• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Realizing number recognition with simulated quantum semi-restricted Boltzmann machine

    2022-10-22 08:14:44FuwenZhangYonggangTanandQingyuCai
    Communications in Theoretical Physics 2022年9期

    Fuwen Zhang,Yonggang Tan and Qing-yu Cai

    1 School of Physics,Zhengzhou University,Zhengzhou 450001,China

    2 Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences,Wuhan 430071,China

    3 School of Physics and Electronic Information,Luoyang Normal University,Luoyang 471934,China

    4 Center for Theoretical physics,Hainan University,Haikou 570228,China

    5 School of Information and Communication Engineering,Hainan University,Haikou 570228,China

    Abstract Quantum machine learning based on quantum algorithms may achieve an exponential speedup over classical algorithms in dealing with some problems such as clustering.In this paper,we use the method of training the lower bound of the average log likelihood function on the quantum Boltzmann machine (QBM) to recognize the handwritten number datasets and compare the training results with classical models.We find that,when the QBM is semi-restricted,the training results get better with fewer computing resources.This shows that it is necessary to design a targeted algorithm to speed up computation and save resources.

    Keywords: machine learning,quantum Boltzmann machine,quantum algorithm

    1.Introduction

    The Boltzmann machine (BM) [1]is an undirected model consisting of visible layers and hidden layers.The information is input from the visible layer and obeys the Boltzmann distribution in the hidden layer.It has been widely applied in many fields,such as phone recognition tasks [2],image recognition [3],medical health [4],the quantum many-body problem [5],and so on.In BM training,it is difficult to compute the negative phase value of the partial derivative of the average likelihood function,since its computational complexity will increase exponentially with the dimensions and the quantity of the training data.This difficulty can be solved by using Gibbs sampling to gain the expectations of the computational model.

    The mixing of the Gibbs sampler becomes slow when the sampling data are complicated.Hinton proposed the contrast divergence (CD) method [6]to solve the slow sampling problem.The method assumes that there is a fantasy particle,and N steps of Gibbs sampling at the fantasy particle are run to replace the model distribution.The CD method performs well in actual training [7].Alternatively,there is another technique to solve the model expectation named the persistent comparison divergence (PCD).The procedure is that when the state stof the fantasy particle and the corresponding parameter θtare known at time t,one can get st+δtat the time t+δt by transferring the operator.Then the parameters of the model are updated to the parameter θt+δtat the time t+δt.Different from the CD method,it requires reducing the learning rate with the update to ensure the convergence of the model [8].Deep belief networks [9]and deep BMs [10]can be obtained by using the stack of BM,the training of which could be done with the greedy layerwise strategy.The greedy layerwise strategy contains the process of pre-training the model,which is more efficient than the random selection of parameters.The deep model [11]can learn the deep patterns and the abstract concepts of data,which has great advantages over the shallow learning in learning and interpreting complicated data [12].

    Figure 1.(a) The model of fully connected BM.The blue circles represent visible units,and the red circles represent hidden units.(b) The model of RBM without lateral connectivity both in the visible units and in the hidden units.

    In practice,the dimensions and quantity of some tasks,such as computer version [13],and speech recognition [14],are usually huge,training of which requires huge computing resources.If these tasks are performed in the classical way,there are disadvantages such as slow training speed and easily falling into local minima [15].In order to overcome these shortcomings,scientists proposed to optimize classical machine learning algorithms by exploiting the potential of quantum computing[16].The combination of quantum theory with BM is generally called quantum Boltzmann machine(QBM)which can be mainly divided into two directions,one is based on the quantum variational principle method [17],and the other is based on the quantum annealing method[18].

    In the quantum variational principle method,the Gibbs state for a given Hamiltonian is approximately generated by combining the quantum approximate optimization algorithm or the variational quantum imaginary time evolution algorithm,and then the parameters can be adjusted [19,20].The quantum annealing algorithm is based on the principle of the quantum tunneling effect[21].Under the annealing condition,the quantum configuration energy will eventually evolve into the ground state and the training parameters are in the global optimal solution.Usually,annealing can be realized by using quantum annealing machines to construct a QBM model.Quantum annealing methods outperform classical methods in a number of iterations when recognizing numerical tasks[22].

    The purpose of this paper is to demonstrate the possibility of digit recognition with various QBMs,particularly the quantum semi-restricted Boltzmann machines(QSRBM).We train the dataset on a QSRBM based on the method of training the lower bound of the quantum log likelihood function and give the training fidelity.This paper is organized as follows.In the second section,the principle of BM and QBM is briefly introduced.Then we show the processing of training data and the results of training.Finally,we discuss and conclude.

    2.Quantum BM

    BM in figure 1 (a) can be changed into various machines by adjusting the connection of layers.One can get a restricted Boltzmann machine (RBM) by disconnecting the lateral connectivity in the BM.QBM can be constructed by replacing the data units with corresponding operators.

    2.1.Restricted BM

    BM is a fully connected model including the lateral connection in the layers,which may cause additional computational complexity when dealing with some problems.As an improvement in some cases,there is no such connection in the layers of RBM.Without affecting the training performance,the RBM model is simpler and more efficient [23]and has been applied to some practical problems[24,25].The energy function of the joint configuration of RBM is given by

    where viis the binary state of the visible unit i,hjis the binary state of the hidden unit j,ai,bj,wijare the connection strengths between the unit layers,and θ ∈ai,bj,wij[26].The probability distribution of the visible unit is [27]

    where Z is the partition function.The machine with connections in figure 1(b)is called RBM[28],and the hidden units of RBM are independent of given visible units.The expected value of the data can be obtained in only one parallel step,thus greatly reducing the amount of computation [27].

    Usually,the training process can be performed by minimizing the negative average log likelihood function ζ

    The parameters can be trained by taking partial derivatives of the likelihood function

    with the gradient descent algorithm [29]

    where η is the learning rate.η needs to be selected according to the actual problem: If η is too large,it is easy to miss the best solution,resulting in divergence;If η is too small,the number of the iteration steps will be too large.In equation(5),〈v〉dataare the clamped expectation with v fixed,which can be easily calculated by Gibbs sampling.〈v〉modelare the expected value of v over the model probability distribution,the calculation of 〈v〉modelrequires solving the value of the partition function Z and the parameters of the BM,which is almost incalculable and uneconomical for complicated data.The partial derivative of the negative log likelihood function can often be approximated by CD method,which uses the sampling formula [30]

    to sample the data.By sampling the data n times,the update rules in equation (5) are changed into

    The update rules which respect to the weights ai,bjare similar to equation (7).Even taking n=1,the CD method usually works well [7].

    2.2.QBM and quantum semi-restricted BM

    QBM can be obtained by a quantum approximate optimization algorithm method [31].Alternatively,it can be constructed QBM by mapping the units of BM to the qubits of the D-Wave system [32]that exploits the advantage of quantum tunneling.One can use variational quantum imaginary time evolution to obtain the Gibbs state of the QBM model and realize training [19].One can also use the model whose visible layers are still classical and only change the hidden layers from classical variables to a quantum degree of freedom,which can be trained with the PCD method [33].

    For simplicity,the Hamiltonian H of a QBM model is given by [34]

    where

    and I and σzare the identity operator and Pauli operator respectively.The classical p(v) in equation (2) can be obtained by tracing the hidden unit of the density matrix ρ on the QBM

    where Λv=|v〉〈v|?Ih.Then the equation(4)is replaced with

    The first term on the right side in equation (11) cannot be directly processed for derivation.This problem can be solved by finding the upper bound with Golden–Thompson inequality [35]

    Setting

    we have that

    and then

    Minimizing the upper bound ζupof ζ,one can obtain

    Since the fully connected QBM is too complicated,for simplicity,we consider disconnecting the connection in the hidden layers,the quantum version of which is usually called QSRBM.The Hamiltonian in equation(13)can hence be rewritten as

    where ciis the connection strength within visible layers,fie=ai+∑μ wiμ vμ,and

    Combining equation (11) and equation (17),one can get

    Figure 2.(a)The training of MNIST datasets in QBM,QRBM and QSRBM.The accuracy rate of MNIST datasets reaches to 0.109,0.845,0.942 respectively,when the number of batches is 49.(b) The training of Bernoulli distribution sets in QBM,QRBM and QSRBM.The accuracy rate of Bernoulli distribution sets reaches to 0.627,0.618,0.977 respectively,when the number of batch is 49.

    3.Training results

    We firstly process the data to fit our models and then give the training results.Our results show that the recognition rate of the quantum algorithm can be close to the classical results even with small resources.

    3.1.Data processing

    For Bernoulli distribution,we use

    to generate a set of binary data.Here,p,q are the probability of generating 1,0 each time,p=1-q,n is the trial count,and x is the sum of the generating number.f(x|p)is the probability of obtaining x after the n trials.We set p=0.9 here(We also trained the machines with other values of p).

    The MNIST dataset was first introduced by LeCun et al[37].It is an optical pixel set of 10 Arabic numerals,containing a total of 70 000 images with a resolution 28×28.Since the outer pixel value of the most of dataset is 0,we firstly eliminated the outer 2 pixels,and hence the pixels are reduced to 24×24 size.Next,every 8×8 pixel value is averaged to reduce the digital image to 3×3 pixels.Although 3×3 pixels could not be used to distinguish digital with our naked eyes,they still contain most of the information of digital images and are representative.The times of iterations on training Bernoulli distribution sets and MNIST dataset with RBM are 1000 and 30 000,respectively.The Bernoulli distribution sets and MNIST dataset are trained by using fully connected QBM,RBM,QRBM and QSRBM,respectively.The number of visible and hidden units here is 9 and 2,respectively.

    An important improvement on the original model [34]is converting the measurement of work performance from Kullback–Leibler divergence [38]value to the fidelity betweenpvdataand pv.It will make our training results have an intuitive comparison with other types of QBM,the classical BM,and other models of the same data type training.The fidelity is given by

    wherepvdatais the probability distribution of training data.

    3.2.Simulation conditions

    The CPU of our computer is Intel 8 cores and its model is Intel(R) Xeon(R) CPU E3-1245 v5,the main frequency is 3.50 GHZ.The operating system of our computer is Win10 64-bits.We use torch [39]developed by Facebook as the framework to build the model,and run the program using the method of synchronous execution in parallel processing.The program simulation of the above model is based on python programming language.We set ci=0.3,the learning rate ηQBM=0.033,ηRBM=0.1,and ηQSRBM=0.085,respectively.The sampling method that we use is Quantum Monte Carlo (QMC) [40].Results show that the QSRBM model is close to RBM in recognition rate.

    3.3.Training results and analysis

    The training results are shown in figure 2 and figure 3.The fidelity of training the Bernoulli distribution sets is FQBM=0.627,FRBM=0.924,FQRBM=0.618,and FQSRBM=0.977 respectively,and the training fidelity of the MNIST dataset is FQBM=0.109,FRBM=0.933,FQRBM=0.845,and FQSRBM=0.942,respectively.

    Figure 3.(a)The training of MNIST dataset in classical RBM.After 1000 iterations,the algorithm converges and the final accuracy reaches 0.933.(b)The training of Bernoulli distribution sets in classical RBM.After 30 000 iterations,the algorithm converges and the final accuracy reaches 0.924.

    The results of training data with QBM are worse than that of QSRBM.The reason is that in QBM,the expected values of both positive and negative phases in equation (16) can be obtained by sampling through QMC.However,due to the lateral connection in the hidden layer of QBM,the effective positive phase expected value cannot be obtained by sampling with QMC method.When running Markov chain to approach the model expected value,the Markov chain cannot be stably distributed near the model expected value.In contrast,the positive phase value of QSRBM can be calculated accurately in equation (19).Taking this exact value as the starting point,the Markov chain can approximate the expected value of the model when it reaches the steady state.Then,the gradient descent algorithm is used to adjust the parameters by using the difference between the expected values of positive and negative phases.In this way,one can get better training results with QSRBM.On the other side,the training result of QSRBM is better than that of QRBM.The reason is that the lateral connections between visible layers are disconnected in QRBM,so QSRBM can exploit quantum superposition while QRBM cannot.

    The fidelity of the QSRBM in figure 2(b) is slightly higher than that of the classical model when training the MNIST dataset.In order to save the computing power,we set the number of the hidden units to very small.As shown in figure 4,when the visible units are 5 and the hidden layer units are 2,the fidelity obtained by training is the highest.When the visible units are fixed,the hidden units determine the degree of the constraint of each training data on the model parameters.In the case of weight sharing,appropriately increasing the number of the hidden units may make the model learn better.On the other side,too many hidden units can lead to severe overfitting.Practically,the number of hidden units should be determined according to the actual situation.Therefore,one may infer that if the ratio of hidden units to visible units is slightly increased,the fidelity in our model on the training digital set may be probably higher.

    Figure 4.The change of fidelity with the configuration number of visible units and hidden units when training Bernoulli distribution sets with QSRBM.

    From figures 2–4,one can see that the training curve in the quantum model is not as smooth as that in the classical model.This is because the entire training data is used to train the parameters only once.Each time when a batch is performed,the new data is trained and the fidelity may increase or decrease,but the gradient descent algorithm ensures that the trend of training results is gradual convergence.

    4.Summary and discussion

    In summary,we have studied training digital image sets with variable QBMs.Numerical simulations showed that the QSRBM works well,while the QBM model does not.There is still some room for improvement in our model compared with other wellperformed classifiers [41],such as increasing the number of hidden units to improve the recognition rate.Despite such few resource conditions,the results of QSRBM are still close to the classical model in training data and fulfilling tasks.This illustrates that machine learning with quantum algorithms is feasible and promising.Particularly,the training results of QSRBM are better than that of QBM with fewer computing results,which definitely means that the proper algorithm is important in quantum machine learning.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China under Grant No.11725524,and the Hubei Provincal Natural Science Foundation of China under Grant No.2019CFA003.

    一级a爱片免费观看的视频| 九九热线精品视视频播放| 丝袜人妻中文字幕| 国产av一区在线观看免费| 亚洲va日本ⅴa欧美va伊人久久| 精品国产亚洲在线| 宅男免费午夜| 久久性视频一级片| 伦理电影免费视频| 亚洲欧美精品综合一区二区三区| 男人舔女人下体高潮全视频| 搡老妇女老女人老熟妇| www国产在线视频色| 人人妻人人看人人澡| 亚洲国产高清在线一区二区三| 国产高清激情床上av| 制服丝袜大香蕉在线| 精品无人区乱码1区二区| 国产 一区 欧美 日韩| 99久久精品一区二区三区| 国产又黄又爽又无遮挡在线| 亚洲精品美女久久久久99蜜臀| 精品乱码久久久久久99久播| 宅男免费午夜| 亚洲七黄色美女视频| 熟女人妻精品中文字幕| 中文在线观看免费www的网站| 制服人妻中文乱码| 麻豆一二三区av精品| 在线十欧美十亚洲十日本专区| 三级男女做爰猛烈吃奶摸视频| 日韩欧美 国产精品| 午夜免费成人在线视频| 男女午夜视频在线观看| 国产三级中文精品| 国产精品影院久久| 日本免费一区二区三区高清不卡| 大型黄色视频在线免费观看| 午夜福利18| 男女做爰动态图高潮gif福利片| 国产私拍福利视频在线观看| 国产高清有码在线观看视频| 后天国语完整版免费观看| 日韩有码中文字幕| 99久国产av精品| 亚洲欧洲精品一区二区精品久久久| xxx96com| 中文资源天堂在线| 一个人看视频在线观看www免费 | 可以在线观看毛片的网站| 午夜视频精品福利| 极品教师在线免费播放| 亚洲精品456在线播放app | 国产精品久久久久久人妻精品电影| 成年免费大片在线观看| 国产免费男女视频| 中文字幕人成人乱码亚洲影| 麻豆av在线久日| 国产精品久久电影中文字幕| 国产亚洲精品久久久久久毛片| av欧美777| 成人午夜高清在线视频| 欧美日韩亚洲国产一区二区在线观看| 小说图片视频综合网站| 床上黄色一级片| 99精品久久久久人妻精品| 精品国产乱子伦一区二区三区| 欧美日韩黄片免| 美女黄网站色视频| 久久久色成人| 亚洲国产欧美网| 97碰自拍视频| 成在线人永久免费视频| 日韩欧美在线二视频| 亚洲av五月六月丁香网| 最新中文字幕久久久久 | 久久香蕉精品热| 99re在线观看精品视频| 岛国在线免费视频观看| 久久国产精品人妻蜜桃| 老汉色∧v一级毛片| 日韩三级视频一区二区三区| 国产亚洲欧美98| 亚洲无线观看免费| 国内揄拍国产精品人妻在线| 男人和女人高潮做爰伦理| 国产又黄又爽又无遮挡在线| 欧美+亚洲+日韩+国产| 久久久精品欧美日韩精品| 欧美黄色淫秽网站| 黄色成人免费大全| АⅤ资源中文在线天堂| 日本撒尿小便嘘嘘汇集6| 看黄色毛片网站| 99国产极品粉嫩在线观看| 亚洲性夜色夜夜综合| 女人被狂操c到高潮| 国内精品一区二区在线观看| 宅男免费午夜| 99久久精品国产亚洲精品| 香蕉久久夜色| 国产免费av片在线观看野外av| 欧美成人一区二区免费高清观看 | 淫秽高清视频在线观看| 特大巨黑吊av在线直播| 欧美日韩黄片免| 国产亚洲欧美在线一区二区| 国产97色在线日韩免费| 亚洲中文字幕日韩| 九色成人免费人妻av| 国产成人aa在线观看| 亚洲av片天天在线观看| 亚洲片人在线观看| 十八禁人妻一区二区| 脱女人内裤的视频| 美女午夜性视频免费| 亚洲欧美日韩卡通动漫| 国产高清三级在线| 欧美又色又爽又黄视频| 中亚洲国语对白在线视频| 黑人欧美特级aaaaaa片| 国产高清视频在线播放一区| 欧美激情在线99| 欧美国产日韩亚洲一区| 国产亚洲精品一区二区www| 国产亚洲精品综合一区在线观看| 国产亚洲av嫩草精品影院| 日韩有码中文字幕| 亚洲人成网站高清观看| 免费av不卡在线播放| 亚洲专区中文字幕在线| 久久99热这里只有精品18| 国产精品爽爽va在线观看网站| 国模一区二区三区四区视频 | 亚洲国产欧美网| 成年版毛片免费区| 1000部很黄的大片| 亚洲自拍偷在线| 波多野结衣高清作品| 啪啪无遮挡十八禁网站| xxxwww97欧美| 精品久久久久久久久久久久久| 亚洲 欧美一区二区三区| 亚洲午夜精品一区,二区,三区| 精品国产超薄肉色丝袜足j| 日韩精品青青久久久久久| 欧美在线黄色| 宅男免费午夜| 在线观看美女被高潮喷水网站 | www.999成人在线观看| 久久久国产欧美日韩av| 琪琪午夜伦伦电影理论片6080| 一本一本综合久久| 美女 人体艺术 gogo| 怎么达到女性高潮| 日本黄色视频三级网站网址| 亚洲国产看品久久| av在线天堂中文字幕| 亚洲五月天丁香| 色综合欧美亚洲国产小说| 一本综合久久免费| 国产极品精品免费视频能看的| 精品国产美女av久久久久小说| 母亲3免费完整高清在线观看| 久久人妻av系列| 每晚都被弄得嗷嗷叫到高潮| 噜噜噜噜噜久久久久久91| 精品午夜福利视频在线观看一区| 999精品在线视频| 90打野战视频偷拍视频| 午夜久久久久精精品| 每晚都被弄得嗷嗷叫到高潮| 老鸭窝网址在线观看| 伦理电影免费视频| 亚洲美女黄片视频| tocl精华| 国产精品99久久久久久久久| 美女黄网站色视频| 亚洲av电影不卡..在线观看| 亚洲熟女毛片儿| 国产精品九九99| 亚洲一区高清亚洲精品| 亚洲一区二区三区色噜噜| 中文字幕熟女人妻在线| 天堂影院成人在线观看| 又粗又爽又猛毛片免费看| 国内毛片毛片毛片毛片毛片| 九色国产91popny在线| av中文乱码字幕在线| 欧美成人一区二区免费高清观看 | 日日干狠狠操夜夜爽| 国产精品一区二区免费欧美| 一级a爱片免费观看的视频| 给我免费播放毛片高清在线观看| 少妇熟女aⅴ在线视频| 色吧在线观看| 老司机午夜福利在线观看视频| 成人特级黄色片久久久久久久| 久久久国产精品麻豆| 午夜福利成人在线免费观看| 久久久久久人人人人人| 丝袜人妻中文字幕| 欧美日韩瑟瑟在线播放| 视频区欧美日本亚洲| 亚洲av电影不卡..在线观看| 日韩精品青青久久久久久| 老鸭窝网址在线观看| 久久中文字幕一级| 国产高清三级在线| 在线观看一区二区三区| 精品无人区乱码1区二区| 变态另类成人亚洲欧美熟女| 丰满人妻一区二区三区视频av | 国内久久婷婷六月综合欲色啪| 不卡一级毛片| 欧美成人性av电影在线观看| 欧美日本视频| 国产成年人精品一区二区| e午夜精品久久久久久久| 小说图片视频综合网站| 成人午夜高清在线视频| 欧美日本视频| 麻豆国产97在线/欧美| 色综合欧美亚洲国产小说| 国产高清视频在线播放一区| 18禁裸乳无遮挡免费网站照片| 国产熟女xx| 久久久久久久久久黄片| 色尼玛亚洲综合影院| 97碰自拍视频| 久久久国产成人免费| 国产毛片a区久久久久| 免费高清视频大片| 欧美大码av| 国产精品久久久久久亚洲av鲁大| 久9热在线精品视频| 日韩精品中文字幕看吧| 亚洲九九香蕉| 国产成人精品久久二区二区免费| 岛国视频午夜一区免费看| 欧美一级毛片孕妇| 久久欧美精品欧美久久欧美| 18禁裸乳无遮挡免费网站照片| 欧美乱色亚洲激情| 97超视频在线观看视频| 在线播放国产精品三级| av国产免费在线观看| 久9热在线精品视频| 一个人看的www免费观看视频| 亚洲av电影在线进入| 国产久久久一区二区三区| 久久精品人妻少妇| 日本一二三区视频观看| 一级黄色大片毛片| 母亲3免费完整高清在线观看| 亚洲成av人片在线播放无| 岛国视频午夜一区免费看| 成人三级做爰电影| 亚洲国产精品999在线| 熟女人妻精品中文字幕| 黄色 视频免费看| 51午夜福利影视在线观看| 亚洲在线自拍视频| 黄色女人牲交| 夜夜夜夜夜久久久久| 每晚都被弄得嗷嗷叫到高潮| 欧美乱妇无乱码| 国产亚洲精品一区二区www| АⅤ资源中文在线天堂| 国产成人av激情在线播放| 色噜噜av男人的天堂激情| aaaaa片日本免费| 欧美日韩瑟瑟在线播放| 免费看美女性在线毛片视频| 99久久99久久久精品蜜桃| 亚洲av美国av| 国产精品永久免费网站| 久久亚洲精品不卡| 午夜精品久久久久久毛片777| 婷婷亚洲欧美| 亚洲七黄色美女视频| 日韩欧美在线乱码| 亚洲精品美女久久av网站| 国产欧美日韩一区二区精品| 欧美日韩精品网址| 51午夜福利影视在线观看| 亚洲国产欧美网| 亚洲av成人av| 久久国产精品人妻蜜桃| 宅男免费午夜| 国内久久婷婷六月综合欲色啪| 最好的美女福利视频网| 1024手机看黄色片| 亚洲 欧美 日韩 在线 免费| 欧美成人性av电影在线观看| 国产成+人综合+亚洲专区| 欧美黄色片欧美黄色片| 久久热在线av| 在线观看一区二区三区| 欧美极品一区二区三区四区| 97碰自拍视频| 99热6这里只有精品| 国产极品精品免费视频能看的| 最近最新免费中文字幕在线| 婷婷精品国产亚洲av| 精品国产乱码久久久久久男人| 一级毛片精品| 他把我摸到了高潮在线观看| 伦理电影免费视频| 久久精品国产清高在天天线| 亚洲天堂国产精品一区在线| 国产91精品成人一区二区三区| 久久草成人影院| 午夜免费成人在线视频| 国产视频内射| 国产精品影院久久| 日本撒尿小便嘘嘘汇集6| 日韩免费av在线播放| 亚洲色图 男人天堂 中文字幕| 欧美日韩瑟瑟在线播放| 69av精品久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 99精品欧美一区二区三区四区| 亚洲国产中文字幕在线视频| 在线观看一区二区三区| 亚洲国产中文字幕在线视频| 婷婷六月久久综合丁香| 精品久久久久久久久久久久久| 男人舔女人下体高潮全视频| www.精华液| av国产免费在线观看| 成人鲁丝片一二三区免费| 国产精品综合久久久久久久免费| 一个人免费在线观看电影 | 国产精品一区二区精品视频观看| 国产久久久一区二区三区| 高潮久久久久久久久久久不卡| 免费av不卡在线播放| 国产一区二区激情短视频| 成年女人毛片免费观看观看9| 国产黄片美女视频| 天堂动漫精品| 欧美日韩福利视频一区二区| 超碰成人久久| 18禁黄网站禁片免费观看直播| 18禁裸乳无遮挡免费网站照片| 色综合婷婷激情| 免费av毛片视频| 欧美3d第一页| 999久久久精品免费观看国产| 舔av片在线| 成人亚洲精品av一区二区| 国产精品亚洲一级av第二区| 久久久精品欧美日韩精品| av黄色大香蕉| 欧美日韩黄片免| 亚洲黑人精品在线| 国产1区2区3区精品| 搡老岳熟女国产| 久9热在线精品视频| 亚洲av五月六月丁香网| 亚洲av日韩精品久久久久久密| 国产精品永久免费网站| 久久人人精品亚洲av| 午夜免费激情av| 黑人操中国人逼视频| 岛国视频午夜一区免费看| 亚洲avbb在线观看| 日韩中文字幕欧美一区二区| 岛国在线免费视频观看| 一本综合久久免费| 床上黄色一级片| 国产亚洲av高清不卡| 亚洲精品中文字幕一二三四区| 超碰成人久久| 夜夜爽天天搞| 中文亚洲av片在线观看爽| 一本久久中文字幕| 黄色 视频免费看| 国产欧美日韩一区二区精品| 亚洲 国产 在线| 99热6这里只有精品| 午夜免费成人在线视频| 老司机午夜福利在线观看视频| 巨乳人妻的诱惑在线观看| 老司机福利观看| av欧美777| 熟女少妇亚洲综合色aaa.| 97碰自拍视频| 真人一进一出gif抽搐免费| 亚洲国产看品久久| cao死你这个sao货| 美女高潮的动态| 又黄又爽又免费观看的视频| 天堂动漫精品| 日本在线视频免费播放| av中文乱码字幕在线| 日韩av在线大香蕉| 人妻丰满熟妇av一区二区三区| 免费在线观看影片大全网站| 91麻豆精品激情在线观看国产| 亚洲精品456在线播放app | 美女 人体艺术 gogo| 黑人巨大精品欧美一区二区mp4| 久久中文字幕人妻熟女| 久久国产精品人妻蜜桃| 精品国产三级普通话版| 18禁黄网站禁片午夜丰满| 麻豆成人av在线观看| 国产精品av久久久久免费| 色尼玛亚洲综合影院| 国产av在哪里看| 男人和女人高潮做爰伦理| 无限看片的www在线观看| 国产91精品成人一区二区三区| 狂野欧美激情性xxxx| 欧美激情久久久久久爽电影| 亚洲国产欧洲综合997久久,| 美女扒开内裤让男人捅视频| 国产三级中文精品| 久久九九热精品免费| 白带黄色成豆腐渣| 少妇裸体淫交视频免费看高清| 精品久久久久久久人妻蜜臀av| 在线视频色国产色| 国产精品美女特级片免费视频播放器 | 亚洲中文日韩欧美视频| 久久天堂一区二区三区四区| 日韩欧美在线二视频| 丁香欧美五月| 日本撒尿小便嘘嘘汇集6| 日韩欧美 国产精品| 亚洲五月婷婷丁香| 国产精品一区二区精品视频观看| 日本免费a在线| 欧美日本视频| 亚洲精品国产精品久久久不卡| 亚洲欧洲精品一区二区精品久久久| 国产一区二区在线观看日韩 | 国产亚洲精品久久久com| 一个人看的www免费观看视频| 欧美成人性av电影在线观看| 熟妇人妻久久中文字幕3abv| 听说在线观看完整版免费高清| 久久久久久久久中文| 中文字幕人妻丝袜一区二区| 国内精品久久久久精免费| 亚洲精品美女久久av网站| 国产av麻豆久久久久久久| 一区二区三区国产精品乱码| 国产亚洲av嫩草精品影院| h日本视频在线播放| 亚洲精品中文字幕一二三四区| 国产亚洲精品一区二区www| 精品久久久久久久毛片微露脸| 国产欧美日韩精品一区二区| 亚洲av成人av| 欧美一级a爱片免费观看看| 丰满人妻一区二区三区视频av | 禁无遮挡网站| 国产精品99久久99久久久不卡| 性色av乱码一区二区三区2| 人人妻人人看人人澡| 国产精品久久久久久精品电影| 久久久久性生活片| 日韩精品青青久久久久久| 国产淫片久久久久久久久 | 亚洲成人中文字幕在线播放| 亚洲国产看品久久| 日本撒尿小便嘘嘘汇集6| 老汉色∧v一级毛片| 欧美成人一区二区免费高清观看 | 91麻豆精品激情在线观看国产| 欧美一级毛片孕妇| 国产男靠女视频免费网站| 在线观看日韩欧美| 国产极品精品免费视频能看的| 久久天躁狠狠躁夜夜2o2o| 国产成+人综合+亚洲专区| 90打野战视频偷拍视频| 美女被艹到高潮喷水动态| 长腿黑丝高跟| 怎么达到女性高潮| 国产av不卡久久| 人妻丰满熟妇av一区二区三区| 91麻豆精品激情在线观看国产| 伦理电影免费视频| 免费电影在线观看免费观看| 国产精品 欧美亚洲| 久久久成人免费电影| 亚洲国产中文字幕在线视频| 一a级毛片在线观看| 女人被狂操c到高潮| 精品久久久久久,| 非洲黑人性xxxx精品又粗又长| 亚洲av成人不卡在线观看播放网| 亚洲人成电影免费在线| 国产一区二区三区视频了| 男人和女人高潮做爰伦理| 国产99白浆流出| 欧美色视频一区免费| 身体一侧抽搐| 成年女人毛片免费观看观看9| 宅男免费午夜| 好看av亚洲va欧美ⅴa在| 久久天躁狠狠躁夜夜2o2o| 日韩人妻高清精品专区| 亚洲男人的天堂狠狠| 日韩三级视频一区二区三区| 又黄又爽又免费观看的视频| 国产淫片久久久久久久久 | 老熟妇乱子伦视频在线观看| 成人性生交大片免费视频hd| 少妇丰满av| 级片在线观看| 久久香蕉国产精品| 香蕉久久夜色| 国产亚洲av嫩草精品影院| 亚洲精品一区av在线观看| 久久久久性生活片| 国产91精品成人一区二区三区| 小蜜桃在线观看免费完整版高清| 久久久久久久精品吃奶| 国产爱豆传媒在线观看| 亚洲男人的天堂狠狠| 亚洲精品国产精品久久久不卡| 岛国在线观看网站| 欧美日韩一级在线毛片| www日本黄色视频网| 两个人看的免费小视频| 国内毛片毛片毛片毛片毛片| 精品国产超薄肉色丝袜足j| 女人被狂操c到高潮| 国产成年人精品一区二区| 国产成+人综合+亚洲专区| 禁无遮挡网站| 一级a爱片免费观看的视频| 怎么达到女性高潮| 久久久久久久精品吃奶| 日本免费一区二区三区高清不卡| 久久精品国产99精品国产亚洲性色| 美女高潮喷水抽搐中文字幕| 免费看光身美女| 99国产综合亚洲精品| 成人特级黄色片久久久久久久| 国产97色在线日韩免费| 五月玫瑰六月丁香| 又黄又爽又免费观看的视频| 可以在线观看的亚洲视频| 日韩 欧美 亚洲 中文字幕| 国内精品久久久久精免费| 狠狠狠狠99中文字幕| 国产高潮美女av| 亚洲国产中文字幕在线视频| 露出奶头的视频| 99视频精品全部免费 在线 | 久久中文看片网| 亚洲av成人一区二区三| 亚洲五月婷婷丁香| 91av网一区二区| 成人一区二区视频在线观看| 男女视频在线观看网站免费| 午夜福利在线在线| 久久久久精品国产欧美久久久| 国产亚洲欧美在线一区二区| 在线a可以看的网站| 国模一区二区三区四区视频 | 久久久久精品国产欧美久久久| 亚洲性夜色夜夜综合| 99视频精品全部免费 在线 | 国产免费av片在线观看野外av| netflix在线观看网站| 这个男人来自地球电影免费观看| 18禁观看日本| 亚洲av电影不卡..在线观看| 亚洲无线在线观看| 国语自产精品视频在线第100页| 可以在线观看的亚洲视频| 久久天堂一区二区三区四区| 熟妇人妻久久中文字幕3abv| 一级作爱视频免费观看| 在线永久观看黄色视频| 亚洲专区字幕在线| 日韩高清综合在线| 日本五十路高清| 天堂网av新在线| 一个人观看的视频www高清免费观看 | 最新中文字幕久久久久 | 哪里可以看免费的av片| 亚洲va日本ⅴa欧美va伊人久久| 操出白浆在线播放| 国产91精品成人一区二区三区| 一个人看视频在线观看www免费 | 日韩欧美在线乱码| 青草久久国产| 亚洲精品在线观看二区| 久久午夜综合久久蜜桃| 51午夜福利影视在线观看| 久久精品人妻少妇| 观看免费一级毛片| 欧美激情在线99| av天堂在线播放| 中文字幕久久专区| 18美女黄网站色大片免费观看| 日韩成人在线观看一区二区三区| 一级毛片精品| 桃红色精品国产亚洲av| 国产精品香港三级国产av潘金莲| 91在线观看av| 一级作爱视频免费观看| 久久精品国产清高在天天线| www日本在线高清视频| 亚洲人成伊人成综合网2020| 亚洲熟妇中文字幕五十中出| 一二三四在线观看免费中文在|