• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Realizing number recognition with simulated quantum semi-restricted Boltzmann machine

    2022-10-22 08:14:44FuwenZhangYonggangTanandQingyuCai
    Communications in Theoretical Physics 2022年9期

    Fuwen Zhang,Yonggang Tan and Qing-yu Cai

    1 School of Physics,Zhengzhou University,Zhengzhou 450001,China

    2 Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences,Wuhan 430071,China

    3 School of Physics and Electronic Information,Luoyang Normal University,Luoyang 471934,China

    4 Center for Theoretical physics,Hainan University,Haikou 570228,China

    5 School of Information and Communication Engineering,Hainan University,Haikou 570228,China

    Abstract Quantum machine learning based on quantum algorithms may achieve an exponential speedup over classical algorithms in dealing with some problems such as clustering.In this paper,we use the method of training the lower bound of the average log likelihood function on the quantum Boltzmann machine (QBM) to recognize the handwritten number datasets and compare the training results with classical models.We find that,when the QBM is semi-restricted,the training results get better with fewer computing resources.This shows that it is necessary to design a targeted algorithm to speed up computation and save resources.

    Keywords: machine learning,quantum Boltzmann machine,quantum algorithm

    1.Introduction

    The Boltzmann machine (BM) [1]is an undirected model consisting of visible layers and hidden layers.The information is input from the visible layer and obeys the Boltzmann distribution in the hidden layer.It has been widely applied in many fields,such as phone recognition tasks [2],image recognition [3],medical health [4],the quantum many-body problem [5],and so on.In BM training,it is difficult to compute the negative phase value of the partial derivative of the average likelihood function,since its computational complexity will increase exponentially with the dimensions and the quantity of the training data.This difficulty can be solved by using Gibbs sampling to gain the expectations of the computational model.

    The mixing of the Gibbs sampler becomes slow when the sampling data are complicated.Hinton proposed the contrast divergence (CD) method [6]to solve the slow sampling problem.The method assumes that there is a fantasy particle,and N steps of Gibbs sampling at the fantasy particle are run to replace the model distribution.The CD method performs well in actual training [7].Alternatively,there is another technique to solve the model expectation named the persistent comparison divergence (PCD).The procedure is that when the state stof the fantasy particle and the corresponding parameter θtare known at time t,one can get st+δtat the time t+δt by transferring the operator.Then the parameters of the model are updated to the parameter θt+δtat the time t+δt.Different from the CD method,it requires reducing the learning rate with the update to ensure the convergence of the model [8].Deep belief networks [9]and deep BMs [10]can be obtained by using the stack of BM,the training of which could be done with the greedy layerwise strategy.The greedy layerwise strategy contains the process of pre-training the model,which is more efficient than the random selection of parameters.The deep model [11]can learn the deep patterns and the abstract concepts of data,which has great advantages over the shallow learning in learning and interpreting complicated data [12].

    Figure 1.(a) The model of fully connected BM.The blue circles represent visible units,and the red circles represent hidden units.(b) The model of RBM without lateral connectivity both in the visible units and in the hidden units.

    In practice,the dimensions and quantity of some tasks,such as computer version [13],and speech recognition [14],are usually huge,training of which requires huge computing resources.If these tasks are performed in the classical way,there are disadvantages such as slow training speed and easily falling into local minima [15].In order to overcome these shortcomings,scientists proposed to optimize classical machine learning algorithms by exploiting the potential of quantum computing[16].The combination of quantum theory with BM is generally called quantum Boltzmann machine(QBM)which can be mainly divided into two directions,one is based on the quantum variational principle method [17],and the other is based on the quantum annealing method[18].

    In the quantum variational principle method,the Gibbs state for a given Hamiltonian is approximately generated by combining the quantum approximate optimization algorithm or the variational quantum imaginary time evolution algorithm,and then the parameters can be adjusted [19,20].The quantum annealing algorithm is based on the principle of the quantum tunneling effect[21].Under the annealing condition,the quantum configuration energy will eventually evolve into the ground state and the training parameters are in the global optimal solution.Usually,annealing can be realized by using quantum annealing machines to construct a QBM model.Quantum annealing methods outperform classical methods in a number of iterations when recognizing numerical tasks[22].

    The purpose of this paper is to demonstrate the possibility of digit recognition with various QBMs,particularly the quantum semi-restricted Boltzmann machines(QSRBM).We train the dataset on a QSRBM based on the method of training the lower bound of the quantum log likelihood function and give the training fidelity.This paper is organized as follows.In the second section,the principle of BM and QBM is briefly introduced.Then we show the processing of training data and the results of training.Finally,we discuss and conclude.

    2.Quantum BM

    BM in figure 1 (a) can be changed into various machines by adjusting the connection of layers.One can get a restricted Boltzmann machine (RBM) by disconnecting the lateral connectivity in the BM.QBM can be constructed by replacing the data units with corresponding operators.

    2.1.Restricted BM

    BM is a fully connected model including the lateral connection in the layers,which may cause additional computational complexity when dealing with some problems.As an improvement in some cases,there is no such connection in the layers of RBM.Without affecting the training performance,the RBM model is simpler and more efficient [23]and has been applied to some practical problems[24,25].The energy function of the joint configuration of RBM is given by

    where viis the binary state of the visible unit i,hjis the binary state of the hidden unit j,ai,bj,wijare the connection strengths between the unit layers,and θ ∈ai,bj,wij[26].The probability distribution of the visible unit is [27]

    where Z is the partition function.The machine with connections in figure 1(b)is called RBM[28],and the hidden units of RBM are independent of given visible units.The expected value of the data can be obtained in only one parallel step,thus greatly reducing the amount of computation [27].

    Usually,the training process can be performed by minimizing the negative average log likelihood function ζ

    The parameters can be trained by taking partial derivatives of the likelihood function

    with the gradient descent algorithm [29]

    where η is the learning rate.η needs to be selected according to the actual problem: If η is too large,it is easy to miss the best solution,resulting in divergence;If η is too small,the number of the iteration steps will be too large.In equation(5),〈v〉dataare the clamped expectation with v fixed,which can be easily calculated by Gibbs sampling.〈v〉modelare the expected value of v over the model probability distribution,the calculation of 〈v〉modelrequires solving the value of the partition function Z and the parameters of the BM,which is almost incalculable and uneconomical for complicated data.The partial derivative of the negative log likelihood function can often be approximated by CD method,which uses the sampling formula [30]

    to sample the data.By sampling the data n times,the update rules in equation (5) are changed into

    The update rules which respect to the weights ai,bjare similar to equation (7).Even taking n=1,the CD method usually works well [7].

    2.2.QBM and quantum semi-restricted BM

    QBM can be obtained by a quantum approximate optimization algorithm method [31].Alternatively,it can be constructed QBM by mapping the units of BM to the qubits of the D-Wave system [32]that exploits the advantage of quantum tunneling.One can use variational quantum imaginary time evolution to obtain the Gibbs state of the QBM model and realize training [19].One can also use the model whose visible layers are still classical and only change the hidden layers from classical variables to a quantum degree of freedom,which can be trained with the PCD method [33].

    For simplicity,the Hamiltonian H of a QBM model is given by [34]

    where

    and I and σzare the identity operator and Pauli operator respectively.The classical p(v) in equation (2) can be obtained by tracing the hidden unit of the density matrix ρ on the QBM

    where Λv=|v〉〈v|?Ih.Then the equation(4)is replaced with

    The first term on the right side in equation (11) cannot be directly processed for derivation.This problem can be solved by finding the upper bound with Golden–Thompson inequality [35]

    Setting

    we have that

    and then

    Minimizing the upper bound ζupof ζ,one can obtain

    Since the fully connected QBM is too complicated,for simplicity,we consider disconnecting the connection in the hidden layers,the quantum version of which is usually called QSRBM.The Hamiltonian in equation(13)can hence be rewritten as

    where ciis the connection strength within visible layers,fie=ai+∑μ wiμ vμ,and

    Combining equation (11) and equation (17),one can get

    Figure 2.(a)The training of MNIST datasets in QBM,QRBM and QSRBM.The accuracy rate of MNIST datasets reaches to 0.109,0.845,0.942 respectively,when the number of batches is 49.(b) The training of Bernoulli distribution sets in QBM,QRBM and QSRBM.The accuracy rate of Bernoulli distribution sets reaches to 0.627,0.618,0.977 respectively,when the number of batch is 49.

    3.Training results

    We firstly process the data to fit our models and then give the training results.Our results show that the recognition rate of the quantum algorithm can be close to the classical results even with small resources.

    3.1.Data processing

    For Bernoulli distribution,we use

    to generate a set of binary data.Here,p,q are the probability of generating 1,0 each time,p=1-q,n is the trial count,and x is the sum of the generating number.f(x|p)is the probability of obtaining x after the n trials.We set p=0.9 here(We also trained the machines with other values of p).

    The MNIST dataset was first introduced by LeCun et al[37].It is an optical pixel set of 10 Arabic numerals,containing a total of 70 000 images with a resolution 28×28.Since the outer pixel value of the most of dataset is 0,we firstly eliminated the outer 2 pixels,and hence the pixels are reduced to 24×24 size.Next,every 8×8 pixel value is averaged to reduce the digital image to 3×3 pixels.Although 3×3 pixels could not be used to distinguish digital with our naked eyes,they still contain most of the information of digital images and are representative.The times of iterations on training Bernoulli distribution sets and MNIST dataset with RBM are 1000 and 30 000,respectively.The Bernoulli distribution sets and MNIST dataset are trained by using fully connected QBM,RBM,QRBM and QSRBM,respectively.The number of visible and hidden units here is 9 and 2,respectively.

    An important improvement on the original model [34]is converting the measurement of work performance from Kullback–Leibler divergence [38]value to the fidelity betweenpvdataand pv.It will make our training results have an intuitive comparison with other types of QBM,the classical BM,and other models of the same data type training.The fidelity is given by

    wherepvdatais the probability distribution of training data.

    3.2.Simulation conditions

    The CPU of our computer is Intel 8 cores and its model is Intel(R) Xeon(R) CPU E3-1245 v5,the main frequency is 3.50 GHZ.The operating system of our computer is Win10 64-bits.We use torch [39]developed by Facebook as the framework to build the model,and run the program using the method of synchronous execution in parallel processing.The program simulation of the above model is based on python programming language.We set ci=0.3,the learning rate ηQBM=0.033,ηRBM=0.1,and ηQSRBM=0.085,respectively.The sampling method that we use is Quantum Monte Carlo (QMC) [40].Results show that the QSRBM model is close to RBM in recognition rate.

    3.3.Training results and analysis

    The training results are shown in figure 2 and figure 3.The fidelity of training the Bernoulli distribution sets is FQBM=0.627,FRBM=0.924,FQRBM=0.618,and FQSRBM=0.977 respectively,and the training fidelity of the MNIST dataset is FQBM=0.109,FRBM=0.933,FQRBM=0.845,and FQSRBM=0.942,respectively.

    Figure 3.(a)The training of MNIST dataset in classical RBM.After 1000 iterations,the algorithm converges and the final accuracy reaches 0.933.(b)The training of Bernoulli distribution sets in classical RBM.After 30 000 iterations,the algorithm converges and the final accuracy reaches 0.924.

    The results of training data with QBM are worse than that of QSRBM.The reason is that in QBM,the expected values of both positive and negative phases in equation (16) can be obtained by sampling through QMC.However,due to the lateral connection in the hidden layer of QBM,the effective positive phase expected value cannot be obtained by sampling with QMC method.When running Markov chain to approach the model expected value,the Markov chain cannot be stably distributed near the model expected value.In contrast,the positive phase value of QSRBM can be calculated accurately in equation (19).Taking this exact value as the starting point,the Markov chain can approximate the expected value of the model when it reaches the steady state.Then,the gradient descent algorithm is used to adjust the parameters by using the difference between the expected values of positive and negative phases.In this way,one can get better training results with QSRBM.On the other side,the training result of QSRBM is better than that of QRBM.The reason is that the lateral connections between visible layers are disconnected in QRBM,so QSRBM can exploit quantum superposition while QRBM cannot.

    The fidelity of the QSRBM in figure 2(b) is slightly higher than that of the classical model when training the MNIST dataset.In order to save the computing power,we set the number of the hidden units to very small.As shown in figure 4,when the visible units are 5 and the hidden layer units are 2,the fidelity obtained by training is the highest.When the visible units are fixed,the hidden units determine the degree of the constraint of each training data on the model parameters.In the case of weight sharing,appropriately increasing the number of the hidden units may make the model learn better.On the other side,too many hidden units can lead to severe overfitting.Practically,the number of hidden units should be determined according to the actual situation.Therefore,one may infer that if the ratio of hidden units to visible units is slightly increased,the fidelity in our model on the training digital set may be probably higher.

    Figure 4.The change of fidelity with the configuration number of visible units and hidden units when training Bernoulli distribution sets with QSRBM.

    From figures 2–4,one can see that the training curve in the quantum model is not as smooth as that in the classical model.This is because the entire training data is used to train the parameters only once.Each time when a batch is performed,the new data is trained and the fidelity may increase or decrease,but the gradient descent algorithm ensures that the trend of training results is gradual convergence.

    4.Summary and discussion

    In summary,we have studied training digital image sets with variable QBMs.Numerical simulations showed that the QSRBM works well,while the QBM model does not.There is still some room for improvement in our model compared with other wellperformed classifiers [41],such as increasing the number of hidden units to improve the recognition rate.Despite such few resource conditions,the results of QSRBM are still close to the classical model in training data and fulfilling tasks.This illustrates that machine learning with quantum algorithms is feasible and promising.Particularly,the training results of QSRBM are better than that of QBM with fewer computing results,which definitely means that the proper algorithm is important in quantum machine learning.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China under Grant No.11725524,and the Hubei Provincal Natural Science Foundation of China under Grant No.2019CFA003.

    国产精品人妻久久久影院| 色婷婷av一区二区三区视频| 超色免费av| 伊人亚洲综合成人网| 国产精品久久久久久人妻精品电影 | 狠狠婷婷综合久久久久久88av| videosex国产| 亚洲av美国av| 99国产精品免费福利视频| 深夜精品福利| 91精品三级在线观看| 尾随美女入室| 人人妻人人爽人人添夜夜欢视频| 美女午夜性视频免费| 国产日韩欧美在线精品| 成人午夜精彩视频在线观看| h视频一区二区三区| 成人午夜精彩视频在线观看| 另类亚洲欧美激情| 久久狼人影院| 国产午夜精品一二区理论片| 欧美黑人精品巨大| 国产又爽黄色视频| 亚洲国产看品久久| 少妇精品久久久久久久| 天天影视国产精品| 久热这里只有精品99| 国产成人一区二区在线| 欧美激情极品国产一区二区三区| 国产精品一区二区在线观看99| 亚洲成色77777| 亚洲欧美一区二区三区黑人| 国产成人精品久久二区二区91| 视频在线观看一区二区三区| 成人手机av| 欧美日韩一级在线毛片| 少妇人妻 视频| 亚洲免费av在线视频| 爱豆传媒免费全集在线观看| 欧美另类一区| 免费黄频网站在线观看国产| 国产日韩欧美亚洲二区| 精品一品国产午夜福利视频| 黄片小视频在线播放| 国产在线视频一区二区| 亚洲成色77777| 亚洲国产精品一区二区三区在线| 高清黄色对白视频在线免费看| 大型av网站在线播放| 婷婷色麻豆天堂久久| 免费高清在线观看视频在线观看| 欧美成狂野欧美在线观看| 99热国产这里只有精品6| 女人精品久久久久毛片| 亚洲精品乱久久久久久| 国产精品 欧美亚洲| 亚洲国产精品一区三区| 91精品伊人久久大香线蕉| 2021少妇久久久久久久久久久| 夜夜骑夜夜射夜夜干| 国产精品久久久久久精品电影小说| 亚洲中文字幕日韩| 亚洲精品国产区一区二| 日本五十路高清| av欧美777| 人人妻人人爽人人添夜夜欢视频| 成人免费观看视频高清| 大型av网站在线播放| 这个男人来自地球电影免费观看| 美女主播在线视频| 国产精品亚洲av一区麻豆| 亚洲综合色网址| 搡老乐熟女国产| 我的亚洲天堂| 午夜91福利影院| www日本在线高清视频| 九色亚洲精品在线播放| 亚洲中文字幕日韩| 国产爽快片一区二区三区| 十八禁高潮呻吟视频| 国产成人系列免费观看| 另类亚洲欧美激情| 久久久久精品人妻al黑| 午夜福利免费观看在线| 欧美xxⅹ黑人| 这个男人来自地球电影免费观看| 欧美亚洲 丝袜 人妻 在线| 亚洲人成电影免费在线| 首页视频小说图片口味搜索 | 亚洲国产成人一精品久久久| 亚洲图色成人| 国产免费又黄又爽又色| 亚洲国产精品999| 亚洲国产日韩一区二区| 精品国产一区二区三区久久久樱花| 少妇裸体淫交视频免费看高清 | 啦啦啦 在线观看视频| 亚洲av电影在线进入| 天天操日日干夜夜撸| 亚洲激情五月婷婷啪啪| 日韩制服骚丝袜av| 黑人欧美特级aaaaaa片| 王馨瑶露胸无遮挡在线观看| 777久久人妻少妇嫩草av网站| 国产一级毛片在线| 欧美精品高潮呻吟av久久| 久久精品aⅴ一区二区三区四区| 久久久欧美国产精品| 精品少妇黑人巨大在线播放| 国产有黄有色有爽视频| 久久精品成人免费网站| 国产成人一区二区三区免费视频网站 | 一区在线观看完整版| 一级毛片 在线播放| 丰满迷人的少妇在线观看| 热re99久久国产66热| 日韩免费高清中文字幕av| 又紧又爽又黄一区二区| 久久久久久人人人人人| 欧美av亚洲av综合av国产av| 高清视频免费观看一区二区| 99精国产麻豆久久婷婷| 亚洲人成电影观看| 国产成人免费观看mmmm| 黑人欧美特级aaaaaa片| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品成人av观看孕妇| 91字幕亚洲| 国产午夜精品一二区理论片| 99re6热这里在线精品视频| 成人亚洲欧美一区二区av| 日韩av在线免费看完整版不卡| 99精品久久久久人妻精品| 桃花免费在线播放| 国产人伦9x9x在线观看| 好男人视频免费观看在线| 下体分泌物呈黄色| 午夜精品国产一区二区电影| 精品一品国产午夜福利视频| 亚洲精品美女久久av网站| 美女大奶头黄色视频| 亚洲国产av新网站| 精品国产超薄肉色丝袜足j| 国产片特级美女逼逼视频| 18禁观看日本| 蜜桃在线观看..| 你懂的网址亚洲精品在线观看| 在线观看免费日韩欧美大片| 精品久久久久久电影网| 搡老乐熟女国产| 一本大道久久a久久精品| 另类精品久久| 男人添女人高潮全过程视频| 久久精品国产亚洲av涩爱| 在线看a的网站| 久久精品久久久久久噜噜老黄| 国产高清videossex| 久久精品国产综合久久久| 精品少妇一区二区三区视频日本电影| 国产亚洲av片在线观看秒播厂| 啦啦啦 在线观看视频| 最新的欧美精品一区二区| 亚洲国产欧美在线一区| 久久99热这里只频精品6学生| 又紧又爽又黄一区二区| 午夜福利视频在线观看免费| www.999成人在线观看| 亚洲黑人精品在线| 老司机午夜十八禁免费视频| 国产一区二区 视频在线| 亚洲国产欧美网| 妹子高潮喷水视频| 欧美97在线视频| 老司机影院毛片| 欧美日韩成人在线一区二区| 婷婷丁香在线五月| 午夜免费鲁丝| 久久久久网色| tube8黄色片| 成人免费观看视频高清| 国产精品成人在线| 又粗又硬又长又爽又黄的视频| 女人爽到高潮嗷嗷叫在线视频| 老司机靠b影院| 亚洲视频免费观看视频| 日本a在线网址| 亚洲国产av新网站| 亚洲 欧美一区二区三区| 一级黄色大片毛片| 久久久国产欧美日韩av| 女性生殖器流出的白浆| 中国美女看黄片| 国产精品人妻久久久影院| 99久久综合免费| 免费在线观看影片大全网站 | 男女下面插进去视频免费观看| 精品国产一区二区久久| 国产成人a∨麻豆精品| 久久精品久久久久久久性| 精品国产一区二区三区四区第35| 国产男女超爽视频在线观看| 久久九九热精品免费| 国产一区亚洲一区在线观看| 国产成人免费无遮挡视频| 天堂俺去俺来也www色官网| 一区福利在线观看| 精品免费久久久久久久清纯 | 国产精品三级大全| 国产黄色视频一区二区在线观看| 日本欧美视频一区| 亚洲av电影在线进入| 最黄视频免费看| 高清不卡的av网站| 麻豆乱淫一区二区| 国产精品久久久av美女十八| 欧美日韩综合久久久久久| 国产欧美日韩综合在线一区二区| 亚洲国产精品一区三区| 国产精品久久久久久精品电影小说| 国产免费又黄又爽又色| 欧美老熟妇乱子伦牲交| 1024视频免费在线观看| 一本—道久久a久久精品蜜桃钙片| 99久久99久久久精品蜜桃| 免费在线观看影片大全网站 | 国产精品偷伦视频观看了| 欧美日韩亚洲国产一区二区在线观看 | 青草久久国产| 日韩av免费高清视频| 曰老女人黄片| 亚洲国产毛片av蜜桃av| 夫妻性生交免费视频一级片| 男人操女人黄网站| 精品少妇久久久久久888优播| 日韩 亚洲 欧美在线| 亚洲欧美色中文字幕在线| 人体艺术视频欧美日本| 菩萨蛮人人尽说江南好唐韦庄| av在线播放精品| 丝袜在线中文字幕| 宅男免费午夜| 十八禁人妻一区二区| 欧美中文综合在线视频| 欧美性长视频在线观看| 国产在线一区二区三区精| 黄色一级大片看看| 久9热在线精品视频| 亚洲情色 制服丝袜| 欧美日韩av久久| 欧美在线黄色| 亚洲欧美一区二区三区黑人| 首页视频小说图片口味搜索 | 久久精品人人爽人人爽视色| 婷婷色麻豆天堂久久| 麻豆av在线久日| xxx大片免费视频| 狂野欧美激情性xxxx| 777米奇影视久久| 国精品久久久久久国模美| 妹子高潮喷水视频| 男女床上黄色一级片免费看| 成人手机av| 国产视频首页在线观看| 男人爽女人下面视频在线观看| 在线观看一区二区三区激情| 午夜福利在线免费观看网站| 成年人黄色毛片网站| 久久99热这里只频精品6学生| 久久久久久人人人人人| 99国产精品免费福利视频| 99香蕉大伊视频| 亚洲色图综合在线观看| 女人被躁到高潮嗷嗷叫费观| 国产成人精品在线电影| av片东京热男人的天堂| 大片免费播放器 马上看| 91字幕亚洲| 90打野战视频偷拍视频| 亚洲欧洲国产日韩| 91精品国产国语对白视频| 国产在线一区二区三区精| 国产免费现黄频在线看| 国产国语露脸激情在线看| 好男人视频免费观看在线| 精品亚洲成a人片在线观看| 男女之事视频高清在线观看 | 高清欧美精品videossex| av在线老鸭窝| 日本a在线网址| 午夜久久久在线观看| a 毛片基地| 欧美变态另类bdsm刘玥| 大香蕉久久成人网| 国产1区2区3区精品| 亚洲av在线观看美女高潮| 色94色欧美一区二区| 各种免费的搞黄视频| 女性被躁到高潮视频| 欧美黑人精品巨大| a级毛片在线看网站| 欧美精品av麻豆av| 麻豆乱淫一区二区| 日韩,欧美,国产一区二区三区| 69精品国产乱码久久久| 国产av国产精品国产| 女人被躁到高潮嗷嗷叫费观| 亚洲成色77777| 777米奇影视久久| 一二三四在线观看免费中文在| 1024香蕉在线观看| 后天国语完整版免费观看| av在线播放精品| 自线自在国产av| 51午夜福利影视在线观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲五月婷婷丁香| 久久人人爽av亚洲精品天堂| 午夜视频精品福利| 成人亚洲精品一区在线观看| 国产一区二区在线观看av| 国产精品久久久久成人av| h视频一区二区三区| 十八禁人妻一区二区| 久久国产亚洲av麻豆专区| 日本五十路高清| 欧美精品一区二区大全| 自拍欧美九色日韩亚洲蝌蚪91| 97人妻天天添夜夜摸| 熟女av电影| 18禁黄网站禁片午夜丰满| 欧美性长视频在线观看| 亚洲成人免费av在线播放| 老汉色av国产亚洲站长工具| 黄色一级大片看看| 午夜福利视频在线观看免费| 欧美少妇被猛烈插入视频| 一二三四社区在线视频社区8| 国产精品熟女久久久久浪| 国产精品免费视频内射| 热99久久久久精品小说推荐| 欧美在线一区亚洲| 777米奇影视久久| 日本欧美国产在线视频| 国产精品国产av在线观看| 中文字幕人妻熟女乱码| 午夜福利影视在线免费观看| 在线观看免费视频网站a站| 国产精品国产三级专区第一集| 午夜免费鲁丝| 精品亚洲成国产av| 人成视频在线观看免费观看| 制服人妻中文乱码| 91字幕亚洲| 亚洲欧美精品自产自拍| 欧美少妇被猛烈插入视频| 免费在线观看影片大全网站 | 在线观看免费午夜福利视频| 丰满少妇做爰视频| 精品人妻在线不人妻| 大香蕉久久成人网| 99久久99久久久精品蜜桃| avwww免费| 亚洲美女黄色视频免费看| 在线观看免费高清a一片| 国产免费又黄又爽又色| 国产精品国产三级专区第一集| 久久青草综合色| 国产精品麻豆人妻色哟哟久久| 91国产中文字幕| 亚洲欧美一区二区三区久久| 亚洲国产看品久久| 亚洲精品久久久久久婷婷小说| 亚洲色图综合在线观看| 国产一区有黄有色的免费视频| 视频在线观看一区二区三区| 国产1区2区3区精品| 欧美精品高潮呻吟av久久| 只有这里有精品99| 91九色精品人成在线观看| 亚洲第一青青草原| 99热网站在线观看| 欧美日韩精品网址| 亚洲精品美女久久久久99蜜臀 | 老汉色∧v一级毛片| 国产有黄有色有爽视频| 搡老乐熟女国产| 亚洲精品国产av蜜桃| 欧美人与性动交α欧美精品济南到| 日日摸夜夜添夜夜爱| 国产精品香港三级国产av潘金莲 | 欧美成人精品欧美一级黄| 国产熟女欧美一区二区| 欧美久久黑人一区二区| 在线亚洲精品国产二区图片欧美| 国产有黄有色有爽视频| 男女高潮啪啪啪动态图| 999久久久国产精品视频| 高清黄色对白视频在线免费看| 青青草视频在线视频观看| 欧美成人精品欧美一级黄| 狠狠婷婷综合久久久久久88av| 激情五月婷婷亚洲| 国产亚洲av片在线观看秒播厂| 男女边摸边吃奶| 精品国产国语对白av| 久久亚洲国产成人精品v| 亚洲国产av新网站| 国产精品免费视频内射| 女人久久www免费人成看片| 夫妻午夜视频| 亚洲av成人不卡在线观看播放网 | 亚洲av欧美aⅴ国产| 亚洲欧美日韩高清在线视频 | 日本猛色少妇xxxxx猛交久久| 国产视频一区二区在线看| 久久国产精品大桥未久av| av一本久久久久| 97在线人人人人妻| 免费看十八禁软件| 一区二区三区乱码不卡18| 久久av网站| av片东京热男人的天堂| 麻豆乱淫一区二区| 丝袜美腿诱惑在线| 亚洲欧美日韩高清在线视频 | 亚洲国产精品一区三区| 91成人精品电影| 成年人黄色毛片网站| 免费日韩欧美在线观看| 黄色一级大片看看| 欧美少妇被猛烈插入视频| 亚洲av成人不卡在线观看播放网 | 亚洲精品久久久久久婷婷小说| av国产久精品久网站免费入址| 国产欧美日韩一区二区三 | 国产男女超爽视频在线观看| 成人18禁高潮啪啪吃奶动态图| 涩涩av久久男人的天堂| 久久精品成人免费网站| 国语对白做爰xxxⅹ性视频网站| 免费在线观看完整版高清| 国产男人的电影天堂91| 999久久久国产精品视频| 亚洲激情五月婷婷啪啪| 我要看黄色一级片免费的| 人妻一区二区av| cao死你这个sao货| 在线av久久热| 欧美成人精品欧美一级黄| 日韩av不卡免费在线播放| 9191精品国产免费久久| 尾随美女入室| xxx大片免费视频| 国产爽快片一区二区三区| 欧美精品人与动牲交sv欧美| av国产久精品久网站免费入址| 国产精品二区激情视频| 日韩av免费高清视频| 精品人妻一区二区三区麻豆| 麻豆国产av国片精品| 男人爽女人下面视频在线观看| 亚洲人成77777在线视频| 青青草视频在线视频观看| av视频免费观看在线观看| 99久久精品国产亚洲精品| 国产精品久久久久久精品古装| 国产成人精品久久二区二区91| 精品卡一卡二卡四卡免费| 亚洲精品美女久久av网站| 亚洲精品国产色婷婷电影| 国产一区有黄有色的免费视频| 久久99精品国语久久久| 99国产精品一区二区三区| 五月开心婷婷网| 青春草亚洲视频在线观看| 日韩电影二区| 国产成人免费观看mmmm| 久久久久久久国产电影| 国产精品国产三级专区第一集| 不卡av一区二区三区| 免费高清在线观看日韩| 两个人看的免费小视频| 在线观看人妻少妇| 亚洲欧美成人综合另类久久久| 亚洲精品中文字幕在线视频| 汤姆久久久久久久影院中文字幕| 欧美精品啪啪一区二区三区 | 精品人妻1区二区| 国产成人影院久久av| 女性被躁到高潮视频| 成在线人永久免费视频| 欧美日韩视频高清一区二区三区二| 日韩精品免费视频一区二区三区| 首页视频小说图片口味搜索 | 中文字幕人妻熟女乱码| 超碰97精品在线观看| 嫁个100分男人电影在线观看 | 在线看a的网站| 免费在线观看视频国产中文字幕亚洲 | 午夜精品国产一区二区电影| 久久精品亚洲av国产电影网| 九色亚洲精品在线播放| 国产成人精品久久久久久| 欧美乱码精品一区二区三区| 久久精品人人爽人人爽视色| 啦啦啦在线免费观看视频4| 亚洲av美国av| 久久国产精品人妻蜜桃| 国产xxxxx性猛交| 亚洲成国产人片在线观看| 国产日韩欧美亚洲二区| 国产精品秋霞免费鲁丝片| 亚洲 国产 在线| 免费在线观看黄色视频的| 狠狠精品人妻久久久久久综合| 别揉我奶头~嗯~啊~动态视频 | 国产精品久久久久久精品古装| 大陆偷拍与自拍| 亚洲精品国产色婷婷电影| 另类亚洲欧美激情| 久久久久视频综合| 中文字幕制服av| 两性夫妻黄色片| 高清欧美精品videossex| 一本一本久久a久久精品综合妖精| av一本久久久久| 少妇被粗大的猛进出69影院| 一边亲一边摸免费视频| 美女午夜性视频免费| 少妇的丰满在线观看| 少妇精品久久久久久久| 桃花免费在线播放| 国产日韩欧美亚洲二区| 狂野欧美激情性xxxx| 精品一品国产午夜福利视频| 国产日韩一区二区三区精品不卡| 99re6热这里在线精品视频| 国产99久久九九免费精品| www.999成人在线观看| 一级毛片女人18水好多 | 国产亚洲午夜精品一区二区久久| 搡老岳熟女国产| 狂野欧美激情性xxxx| 亚洲少妇的诱惑av| 久久久久久亚洲精品国产蜜桃av| 亚洲少妇的诱惑av| 十分钟在线观看高清视频www| 精品亚洲成a人片在线观看| 国产麻豆69| av在线app专区| e午夜精品久久久久久久| 一个人免费看片子| 一本色道久久久久久精品综合| 在线观看人妻少妇| 一级毛片 在线播放| 精品亚洲成国产av| 成年女人毛片免费观看观看9 | 欧美日韩亚洲高清精品| 99香蕉大伊视频| 亚洲熟女毛片儿| 日本av免费视频播放| 纯流量卡能插随身wifi吗| 国产极品粉嫩免费观看在线| 狠狠精品人妻久久久久久综合| 人人妻人人澡人人看| 久久人人97超碰香蕉20202| 老司机午夜十八禁免费视频| 亚洲少妇的诱惑av| 各种免费的搞黄视频| 97在线人人人人妻| 七月丁香在线播放| 欧美精品高潮呻吟av久久| 亚洲综合色网址| avwww免费| 精品一区在线观看国产| 久久天堂一区二区三区四区| 亚洲情色 制服丝袜| 啦啦啦 在线观看视频| 精品少妇内射三级| 国产伦人伦偷精品视频| 无限看片的www在线观看| 大话2 男鬼变身卡| 欧美日韩av久久| 亚洲精品久久久久久婷婷小说| 亚洲av综合色区一区| 别揉我奶头~嗯~啊~动态视频 | 中文字幕亚洲精品专区| 精品久久久久久电影网| 丝瓜视频免费看黄片| 成人国语在线视频| 国产成人系列免费观看| 国产一区亚洲一区在线观看| 精品人妻在线不人妻| 天堂8中文在线网| 日本黄色日本黄色录像| 热re99久久国产66热| 中文字幕人妻丝袜制服| 97人妻天天添夜夜摸| 两性夫妻黄色片| 欧美+亚洲+日韩+国产| 亚洲成国产人片在线观看| 美女中出高潮动态图| 男女国产视频网站| 99国产精品免费福利视频| 国产成人a∨麻豆精品| 狠狠婷婷综合久久久久久88av| 国产片特级美女逼逼视频| 日韩大码丰满熟妇| 午夜视频精品福利| 色婷婷av一区二区三区视频| 欧美97在线视频| 中国国产av一级| 国产三级黄色录像| 欧美 亚洲 国产 日韩一| 亚洲一区二区三区欧美精品|