• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A new nano-scale surface marking technique for the deformation analysis of Mg-based alloys

    2022-10-24 13:25:36HungXuTngNie
    Journal of Magnesium and Alloys 2022年9期

    Y.H.Hung ,S.W.Xu ,W.N.Tng ,J.F.Nie,*

    aDepartment of Materials Science and Engineering,Monash University,Victoria 3800,Australia

    b Automotive Steel Research Institute,Research Institute (R&D Centre),Baowu Iron &Steel Co.Ltd.,Shanghai 201900,China

    Abstract In this work a new nanoscale surface marking technique,namely electron beam damage induced surface marking (EBDISM),is developed and tested for the first time on a fine-grained pure Mg surface.This technique utilizes focused high-energy electron beam of a scanning electron microscope to “burn” dense arrays of nano-scale grid patterns on the sample surface,and it is proved to be very effective for identifying and measuring localised deformation behaviours.However,the surface marking deposited by EBDISM is not permanent and it tends to deteriorate overtime.Cheap,easy to use and versatile,the EBDISM technique has a huge potential for quantitative measurement of strain field and nano-scale deformation analysis.

    Keywords: Magnesium alloy;Fine grain structure;Deformation analysis;Surface patterning;Deformation field.

    1.Introduction

    Although Mg and most of its alloys are considered to have poor room temperature ductility,recent discoveries have showed that Mg can also be super-formable when its grain size is sufficiently small (close to 1 μm),thanks to the significantly increased activities of grain boundary sliding and dynamic recrystallization [1].Considerable interests have grown recently in studying the deformation mechanisms of finegrained Mg-based alloys [2–8].However,it is very challenging to characterise the deformation mechanisms in the finegrained Mg alloys,because a great portion of deformation activities is highly localised at grain boundaries (e.g.grain boundary sliding) [9],which are difficult to identify,track and measure by conventional optical and scanning electron microscopy.It is also difficult to use conventional electron back-scattered diffraction (EBSD) to analyse the localised deformation,since EBSD mapping cannot obtain quality diffraction signal at grain boundaries and heavily deformed regions[10–12].

    Surface marking is an important method for distinguishing localised deformation and measuring macroscopic in-plane displacement of a deformed sample surface [13,14].It is done by depositing highly distinguishable surface marks (random paint speckles,dots or patterns) on a flat sample surface before deformation,then based on the geometrical changes of the surface marking after the plastic deformation,the localised deformation on the sample surface can be distinguished and quantified[15].However,since the traditional surface marking method involves printing with inks,pigments or engraving the surface mechanically,the scale of the marking result is usually too large (from 1 mm to 100 μm) and not suitable for nanoscale deformation analysis [16].Very recently,advanced surface marking techniques such as gold nano particle sputtering and photo/e-beam lithography are developed for nano-scale deformation analysis,which can achieve a surface resolution of~10 nm [17–20].However,these techniques involve the use of specialised equipment and consumables to mark the sample surface,making it expensive,complicated and time consuming for sample preparation.Therefore,a cheap and easy nano-scale surface marking technique is much desired for the study of plastic deformation of fine-grained Mg alloys.

    In this work,we have developed a new nano-scale surface marking technique: namelyelectron beam damage induced surface marking(EBDISM),which uses a focused electron beam in a scanning electron microscopy(SEM)to“burn”visible marks on the polished Mg sample surface.The working principle of this surface marking technique is inspired by a commonly seen phenomenon called “beam damage” in SEM operations,that the area of the observation tend to gradually change contrast (become darker or brighter) over time under continuous exposure to the high-energy electron beam.This new technique can quickly and cheaply create an extremely dense array of highly distinguishable marking points on polished Mg sample surface by only using a standard SEM and EBSD.

    2.Materials and methods

    The sample tested for surface marking in this work are cut from fine-grained pure-Mg sheets (grain size~4 μm) that are produced by severe plastic deformation (low-temperature extrusion and subsequent high strain-rate rolling).The thin sheets were cut into strips along the rolling direction (RD)with a dimension of 50 mm × 5 mm × 1 mm,the side(cross-section parallel to RD and ND) of these strips were then metallographically prepared using SiC papers and subsequently polished by 50 nm diameter silica suspension.

    The marking and subsequent SEM characterisation was performed on JEOL 7001F scanning electron microscope equipped with EBSD detector of OXFORD instruments.Controlled by SEM operating software and the AZtec EBSD software by OXFORD instruments,the electron beam automatically marks an array of points (one point at a time).The electron beam accelerating voltage was set to be 30 kV,and the beam current~14 nA.For each marking point,the exposure time was set to be 20–50 ms to ensure sufficient beam damage for sharp marking result.After surface marking,10%of tensile strain was applied to the sample by a tensile test machine.

    3.Results

    3.1.Surface marking of EBDISM

    The marking result of the EBDISM is shown in Fig.1.The secondary electron(SE)image(Fig.1a)shows that dense arrays of bright marker points were deposited on the sample surface by EBDISM,and these marker points are sharp and much brighter than the surrounding area.When taking a closer look of each individual marker points (Fig.1b),it can be found that they are slightly elongated since the sample was tilted during the marking process (same as that needed for EBSD operation).The marking points are evenly distributed and have a uniform inter-spacing,forming a grid-like surface pattern.The distance between two adjacent marking points is less than 100 nm but still has plenty of inter-spacing for good point-to-point sharpness,which is enough for measuring localised deformation with nano-scale precision and accuracy.Fig.1c is the 3-dimensional graph showing the pixel intensity within the 1 μm × 1 μm sampled area,indicated by the redcolour square frame in Fig.1b.With proper image processing,the contrast of these marking points can be further enhanced for visual analysing.Since the image is an 8-bit Tiff image,there is a total of 256 level of intensity,at the centre of the marking points,the intensity can be as high as 255 while the surroundings as low as 0.Hence,this new surface marking technique yields very good special resolution and sharpness,which has great potential for applications involving computeraided digital image correlation and strain mapping.

    3.2.Surface deformation analysis using EBDISM

    After surface marking,10% of tensile strain was then applied to the fine-grained pure-Mg sample.Fig.2 shows a SE image of the deformed sample surface.From the SE image,deformation traces such as inter-granular cracks,twin bands,and grain boundary sliding are readily visible.With the distorted and mismatched arrays of surface marking points lying on these deformation traces,the localised surface displacement as well as tear and shear can be easily identified by visual observation.

    To show how effective this new surface marking can distinguish even the tiniest localised deformation,In Fig.2b we highlighted two of the surface-marked guidelines running through the area from top to bottom.By close examination of this area,discontinuity of the guidelines can be found at the grain boundary,indicating sliding movement occurred at the grain boundary.Some slip traces can also be observed,and it is interesting to see the guidelines across through the slip traces gradually change its direction,which indicates an obvious shear deformation.In addition,a close-up of the SE image of twin band is shown in Fig.2c,and by drawing marked guidelines across through the twin band,it can be seen that the guidelines abruptly change their directions after they have entered the twin band and change back to their original directions when they exit the twin band.Such guideline direction change indicates the shear deformation are accommodated by the formation of twin band:the wider the twin band,the more shear strain can be accommodated,which explains why twin bands tend to grow wider as deformation continues.

    3.3.Image quality deterioration of EBDISM

    Fig.1.Electron beam damage induced surface marking on polished fine-grained pure-Mg surface.(a) Secondary electron (SE) image showing the surface marking grids (b) zoomed in SE image showing the array of each individual marking points.(c) The pixel intensity 3-dimensional chart within the square of 1 μm × 1 μm (marked by the red-colour square frame in (b)).

    Although the newly developed EBDISM technique is a very effective method for surface marking and nano-scale deformation analysis,it has a drawback that the quality (sharpness of the marking point) of the EBDISM can gradually deteriorate over time.An example is shown in Fig.3 where a fresh surface marking and its two-day-old surface marking(same area in the same sample but after two days of exposure at room temperature) are put side-by-side for the purpose of comparison.After the two days storage,the surface marking turned blurry,and it is no longer easy to identify each individual marking points.Since fine-grained Mg samples tend to form oxidation layer much faster than coarse-grained samples[21],and it is also well known that a freshly polished Mg sample generally yields better quality SEM and EBSD results than an old sample [22],such surface marking deterioration originates from the formation of new oxidation layer at the surface marking spots when exposed to air in the atmosphere,which blocks the electronic beam from penetrating the sample surface,leading to weaker secondary electron signal generation during the SEM characterisation.Therefore,to avoid such surface marking image deterioration,preservation of EBDISM treated samples (storage in vacuum or an inert-gas environment) and/or immediate deformation and characterisation to minimize air exposure are recommended.

    4.Discussion

    4.1.Surface marking mechanism of EBDISM

    We have shown that the EBDISM technique can create high-contrast surface marking points on Mg surface.However,the detailed mechanism about how these marking points are exactly created by electron beam is still not fully understood.These highly visible surface marks are thought to be generated by the “beam damage” [23]: the material on the sample surface gets damaged by the exposure to the high energy electron beam.Since metal itself is unlikely to be damaged by electron beam due to its strong metallic bond and high conductivity (both thermal and electrical),the beam damage is most likely to originate from the surface contamination and the oxidation layer on the Mg sample surface.

    Fig.2.Deformed fine-grained pure-Mg sample surface with surface marking (sample was tilted to reveal more topographical details).(a) Overview of the sample surface with area of interest (red and green rectangle).(b) Zoomed area showing grain boundary sliding,cracks and slip traces (red rectangle area in picture a).(c) Zoomed area showing twin bands and twisted surface marking (grain rectangle area in picture a).

    Fig.3.SE images showing the quality deterioration of EBDISM.(a) Marking points array right after EBDISM.(b) Marking points array after 2 days of room-temperature storage.

    Surface contaminations(hydrocarbons such as ethanol,polishing solvent) are not easy to be completely cleaned after sample preparation,leaving a thin film attached to the metal surface.The electron beam could break apart the molecular structure of these contaminations,forming new compounds bonding with the sample surface [23],which usually results in a dark area when observed in SEM.However,in the case of our surface marked Mg-based samples,the marking point are far brighter than the surrounding areas in SE images,indicating that these marked points generate higher number of secondary electrons when scanned in SEM.Since surface carbonization,which darkens the image,and oxidation removal,which brightens the image,have completely opposite effects,it is recommended that no organic solvent to be used during sample preparation for best marking results (to avoid surface carbonization during SEM observation).

    Therefore,we suspect that the “bright dots” deposited by the EBDISM technique on the Mg sample surface are created by the removal of oxidation layer.The original oxidation layer formed on the sample surface could be thinned down by the bombardment of high current density,high energy electron beam,thus resulting in “burnt” points on the Mg surface that are brighter in the SE image.

    4.2.Potential applications of EBDISM

    With a nano-scale pattern marking capability,the EBDISM technique can be a powerful tool for localised deformation quantification and strain field analysis.An example of utilizing the EBDISM technique for deformation analysis is presented in Fig.4,where the deformed marking pattern on a severely bent Mg sheet sample is mapped by reconstructed grid-lines (Fig.4b).Based on the distortion on each intersecting square,the extent and direction of shear,tension or compression can be intuitively obtained.Furthermore,by quantitatively measuring and calculating the distortion of each of these grids,a deformation strain field map can also be generated for more sophisticated study purposes (methods for measuring deformed grid and strain calculation are based on Ishikawa’s work [19]).

    Fig.4.(a) SE image showing the cross-section of a EBDISM marked,fined-grained pure-Mg sheet sample after bending deformation,and (b) same image mapped with grid-line for easy measuring and analysis.(c) Strain filed colour map based on grid-line distortion calculation.

    5.Conclusion

    In summary,for the first time,a new nano-scale surface marking technique is developed by utilizing high energy electron beam in SEM and tested on fine-grained Mg samples.This technique is proved to be a very effective method for identifying and measuring subtle localised deformations (e.g.grain boundary sliding,slip traces,nano-twinning) in the study of Mg and its alloys.The sample preparation procedure for the EBDISM technique is easy (only requires simple polishing before surface marking),and the surface marking quality is surprisingly good,that a clear grid pattern consisting arrays of high-contrast marker points are deposited on the sample surface,which are highly visible in SEM observations.This new surface marking technique offers new possibilities in precise deformation quantifications (strain field analysis,slip identification and characterisation,etc.).However,it is also discovered that the surface marking created by this method is not permanent and tends to fade over time.Hence,immediate actions of deformation experiments and characterisation are highly recommended after the EBDISM.

    Acknowledgements

    The authors are grateful for support from the Australian Research Council (LP180100048) and Baosteel Company.Y.H.Huang wishes to acknowledge the Monash Postgraduate Award,International Postgraduate Research Scholarship,and the access of instruments and scientific and technical assistance at the Monash Centre for Electron Microscopy,a Node of Microscopy Australia.

    高清av免费在线| 色婷婷av一区二区三区视频| 男女无遮挡免费网站观看| 97人妻天天添夜夜摸| 欧美中文综合在线视频| 日韩一卡2卡3卡4卡2021年| 后天国语完整版免费观看| 久久久久国内视频| 国产成人精品无人区| 黄频高清免费视频| 国产一卡二卡三卡精品| 国产精品麻豆人妻色哟哟久久| 乱人伦中国视频| 亚洲专区中文字幕在线| 久久久久久免费高清国产稀缺| 搡老乐熟女国产| 757午夜福利合集在线观看| 在线十欧美十亚洲十日本专区| 国产精品99久久99久久久不卡| 亚洲欧美精品综合一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 在线看a的网站| 国产有黄有色有爽视频| 男女之事视频高清在线观看| 精品久久久久久久毛片微露脸| 性高湖久久久久久久久免费观看| 在线天堂中文资源库| 亚洲精品美女久久久久99蜜臀| 91麻豆精品激情在线观看国产 | 亚洲精品在线美女| 女人精品久久久久毛片| 18禁黄网站禁片午夜丰满| 成年人黄色毛片网站| 亚洲黑人精品在线| 久久精品国产亚洲av高清一级| 国产欧美日韩精品亚洲av| 国产91精品成人一区二区三区 | 亚洲伊人久久精品综合| 久久这里只有精品19| 两性夫妻黄色片| 久久香蕉激情| 如日韩欧美国产精品一区二区三区| 国产色视频综合| 别揉我奶头~嗯~啊~动态视频| 国产精品偷伦视频观看了| 亚洲一区二区三区欧美精品| 一级,二级,三级黄色视频| 欧美在线一区亚洲| 亚洲黑人精品在线| 国产免费福利视频在线观看| 日韩熟女老妇一区二区性免费视频| 精品少妇黑人巨大在线播放| 视频区欧美日本亚洲| 欧美日韩亚洲综合一区二区三区_| 亚洲av美国av| 99在线人妻在线中文字幕 | kizo精华| 日本精品一区二区三区蜜桃| 欧美黄色片欧美黄色片| 黄片小视频在线播放| 久久中文看片网| 另类亚洲欧美激情| 日本欧美视频一区| 亚洲精品在线观看二区| 天堂俺去俺来也www色官网| av免费在线观看网站| 热99国产精品久久久久久7| 欧美 亚洲 国产 日韩一| 天天躁日日躁夜夜躁夜夜| 亚洲精品av麻豆狂野| 亚洲中文日韩欧美视频| 少妇猛男粗大的猛烈进出视频| 高潮久久久久久久久久久不卡| 怎么达到女性高潮| 黄色怎么调成土黄色| 亚洲情色 制服丝袜| 久久人妻熟女aⅴ| 99re在线观看精品视频| 国产男靠女视频免费网站| 国产一区有黄有色的免费视频| 精品亚洲成a人片在线观看| 成人国产一区最新在线观看| 黄色怎么调成土黄色| 丝袜美足系列| 日韩免费高清中文字幕av| 精品少妇内射三级| 一本—道久久a久久精品蜜桃钙片| 亚洲熟女精品中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 大香蕉久久成人网| 肉色欧美久久久久久久蜜桃| 精品久久久久久久毛片微露脸| 免费高清在线观看日韩| videosex国产| 精品国产一区二区三区久久久樱花| 亚洲精品美女久久av网站| 欧美变态另类bdsm刘玥| 久热这里只有精品99| 国产免费av片在线观看野外av| 少妇被粗大的猛进出69影院| 考比视频在线观看| 97在线人人人人妻| 国产精品久久久av美女十八| 国产日韩欧美亚洲二区| 搡老岳熟女国产| 亚洲第一av免费看| 久久亚洲精品不卡| 考比视频在线观看| a级片在线免费高清观看视频| 国产在线免费精品| 国产精品一区二区在线观看99| 国产精品久久久久久人妻精品电影 | 午夜日韩欧美国产| 99精品在免费线老司机午夜| 欧美精品啪啪一区二区三区| 国产精品1区2区在线观看. | 色综合欧美亚洲国产小说| www.精华液| av天堂久久9| 少妇猛男粗大的猛烈进出视频| 老司机深夜福利视频在线观看| 成年女人毛片免费观看观看9 | 另类精品久久| 一级黄色大片毛片| 侵犯人妻中文字幕一二三四区| 婷婷成人精品国产| 婷婷成人精品国产| 自线自在国产av| 人妻 亚洲 视频| 男女之事视频高清在线观看| 精品国产乱码久久久久久小说| 国产精品一区二区免费欧美| 亚洲欧美精品综合一区二区三区| 国产成人系列免费观看| 女性生殖器流出的白浆| 国产成人精品无人区| 最新的欧美精品一区二区| 免费在线观看黄色视频的| 国产精品亚洲av一区麻豆| www.熟女人妻精品国产| 少妇猛男粗大的猛烈进出视频| 9191精品国产免费久久| 亚洲一区中文字幕在线| 欧美亚洲日本最大视频资源| 国产深夜福利视频在线观看| 国产高清激情床上av| 蜜桃在线观看..| 国产精品.久久久| 18在线观看网站| 国产麻豆69| 欧美日韩亚洲国产一区二区在线观看 | 老熟妇仑乱视频hdxx| 欧美av亚洲av综合av国产av| h视频一区二区三区| 大香蕉久久网| 人成视频在线观看免费观看| 亚洲天堂av无毛| 老司机福利观看| 丁香六月欧美| 久热爱精品视频在线9| 女人高潮潮喷娇喘18禁视频| 免费看a级黄色片| 1024香蕉在线观看| 免费高清在线观看日韩| 久久精品91无色码中文字幕| 亚洲国产av新网站| 中文字幕最新亚洲高清| 精品少妇内射三级| 午夜两性在线视频| 少妇精品久久久久久久| 精品人妻熟女毛片av久久网站| 久久久久久久精品吃奶| 国产精品美女特级片免费视频播放器 | 午夜福利在线免费观看网站| 午夜福利在线观看吧| 成年人黄色毛片网站| 日韩有码中文字幕| 久久ye,这里只有精品| 12—13女人毛片做爰片一| 一边摸一边做爽爽视频免费| 亚洲美女黄片视频| 成人免费观看视频高清| 这个男人来自地球电影免费观看| tocl精华| 国产成人啪精品午夜网站| 久久国产亚洲av麻豆专区| 丝袜在线中文字幕| 亚洲精品一二三| 亚洲一码二码三码区别大吗| 欧美人与性动交α欧美精品济南到| 色尼玛亚洲综合影院| 热re99久久国产66热| 欧美亚洲日本最大视频资源| 两个人免费观看高清视频| 免费观看人在逋| 国产成人一区二区三区免费视频网站| 国产高清videossex| 免费日韩欧美在线观看| 热re99久久精品国产66热6| 国产真人三级小视频在线观看| 美女高潮喷水抽搐中文字幕| 亚洲国产欧美一区二区综合| av又黄又爽大尺度在线免费看| 天天躁日日躁夜夜躁夜夜| 纯流量卡能插随身wifi吗| 1024香蕉在线观看| 精品福利永久在线观看| 亚洲成a人片在线一区二区| 人人妻人人添人人爽欧美一区卜| 国产精品久久久久久精品电影小说| 国产野战对白在线观看| 在线天堂中文资源库| 亚洲五月婷婷丁香| 一本色道久久久久久精品综合| 亚洲精品av麻豆狂野| 成人特级黄色片久久久久久久 | 黄色视频,在线免费观看| 一区在线观看完整版| 国产精品免费大片| 超碰成人久久| 极品少妇高潮喷水抽搐| 欧美激情极品国产一区二区三区| 青草久久国产| 国产aⅴ精品一区二区三区波| 黄色成人免费大全| 精品国产一区二区三区四区第35| 狠狠婷婷综合久久久久久88av| 国产成人一区二区三区免费视频网站| 精品国内亚洲2022精品成人 | 精品国产乱子伦一区二区三区| 麻豆成人av在线观看| 久久精品国产亚洲av香蕉五月 | 一边摸一边抽搐一进一小说 | 91麻豆av在线| 香蕉久久夜色| 狠狠精品人妻久久久久久综合| 啦啦啦 在线观看视频| 亚洲一区二区三区欧美精品| 老司机福利观看| 老司机深夜福利视频在线观看| 欧美av亚洲av综合av国产av| 天天添夜夜摸| 亚洲国产av影院在线观看| 丝袜美足系列| 99久久人妻综合| 久久久国产精品麻豆| 精品一区二区三区四区五区乱码| 中文字幕高清在线视频| 久久久久久人人人人人| 亚洲精品美女久久久久99蜜臀| 黄片大片在线免费观看| 免费av中文字幕在线| 欧美精品啪啪一区二区三区| 天天影视国产精品| 99国产精品一区二区蜜桃av | 91大片在线观看| 国产精品1区2区在线观看. | 999精品在线视频| 久久中文看片网| 久久精品亚洲av国产电影网| 最近最新中文字幕大全电影3 | 欧美亚洲 丝袜 人妻 在线| 亚洲第一欧美日韩一区二区三区 | 国产在线观看jvid| 国产男女超爽视频在线观看| 精品国产一区二区久久| 中文字幕高清在线视频| 水蜜桃什么品种好| 在线观看免费视频网站a站| 亚洲一码二码三码区别大吗| 欧美成人免费av一区二区三区 | 成人影院久久| 久久久久久免费高清国产稀缺| 亚洲男人天堂网一区| 女警被强在线播放| 99国产精品99久久久久| 少妇粗大呻吟视频| 午夜福利在线免费观看网站| 一本色道久久久久久精品综合| 夜夜骑夜夜射夜夜干| 久久国产精品男人的天堂亚洲| 免费观看人在逋| 人妻久久中文字幕网| 欧美人与性动交α欧美软件| 天天影视国产精品| 国产精品久久久久久人妻精品电影 | 亚洲成人手机| 国产日韩欧美亚洲二区| 久久中文字幕人妻熟女| 久久久久久亚洲精品国产蜜桃av| 国产一卡二卡三卡精品| 精品久久久久久久毛片微露脸| 18禁黄网站禁片午夜丰满| 99国产精品一区二区三区| 国产日韩欧美视频二区| 97在线人人人人妻| 一二三四社区在线视频社区8| 纵有疾风起免费观看全集完整版| 国产精品免费大片| 国产精品亚洲一级av第二区| 1024香蕉在线观看| 欧美日韩视频精品一区| 大片免费播放器 马上看| 波多野结衣av一区二区av| 在线天堂中文资源库| 成人国产av品久久久| 每晚都被弄得嗷嗷叫到高潮| 19禁男女啪啪无遮挡网站| 99久久国产精品久久久| 9191精品国产免费久久| 欧美精品高潮呻吟av久久| 交换朋友夫妻互换小说| 国产高清国产精品国产三级| 日韩一区二区三区影片| 捣出白浆h1v1| 人人妻人人澡人人看| 一区二区三区乱码不卡18| 国产精品香港三级国产av潘金莲| 老鸭窝网址在线观看| 高潮久久久久久久久久久不卡| 99国产极品粉嫩在线观看| 亚洲av第一区精品v没综合| 久久久精品94久久精品| 纯流量卡能插随身wifi吗| 亚洲精品粉嫩美女一区| 精品国产一区二区久久| 美女国产高潮福利片在线看| 国产免费av片在线观看野外av| 麻豆国产av国片精品| 午夜91福利影院| 日韩欧美三级三区| 视频区图区小说| 色婷婷久久久亚洲欧美| 中文字幕人妻丝袜一区二区| 桃花免费在线播放| 亚洲专区国产一区二区| av有码第一页| 欧美成人免费av一区二区三区 | 日日夜夜操网爽| 丝瓜视频免费看黄片| 一夜夜www| 久久久久精品国产欧美久久久| 久久婷婷成人综合色麻豆| 成在线人永久免费视频| 亚洲国产中文字幕在线视频| 一级黄色大片毛片| 五月开心婷婷网| 国产精品久久电影中文字幕 | 一本大道久久a久久精品| 日韩欧美一区视频在线观看| 亚洲天堂av无毛| 一本综合久久免费| 80岁老熟妇乱子伦牲交| av福利片在线| 女性被躁到高潮视频| 国产精品久久久人人做人人爽| 在线观看免费日韩欧美大片| 少妇猛男粗大的猛烈进出视频| 搡老岳熟女国产| 亚洲av国产av综合av卡| 亚洲色图综合在线观看| 少妇精品久久久久久久| 久久精品91无色码中文字幕| 99精品在免费线老司机午夜| 99re在线观看精品视频| 99riav亚洲国产免费| 真人做人爱边吃奶动态| 亚洲第一av免费看| 91国产中文字幕| 国产成人免费无遮挡视频| 久久精品熟女亚洲av麻豆精品| 国产熟女午夜一区二区三区| 91精品国产国语对白视频| 一个人免费看片子| 国产色视频综合| 欧美 亚洲 国产 日韩一| 亚洲男人天堂网一区| 99久久精品国产亚洲精品| 精品福利观看| 欧美激情极品国产一区二区三区| 精品久久蜜臀av无| 精品一区二区三区视频在线观看免费 | 天天操日日干夜夜撸| 欧美精品av麻豆av| 欧美+亚洲+日韩+国产| 18在线观看网站| 人人澡人人妻人| 亚洲美女黄片视频| 日韩大码丰满熟妇| 国产成人精品久久二区二区免费| 两个人免费观看高清视频| tocl精华| a级毛片黄视频| 国产精品自产拍在线观看55亚洲 | 黄片播放在线免费| 国产亚洲精品第一综合不卡| a在线观看视频网站| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成av片中文字幕在线观看| 欧美国产精品一级二级三级| 三上悠亚av全集在线观看| 男女免费视频国产| 色视频在线一区二区三区| 国产又爽黄色视频| 无人区码免费观看不卡 | cao死你这个sao货| 日日爽夜夜爽网站| 一进一出好大好爽视频| 国产区一区二久久| 一二三四在线观看免费中文在| 少妇裸体淫交视频免费看高清 | 高清在线国产一区| 亚洲少妇的诱惑av| 两性夫妻黄色片| 亚洲一区中文字幕在线| 女人久久www免费人成看片| av一本久久久久| 极品少妇高潮喷水抽搐| 成人手机av| 两性午夜刺激爽爽歪歪视频在线观看 | 涩涩av久久男人的天堂| 国产欧美日韩一区二区三| 女人精品久久久久毛片| 老熟妇仑乱视频hdxx| 超色免费av| 久久精品国产综合久久久| 亚洲第一青青草原| 亚洲国产欧美在线一区| 在线亚洲精品国产二区图片欧美| av超薄肉色丝袜交足视频| 丰满少妇做爰视频| 99re6热这里在线精品视频| √禁漫天堂资源中文www| 99久久人妻综合| 桃红色精品国产亚洲av| 色综合欧美亚洲国产小说| 一本色道久久久久久精品综合| 国产精品久久久久久精品古装| 天天操日日干夜夜撸| 亚洲国产欧美网| 欧美黄色片欧美黄色片| 色婷婷av一区二区三区视频| 丰满饥渴人妻一区二区三| 亚洲一码二码三码区别大吗| 美女福利国产在线| 久久精品国产亚洲av香蕉五月 | 欧美黄色淫秽网站| 久久久久久免费高清国产稀缺| 交换朋友夫妻互换小说| 女人爽到高潮嗷嗷叫在线视频| 国产欧美日韩精品亚洲av| 在线播放国产精品三级| 少妇精品久久久久久久| 女警被强在线播放| 另类精品久久| a级毛片在线看网站| 大片免费播放器 马上看| 久久久久精品人妻al黑| 多毛熟女@视频| 日韩成人在线观看一区二区三区| 一区在线观看完整版| 一级黄色大片毛片| 免费观看人在逋| 在线观看免费高清a一片| 欧美激情 高清一区二区三区| 亚洲avbb在线观看| 在线观看一区二区三区激情| 国产麻豆69| 久久久精品区二区三区| 电影成人av| 99国产精品99久久久久| 国产精品二区激情视频| 法律面前人人平等表现在哪些方面| 欧美av亚洲av综合av国产av| 一区二区av电影网| 亚洲精品中文字幕在线视频| 日韩大码丰满熟妇| 激情在线观看视频在线高清 | 中文字幕另类日韩欧美亚洲嫩草| 日本av手机在线免费观看| 日韩欧美一区视频在线观看| 国产单亲对白刺激| 久久精品国产a三级三级三级| 波多野结衣一区麻豆| 精品国产亚洲在线| 母亲3免费完整高清在线观看| 免费在线观看视频国产中文字幕亚洲| 大陆偷拍与自拍| 国产成人精品久久二区二区免费| 亚洲精品美女久久av网站| 成人影院久久| 国产不卡av网站在线观看| 国产激情久久老熟女| 午夜免费成人在线视频| 一进一出抽搐动态| 精品国产超薄肉色丝袜足j| 亚洲精华国产精华精| 欧美性长视频在线观看| 亚洲人成77777在线视频| 精品少妇内射三级| 欧美激情极品国产一区二区三区| 久久久久久久久免费视频了| 日韩欧美一区二区三区在线观看 | 视频在线观看一区二区三区| 色老头精品视频在线观看| 欧美激情高清一区二区三区| 国产成人精品久久二区二区免费| 女性生殖器流出的白浆| 一级毛片精品| 女人久久www免费人成看片| 亚洲av片天天在线观看| 国内毛片毛片毛片毛片毛片| av电影中文网址| 亚洲av第一区精品v没综合| 手机成人av网站| 一级,二级,三级黄色视频| 侵犯人妻中文字幕一二三四区| 99riav亚洲国产免费| 精品国产亚洲在线| 久久久国产成人免费| www.自偷自拍.com| 亚洲国产av影院在线观看| 国产男靠女视频免费网站| 亚洲免费av在线视频| 国产男靠女视频免费网站| 日本wwww免费看| 久久人人97超碰香蕉20202| 嫁个100分男人电影在线观看| 黑人操中国人逼视频| 欧美在线黄色| 麻豆国产av国片精品| 午夜福利视频精品| 黄色 视频免费看| 啦啦啦 在线观看视频| 免费观看a级毛片全部| 搡老乐熟女国产| 成人特级黄色片久久久久久久 | 国产精品偷伦视频观看了| 老司机在亚洲福利影院| 纵有疾风起免费观看全集完整版| www日本在线高清视频| 男女下面插进去视频免费观看| 岛国在线观看网站| 久久久久久久久久久久大奶| 曰老女人黄片| 精品国产乱码久久久久久男人| 国产精品熟女久久久久浪| 久久久国产精品麻豆| 男男h啪啪无遮挡| 色94色欧美一区二区| 搡老熟女国产l中国老女人| 黑丝袜美女国产一区| 欧美性长视频在线观看| 最近最新中文字幕大全免费视频| 777久久人妻少妇嫩草av网站| 亚洲一区二区三区欧美精品| 亚洲成人免费电影在线观看| 一区二区三区精品91| 黄色 视频免费看| 成人手机av| 飞空精品影院首页| 国产欧美日韩综合在线一区二区| 999久久久国产精品视频| 99久久精品国产亚洲精品| 波多野结衣av一区二区av| 欧美一级毛片孕妇| av视频免费观看在线观看| 国产片内射在线| 高清视频免费观看一区二区| 窝窝影院91人妻| 黑丝袜美女国产一区| 亚洲自偷自拍图片 自拍| 99国产精品一区二区蜜桃av | 一级a爱视频在线免费观看| 亚洲国产欧美一区二区综合| 国产日韩欧美视频二区| 99精品久久久久人妻精品| 欧美+亚洲+日韩+国产| 欧美在线一区亚洲| 一二三四在线观看免费中文在| 欧美精品一区二区免费开放| 韩国精品一区二区三区| 午夜激情久久久久久久| 另类亚洲欧美激情| 亚洲 欧美一区二区三区| 国产有黄有色有爽视频| 久久影院123| 午夜福利免费观看在线| 757午夜福利合集在线观看| 高清毛片免费观看视频网站 | 18在线观看网站| 国产无遮挡羞羞视频在线观看| 一区在线观看完整版| 亚洲全国av大片| 性少妇av在线| 精品国产一区二区三区四区第35| 国产激情久久老熟女| 蜜桃在线观看..| 国产精品一区二区免费欧美| 国产精品.久久久| 99国产精品一区二区三区| 夜夜爽天天搞| 久久久久久免费高清国产稀缺| 三级毛片av免费| 男女午夜视频在线观看| 大片电影免费在线观看免费| 久久天堂一区二区三区四区| 日日夜夜操网爽| 黄频高清免费视频| 亚洲专区国产一区二区| 欧美日韩成人在线一区二区| 亚洲全国av大片| 成人国产av品久久久| 国产色视频综合| 嫩草影视91久久|