费又黄又爽又色| 久久久国产欧美日韩av| 老汉色av国产亚洲站长工具| 亚洲天堂av无毛| 亚洲 欧美一区二区三区| 欧美成人精品欧美一级黄| 久久久久精品人妻al黑| 婷婷色综合大香蕉| 啦啦啦在线免费观看视频4| 精品亚洲乱码少妇综合久久| 夫妻性生交免费视频一级片| 可以免费在线观看a视频的电影网站 | 国产成人精品无人区| 可以免费在线观看a视频的电影网站 | 街头女战士在线观看网站| av天堂久久9| 婷婷色av中文字幕| 美女高潮到喷水免费观看| 中文字幕人妻熟女乱码| 人妻人人澡人人爽人人| 美女中出高潮动态图| 少妇被粗大猛烈的视频| 2021少妇久久久久久久久久久| 80岁老熟妇乱子伦牲交| 亚洲一码二码三码区别大吗| 午夜激情久久久久久久| 水蜜桃什么品种好| 日韩在线高清观看一区二区三区| 免费人妻精品一区二区三区视频| 卡戴珊不雅视频在线播放| 美女午夜性视频免费| 久久精品亚洲av国产电影网| 男男h啪啪无遮挡| 91成人精品电影| 最近最新中文字幕大全免费视频 | 精品少妇黑人巨大在线播放| av免费在线看不卡| 少妇人妻精品综合一区二区| 精品人妻熟女毛片av久久网站| 欧美日韩一级在线毛片| 99九九在线精品视频| 亚洲国产精品国产精品| 99国产综合亚洲精品| 人人妻人人爽人人添夜夜欢视频| av网站在线播放免费| 国产视频首页在线观看| 久久精品国产亚洲av天美| 最新的欧美精品一区二区| 国产免费视频播放在线视频| av国产精品久久久久影院| 午夜福利一区二区在线看| 中文字幕色久视频| 天天影视国产精品| 国产97色在线日韩免费| 久久久久久人妻| 免费高清在线观看视频在线观看| 欧美日韩精品网址| 亚洲av中文av极速乱| 777久久人妻少妇嫩草av网站| 满18在线观看网站| 免费日韩欧美在线观看| 久久人妻熟女aⅴ| 不卡av一区二区三区| 成人亚洲欧美一区二区av| 午夜91福利影院| 波野结衣二区三区在线| 美国免费a级毛片| 在线天堂最新版资源| 春色校园在线视频观看| 国产成人精品久久二区二区91 | 久久精品国产亚洲av天美| 日韩一卡2卡3卡4卡2021年| 日日啪夜夜爽| 成人国产麻豆网| 亚洲精品一区蜜桃| 久久久久视频综合| 久久婷婷青草| 制服人妻中文乱码| 欧美黄色片欧美黄色片| 啦啦啦中文免费视频观看日本| 久久久久国产网址| 精品国产国语对白av| 色网站视频免费| 欧美日韩国产mv在线观看视频| 亚洲中文av在线| 一二三四中文在线观看免费高清| 欧美激情极品国产一区二区三区| 好男人视频免费观看在线| 99国产综合亚洲精品| 一本大道久久a久久精品| 亚洲欧美精品自产自拍| 久久久久网色| 亚洲精品日韩在线中文字幕| 超碰97精品在线观看| 五月伊人婷婷丁香| 伊人久久国产一区二区| 有码 亚洲区| 午夜免费男女啪啪视频观看| 国产精品无大码| 丰满饥渴人妻一区二区三| 国产精品国产三级专区第一集| 黄色 视频免费看| 免费播放大片免费观看视频在线观看| videos熟女内射| 大码成人一级视频| 亚洲人成网站在线观看播放| xxxhd国产人妻xxx| 看十八女毛片水多多多| 久久国内精品自在自线图片| 日韩人妻精品一区2区三区| 69精品国产乱码久久久| 老熟女久久久| 欧美精品国产亚洲| 亚洲欧美成人精品一区二区| 久久97久久精品| 国产男女超爽视频在线观看| 夜夜骑夜夜射夜夜干| 亚洲精品aⅴ在线观看| 在线免费观看不下载黄p国产| 两性夫妻黄色片| 999久久久国产精品视频| 国产成人免费观看mmmm| 日韩精品免费视频一区二区三区| 丰满迷人的少妇在线观看| 欧美日本中文国产一区发布| 天堂8中文在线网| 亚洲中文av在线| 亚洲av免费高清在线观看| 男女啪啪激烈高潮av片| 久热久热在线精品观看| 国产成人免费观看mmmm| 国产精品国产av在线观看| 校园人妻丝袜中文字幕| av.在线天堂| 国产黄色视频一区二区在线观看| 亚洲熟女精品中文字幕| 男女午夜视频在线观看| 午夜久久久在线观看| 午夜福利,免费看| 国产免费视频播放在线视频| 亚洲一码二码三码区别大吗| 一区二区三区激情视频| 制服诱惑二区| av在线老鸭窝| 搡老乐熟女国产| 国产成人精品福利久久| 免费在线观看视频国产中文字幕亚洲 | 伊人亚洲综合成人网| 亚洲三区欧美一区| 搡女人真爽免费视频火全软件| 欧美精品高潮呻吟av久久| 在线观看国产h片| 美女高潮到喷水免费观看| 又黄又粗又硬又大视频| freevideosex欧美| 欧美成人午夜免费资源| 2018国产大陆天天弄谢| 久久精品国产亚洲av涩爱| 亚洲欧美清纯卡通| 丝袜人妻中文字幕| 九九爱精品视频在线观看| 亚洲国产欧美在线一区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一区二区日韩欧美中文字幕| 精品少妇久久久久久888优播| 色网站视频免费| 少妇人妻精品综合一区二区| 最新中文字幕久久久久| 亚洲国产看品久久| 黄色怎么调成土黄色| 精品国产一区二区三区久久久樱花| 久久久久国产精品人妻一区二区| 看非洲黑人一级黄片| 亚洲欧美色中文字幕在线| 久久ye,这里只有精品| 成人免费观看视频高清| 曰老女人黄片| 久久久久精品久久久久真实原创| 美女午夜性视频免费| 黄片播放在线免费| 免费观看在线日韩| 建设人人有责人人尽责人人享有的| 搡女人真爽免费视频火全软件| 一区二区日韩欧美中文字幕| 男男h啪啪无遮挡| 亚洲精品aⅴ在线观看| 久久久久久人人人人人| 亚洲综合色网址| 亚洲久久久国产精品| 亚洲综合精品二区| av在线观看视频网站免费| 精品亚洲乱码少妇综合久久| 男女高潮啪啪啪动态图| 老司机影院毛片| 麻豆乱淫一区二区| 亚洲伊人久久精品综合| 国产精品不卡视频一区二区| 精品国产国语对白av| 最新的欧美精品一区二区| 高清在线视频一区二区三区| 成人漫画全彩无遮挡| 亚洲成人av在线免费| 亚洲欧美日韩另类电影网站| 国产成人免费观看mmmm| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久精品国产亚洲av涩爱| 欧美国产精品va在线观看不卡| 中文欧美无线码| 免费黄频网站在线观看国产| 国产一区二区 视频在线| 99国产综合亚洲精品| 天堂俺去俺来也www色官网| 日日撸夜夜添| 欧美老熟妇乱子伦牲交| 人妻人人澡人人爽人人| 国产一区二区三区av在线| 国产精品麻豆人妻色哟哟久久| 9色porny在线观看| 免费观看在线日韩| 女人被躁到高潮嗷嗷叫费观| 国产亚洲欧美精品永久| 岛国毛片在线播放| 欧美日韩av久久| 国产麻豆69| 国产又色又爽无遮挡免| 亚洲国产最新在线播放| 大香蕉久久成人网| 精品一区二区三卡| 久久 成人 亚洲| 1024视频免费在线观看| 精品亚洲成国产av| 久久精品久久精品一区二区三区| 国产成人精品无人区| 纯流量卡能插随身wifi吗| 午夜久久久在线观看| 免费高清在线观看日韩| 热re99久久精品国产66热6| 国产一区亚洲一区在线观看| 欧美日本中文国产一区发布| 九色亚洲精品在线播放| 日韩制服骚丝袜av| a级片在线免费高清观看视频| 丰满少妇做爰视频| 大香蕉久久成人网| 日韩电影二区| 国产精品久久久久久av不卡| 免费人妻精品一区二区三区视频| 久久久a久久爽久久v久久| 日韩成人av中文字幕在线观看| 成人毛片a级毛片在线播放| 亚洲美女搞黄在线观看| 中文字幕最新亚洲高清| 国产免费福利视频在线观看| 午夜精品国产一区二区电影| 欧美国产精品一级二级三级| 国产有黄有色有爽视频| 亚洲精品中文字幕在线视频| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产精品成人久久小说| 亚洲欧洲国产日韩| 久久毛片免费看一区二区三区| 一区二区三区乱码不卡18| 国产精品一国产av| 在线观看免费视频网站a站| 国产免费一区二区三区四区乱码| 超色免费av| 亚洲第一av免费看| 国产免费视频播放在线视频| 只有这里有精品99| h视频一区二区三区| 亚洲精品国产av成人精品|