• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thawing k-essence dark energy in the PAge space

    2022-10-22 08:15:18ZhiqiHuang
    Communications in Theoretical Physics 2022年9期

    Zhiqi Huang

    School of Physics and Astronomy,Sun Yat-sen University,2 Daxue Road,Tangjia,Zhuhai 519082,China CSST Science Center for the Guangdong-Hongkong-Macau Greater Bay Area,Sun Yat-sen University,2 Daxue Road,Tangjia,Zhuhai 519082,China

    Abstract A broad class of dark energy models can be written in the form of k-essence,whose Lagrangian density is a two-variable function of a scalar field φ and its kinetic energy X ≡? μφ?μφ.In the thawing scenario,the scalar field becomes dynamic only when the Hubble friction drops below its mass scale in the late Universe.Thawing k-essence dark energy models can be randomly sampled by generating the Taylor expansion coefficients of its Lagrangian density from random matrices[Huang Z 2021 Phys.Rev.D 104 103533].Reference[Huang Z 2021 Phys.Rev.D 104 103533]points out that the non-uniform distribution of the effective equation of state parameters(w0,wa)of the thawing k-essence model can be used to improve the statistics of model selection.The present work studies the statistics of thawing k-essence in a more general framework that is Parameterized by the Age of the Universe (PAge) [Huang Z 2020 Astrophys.J.Lett.892 L28].For fixed matter fraction Ωm,the random thawing k-essence models cluster in a narrow band in the PAge parameter space,providing a strong theoretical prior.We simulate cosmic shear power spectrum data for the Chinese Space Station Telescope optical survey,and compare the fisher forecast with and without the theoretical prior of thawing k-essence.For an optimal tomography binning scheme,the theoretical prior improves the figure of merit in PAge space by a factor of 3.3.

    Keywords: dark energy,cosmological parameters,large-scale structure of universe

    1.Introduction

    Since the discovery of the accelerated expansion of the late Universe [3–5],it has been widely accepted that the current Universe is dominated by a dark energy component with negative pressure,whose microscopic nature is often interpreted as a cosmological constant (vacuum energy) that is conventionally denoted as Λ.Over the past two decades,the standard six-parameter Λ cold dark matter (ΛCDM) model has been confronted with a host of observational tests.The high-precision measurements of the temperature and polarization anisotropies of the cosmic microwave background(CMB)provide so far the most stringent constraints on the cosmological parameters [6,7],which agree well with many other observations such as the baryon acoustic oscillations [8–12],the Type Ia supernovae (SN) [13,14],the redshift-space distortion [15,16],and the cosmic chronometers (CC) [17–24].

    Despite the observational success,the extraordinary smallness of the vacuum energy (fine-tuning problem) and the coincidence that Λ dominates the Universe only recently(coincidence problem)have,at least philosophically,disturbed cosmologists for decades [25].Moreover,as the accuracy of observations improves,the great observational success of the ΛCDM model is now challenged by a few anomalies.For instance,the Hubble constant H0inferred from CMB+ΛCDM is in~5σ tension with the distance-ladder measurements [26,27].Less significant challenges include a 3.4σ tension in the matter density fluctuation parameter S8between CMB and some cosmic shear data [28–30],a 2.8σ excess of lensing smearing in the CMB power spectra [7],and the lack of large-angle correlation in CMB temperature [31–34],etc.See [35]for a recent comprehensive review of the observational challenges to the ΛCDM model.

    Given that Λ might not be the ultimate truth,we are well motivated to construct alternative dark energy models.A simple and in some sense also minimal construction is to introduce a scalar degree of freedom.Because high-order derivative theories typically suffer from the Ostrogradsky instability [36],it is often assumed that the Lagrangian density only depends on the scalar field value and its kinetic energyX=?μφ?μφ.This class of dark energy models,often dubbed as k-essence models,allows a variety of cosmological solutions with rich phenomena [37–73].In the early time when k-essence dark energy was first proposed,interests were more focused on using the so-called tracking solutions,where the field has attractor-like dynamics in the early Universe,to resolve the coincidence problem[74–77].It was understood later that the tracking k-essence models are not very successful solutions to the coincidence problem,because they require additional fine-tuning and superluminal fluctuations [78–80].Moreover,tracking models typically predict moderate deviation from Λ,which is more and more disfavored as the accuracy of observations improves [7,81].Alternatively,one can consider the so-called thawing k-essence[1,82–85],whose mass scale is close to or less than the current expansion rate of the Universe.In the thawing picture,the k-essence field is frozen by the large Hubble friction in the early Universe.Only at low redshift when the expansion rate drops below its mass scale,the field starts to roll.The lightness assumption (mass ?H0) of thawing k-essence naturally leads to non-clustering dark energy whose perturbations are suppressed on sub-horizon scales.There do exist,however,models of dark energy with noticeable subhorizon perturbations[86–91].In the present work we do not discuss clustering dark energy models,as they typically need to be treated in a one-by-one manner.

    The assumption of a thawing scenario significantly reduces the model complexity.Generating the Taylor expansion coefficients of L(φ,X) from random matrices [1],shows that a majority of k-essence dark energy models follows an approximate consistency relationwa≈(1+w0),where Ωmis the present matter density fraction and w0,waare the Chevallier–Polarski–Linder (CPL) parameters for dark energy equation of state(EOS)[92,93].The consistency relation can be understood as follows.Due to the thawing nature,the present rolling speed of the scalar field,which is characterized by 1+w0,is typically correlated to the acceleration of late-time rolling,which is characterized by wa.

    The approximate consistency relation can be combined with observational data to improve the constraining power of cosmological data,which is often measured with the so-called figure of merit in marginalized w0–waspace.For a concrete model,however,the dark EOS does not exactly follow the CPL form w(a)=w0+wa(1-a),where a denotes the scale factor.The parameters w0,watherefore only have an approximate meaning and should be considered as an effective description of dark energy at low redshift.In the present work,we consider another effective description of dark energy with the Parameterization based on cosmic Age (PAge) [2,94–99].Compared to the CPL w0–waeffective description,PAge does not suffer from a strong parameter degeneracy that is commonly found between w0and wa.Thus,the parameter space of PAge is more compact.The Figure of Merit for the parameterization based on cosmic Age,which we abbreviate as FROMAge to show our French taste,is an equally good,if not better,indicator of the constraining power of cosmological data.

    The article is organized as follows.section 2 briefly reviews PAge cosmology.In section 3,we use the numerical tool developed in [1]to generate an ensemble of random thawing k-essence dark energy models,which are then mapped into PAge parameter space.In section 4,we take a future cosmic shear survey as a working example to quantify by how much the thawing k-essence prior may improve the constraining power of cosmological data section 5 concludes.Throughout the paper we work with natural units c=?=1 and a spatially-flat Universe with Friedmann–Lemai^tre–Robertson–Walker background.The cosmological time and Hubble parameter are denoted as t and H,respectively.The dark EOS is denoted as w,which in general is a function of redshift z.A dot represents derivative with respect to the cosmological time.The current scale factor is normalized to unity.The Hubble constant is denoted as H0=100h km s-1Mpc-1.The square root of the cosmic variance of the mean density in a sphere with radius 8h-1Mpc is denoted as σ8,which then defines theparameter.

    2.PAge cosmology

    At redshift z ?100,where the radiation component can be ignored,PAge approximates the expansion history of the Universe with the following ansatz [2]

    where page=H0t0is the age of the Universe measured in units ofH0-1and η<1 is a phenomenological parameter approximately describing the deviation from an Einstein de-Sitter Universe.

    Although it may seem like a casual assumption,the PAge ansatz(1)makes use of quite a few physical conditions.First of all,the parameters H0and pageare physical quantities that can be directly computed for any given physical model.Secondly,ansatz(1)automatically sets the matter-dominated behavior at a high redshift (l imt→0+Ht=).Finally,ansatz(1) guarantees that the expansion rate H monotonically decreases as the Universe expands.Thanks to these physically motivated features,PAge well approximates much dark energy and modified gravity models [2,94],and performs better than many other phenomenological approaches,such as the oft-used polynomial approximation [100].

    At the background level,whenH0-1is treated as a time unit,the expansion history is determined by ppageand η,and therefore Ωmis not a parameter in PAge.While perturbation calculation is needed for the simulation of the cosmic shear data,we add Ωmto the PAge framework and employ the following linear growth equation

    Figure 1.The accuracy of PAge approximation.Left panel:EOS w(z)of a few randomly sampled k-essence dark energy models;right panel:relative error in luminosity distances when the models in the left panel are approximated with PAge.In all cases Ωm is fixed to 0.3.

    Table 1.k-essence generator program settings.

    The assumption that goes into the above equation is that dark energy perturbations at sub-horizon and linear scales can be ignored.

    Although more sophisticated approaches exist,for simplicity and to show the robustness of PAge approximation,we follow the simple method in[2]to map dark energy models to PAge space.The η parameter is calculated using the deceleration parameterq≡-evaluated at redshift zero.

    3.Thawing k-essence in PAge space

    We use the numerical tool developed in [1],which has been made publicly available at http://zhiqihuang.top/codes/scan_kessence.tar.gz,to generate random k-essence dark energy models.The program settings are shown in table 1.See also[1]for more detailed documentation of the program parameters.It has been shown in [1],and also tested in the present work,that increasing the truncation order and the sampling width do not change the distribution of sampled trajectories much.This is because models with increasing complexity typically violate the thawing condition (|1+w|?1 in the early Universe),the acceleration assumption (w<-)or the smoothness assumption (growth of density contrast ?102),and thus are rejected by the program.

    We generate 41 000 random k-essence dark energy models for a flat prior Ωm∈[0.25,0.35].The models are then mapped into PAge space to generate a joint distribution of(ppage,η,Ωm),which we refer to as the thawing k-essence prior.The mapping procedure comes with a tiny accuracy loss in predictions of cosmological observables.In the left panel of figure 1,we show a few k-essence dark energy EOS trajectories with different colors.The relative difference between the luminosity distances predicted from each model and that from its PAge approximation is shown with the same color in the right panel.The errors are typically at a sub-percent level.These tiny errors may be relevant for future cosmological surveys and can be corrected with a more sophisticated approach [97].We nevertheless work in the original simple PAge framework that is easier to interpret,because the main purpose of the present work is to study the impact of the thawing k-essence prior,rather than the accuracy of PAge approximation.

    Due to parameter degeneracy,if the dark energy EOS is a free function of redshift,an exact reconstruction of Ωmfrom the expansion history of the Universe is impossible.Since the Lagrangian density L(φ,X) is a free function,the EOS of k-essence is almost free,too.However,when the aforementioned physical assumptions are applied,the EOS of thawing k-essence dark energy is not free in a statistical sense.In figure 2 we compare the mapped (page,η) samples for Ωm=0.25,0.3 and 0.35,respectively.It is evident that one can obtain a statistical constraint on Ωmfrom the evolution history that is determined by (page,η).This is a non-trivial result.For a cosmic shear survey,the additional information on Ωmcan break the strong degeneracy between Ωmand σ8and lead to a better reconstruction of low-redshift physics.To make the idea more concrete,in the next section we take a future cosmic shear survey as a working example to quantify the impact of the thawing k-essence prior.

    Figure 2.Randomly sampled k-essence dark energy models mapped into the PAge space.

    4.Cosmic shear fisher forecast

    To make the analysis simple and easy to interpret,we only consider the statistics of the convergence field.The angular power spectrum between the redshift bins i and j is given by the Limber approximation [101–104]

    where the comoving angular diameter distance in a spatially flat Universe is given by

    The nonlinear matter power spectrum at redshift z,Pm(k;z)where k denotes the wavenumber,is calculated with the Bardeen–Bond–Kaiser–Szalay fitting formula [105]and the halo-fit formula[106,107].The weight function in the ith binz∈[zimin,zimax]is given by

    Figure 3.Simulated cosmic shear data with two redshift bins: z ∈[0,1](bin 0) and z ∈[1,3](bin 1).

    Table 2.Redshift binning schemes.

    The total number density of observed galaxies is then the sum ntotal=∑ini.

    The observed convergence power spectrum with shot noise is modeled as

    where δijis the Kronecker delta function and σ∈is the root mean square of the Galaxy intrinsic ellipticity.

    For the angular scales we take a conservative multipole range 10≤?≤2500.Due to the central limit theorem,the integrated convergence fields over this range are quite close to Gaussian [108–110],and therefore can be written as

    where fskyis the fraction of sky that is observed.

    Figure 4.Fisher forecast for different numbers of tomography bins.Photometric redshift error is taken to be 0.03(1+z).

    If the cosmological redshifts of galaxies were all perfectly known,an optimal analysis would be done within the limit of taking infinitely many redshift bins.In practice,however,the redshift of a photometric survey has a large uncertainty,which in our simulation is assumed to be σ(z)=0.03(1+z).Conventionally when doing a Fisher forecast,the photo-z errors are treated by marginalizing some shift parameters and spreading parameters [104,111],and the result inevitably depends on many assumptions that are difficult to justify at the stage of forecasting.To make the result robust and easy to interpret,we take a very conservative approach by simply discarding the galaxies samples around the edges of the redshift bins.More concretely,we cut each redshift bin [zimin,zimax]to a smaller one [zimin+σ(zimin),zimax-σ(zimin)].This approach is conservative because we have assumed almost no knowledge about the photo-z error distribution function,which in realistic surveys will be known to some extent.

    We have assumed that many other subtle effects such as the intrinsic alignment contamination [112],catastrophic redshift outliers[113],and the super-sample covariance[114]can be well calibrated.The reader is referred to [113,115–119]for a more detailed discussion about the calibration of these systematics.

    In our simulation we assume a galaxy intrinsic ellipticity σ∈=0.3,a galaxy distribution n(z)∝z2e-z/0.3that is normalized byntotal=28 arcmin-2,and a sky coverage fsky=0.424.The configuration roughly corresponds to the optical survey that will be carried out by the Chinese Space Station Telescope[120].In figure 3,we show the simulatedC?obsand their standard deviations for two redshift bins and thirty ?-bins.

    We employ the Fisher forecast approach to compute the constraining power on the five dimensional parameter vector:θ=(page,η,h,Ωm,σ8).The Fisher matrix is given by

    where the data vector d is the collection of the observed power spectraand Cov is the covariance matrix given in equation(8).The covariance of the parameter vector is estimated with the inverse of the Fisher matrix,Cov (θI,θJ) ≈ (F-1)IJ.

    We first study the dependence of the result on the number of redshift bins by comparing four binning schemes listed in table 2.

    The marginalized 68.3% confidence-level constraints for(page,η),as well as the FROMAges for the four binning schemes are shown in the left panel of figure 4.As we increase the number of redshift bins,the constraining power(FROMAge)increases at the beginning,and then drops when the photometric redshift error comes into play.A similar tendency is also observed for the other cosmological parameters,such as the (σ8,Ωm) combination presented in the right panel of figure 4.

    Finally,we apply the thawing k-essence prior in the Fisher analysis.We first bin and interpolate a prior likelihood P(Ωm,page,η) from the random samples obtained in the previous section.A full likelihood is obtained by multiplying the data likelihood by the prior likelihood.We run Monte Carlo Markov Chain simulations to obtain the posterior covariance matrix,which is plotted in figure 5 against the original Fisher forecast without thawing k-essence prior.For(page,η)the thawing k-essence prior improves the FROMAge by a factor of 3.3.A similar improvement is found for(σ8,Ωm),too.

    5.Conclusions

    We have shown,with a simple Fisher forecast of future cosmic shear survey,that a reasonable theoretical prior of dark energy can significantly improve the constraining power of the data.This raises the question of whether it is proper to judge the future dark energy surveys with a blind figure of merit without any theoretical prejudice.After all,the history of science has proven that theoretical prejudice is sometimes beneficial.

    Figure 5.Fisher forecast of the 1σ and 2σ constraints on cosmological parameters,with and without thawing k-essence prior.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (NSFC) under Grant No.12 073 088,National SKA Program of China No.2020SKA0110402,National key R&D Program of China (Grant No.2020YFC2201600),and Guangdong Major Project of Basic and Applied Basic Research (Grant No.2019B030302001).

    ORCID iDs

    一区二区三区激情视频| 激情在线观看视频在线高清| 亚洲精品一卡2卡三卡4卡5卡| www.自偷自拍.com| 搡老熟女国产l中国老女人| 亚洲专区字幕在线| 亚洲美女黄片视频| videosex国产| 午夜精品久久久久久毛片777| 中文在线观看免费www的网站 | 久久青草综合色| 亚洲五月色婷婷综合| 久久国产精品男人的天堂亚洲| 黄色视频,在线免费观看| 午夜精品久久久久久毛片777| 日本一本二区三区精品| 成年版毛片免费区| av天堂在线播放| 国产精品二区激情视频| 久久香蕉激情| 99精品在免费线老司机午夜| 日本免费一区二区三区高清不卡| 欧美激情极品国产一区二区三区| 国产成人av教育| 啦啦啦韩国在线观看视频| 亚洲中文字幕日韩| 久久婷婷人人爽人人干人人爱| 国产精品av久久久久免费| 人人妻人人澡人人看| 免费观看精品视频网站| 日韩免费av在线播放| 他把我摸到了高潮在线观看| а√天堂www在线а√下载| e午夜精品久久久久久久| 中文字幕高清在线视频| 麻豆久久精品国产亚洲av| 国产真人三级小视频在线观看| 久久中文字幕一级| 午夜福利成人在线免费观看| 99国产精品一区二区三区| 午夜福利18| 黑丝袜美女国产一区| 亚洲人成电影免费在线| 久久久久国内视频| 中文字幕精品亚洲无线码一区 | 久久天躁狠狠躁夜夜2o2o| 成人手机av| 欧美日韩亚洲国产一区二区在线观看| 国内久久婷婷六月综合欲色啪| 亚洲av片天天在线观看| 欧美不卡视频在线免费观看 | 亚洲美女黄片视频| 波多野结衣av一区二区av| 男人舔女人下体高潮全视频| 亚洲第一青青草原| 天堂√8在线中文| 性色av乱码一区二区三区2| 十八禁人妻一区二区| 成人国语在线视频| 中文字幕人妻熟女乱码| 欧美中文日本在线观看视频| 亚洲在线自拍视频| 久热爱精品视频在线9| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲狠狠婷婷综合久久图片| 在线观看免费日韩欧美大片| 老司机午夜十八禁免费视频| 亚洲精品av麻豆狂野| 久久久久久久久中文| 国产精品国产高清国产av| 久久人人精品亚洲av| 两个人免费观看高清视频| 长腿黑丝高跟| 亚洲精品国产精品久久久不卡| 长腿黑丝高跟| 久久亚洲精品不卡| 国产精品爽爽va在线观看网站 | 俺也久久电影网| 99精品久久久久人妻精品| 国产成人欧美在线观看| 国产又黄又爽又无遮挡在线| 国产精品亚洲美女久久久| 亚洲电影在线观看av| 欧美日本亚洲视频在线播放| 天堂动漫精品| 亚洲aⅴ乱码一区二区在线播放 | 色综合欧美亚洲国产小说| 国产激情偷乱视频一区二区| 免费无遮挡裸体视频| 国内少妇人妻偷人精品xxx网站 | 亚洲国产日韩欧美精品在线观看 | 99精品久久久久人妻精品| 日日摸夜夜添夜夜添小说| www.自偷自拍.com| av在线天堂中文字幕| 久久久国产成人免费| 一卡2卡三卡四卡精品乱码亚洲| 亚洲一区中文字幕在线| 国产成年人精品一区二区| 国产熟女午夜一区二区三区| 午夜日韩欧美国产| 国内揄拍国产精品人妻在线 | av电影中文网址| 一级a爱片免费观看的视频| cao死你这个sao货| 日韩大尺度精品在线看网址| 亚洲全国av大片| 天天添夜夜摸| 成人国语在线视频| 黄网站色视频无遮挡免费观看| 中文字幕人妻丝袜一区二区| bbb黄色大片| 久久久久免费精品人妻一区二区 | 午夜激情福利司机影院| 在线观看舔阴道视频| 亚洲国产精品999在线| 亚洲一码二码三码区别大吗| 50天的宝宝边吃奶边哭怎么回事| 18禁观看日本| 99国产综合亚洲精品| 色综合欧美亚洲国产小说| 一级a爱视频在线免费观看| 黄片小视频在线播放| 真人一进一出gif抽搐免费| 麻豆一二三区av精品| 久久人人精品亚洲av| 国产成人精品久久二区二区91| 欧美国产日韩亚洲一区| 91字幕亚洲| 精品国产乱码久久久久久男人| 成人亚洲精品av一区二区| 久久香蕉精品热| 一二三四社区在线视频社区8| 操出白浆在线播放| 99国产精品一区二区三区| 国产av一区二区精品久久| 大香蕉久久成人网| 国产伦一二天堂av在线观看| 亚洲,欧美精品.| 99精品久久久久人妻精品| 国产熟女xx| 日韩精品免费视频一区二区三区| 国产亚洲av嫩草精品影院| 日日摸夜夜添夜夜添小说| av中文乱码字幕在线| 欧美在线一区亚洲| 窝窝影院91人妻| 无遮挡黄片免费观看| av超薄肉色丝袜交足视频| 精品久久久久久久久久免费视频| 日韩成人在线观看一区二区三区| 99国产综合亚洲精品| videosex国产| 手机成人av网站| 看片在线看免费视频| 亚洲国产欧美网| 黄网站色视频无遮挡免费观看| 最好的美女福利视频网| 免费观看人在逋| 在线看三级毛片| 在线播放国产精品三级| 国产视频一区二区在线看| 欧美黄色片欧美黄色片| 国产成人影院久久av| 亚洲在线自拍视频| 自线自在国产av| 精品久久久久久久毛片微露脸| 视频在线观看一区二区三区| 久久天躁狠狠躁夜夜2o2o| 久久这里只有精品19| 午夜久久久久精精品| 亚洲国产精品合色在线| 亚洲精品一区av在线观看| 亚洲精品粉嫩美女一区| 在线观看日韩欧美| 中文字幕久久专区| 夜夜看夜夜爽夜夜摸| 他把我摸到了高潮在线观看| 亚洲黑人精品在线| 欧美一级毛片孕妇| 9191精品国产免费久久| 一进一出抽搐gif免费好疼| 久久久久久久久久黄片| 亚洲五月婷婷丁香| 最新美女视频免费是黄的| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利欧美成人| 久久久久久久精品吃奶| 老司机福利观看| 国产精品国产高清国产av| 亚洲国产精品999在线| a在线观看视频网站| 看片在线看免费视频| 韩国精品一区二区三区| 亚洲精品粉嫩美女一区| 女同久久另类99精品国产91| 亚洲精品一卡2卡三卡4卡5卡| 香蕉av资源在线| 国产午夜精品久久久久久| 国产国语露脸激情在线看| 免费在线观看日本一区| 51午夜福利影视在线观看| 亚洲aⅴ乱码一区二区在线播放 | 最近最新免费中文字幕在线| 麻豆成人午夜福利视频| 精品久久久久久久人妻蜜臀av| 色播在线永久视频| 国产精品久久久久久亚洲av鲁大| 国产午夜精品久久久久久| 日本免费a在线| 十分钟在线观看高清视频www| 国产亚洲精品一区二区www| 免费看a级黄色片| 日韩视频一区二区在线观看| 两人在一起打扑克的视频| 搡老熟女国产l中国老女人| 亚洲自拍偷在线| 日日干狠狠操夜夜爽| 国产久久久一区二区三区| 麻豆成人av在线观看| 99热只有精品国产| 男人操女人黄网站| 免费在线观看日本一区| 国产精品综合久久久久久久免费| 欧美色欧美亚洲另类二区| 国产99久久九九免费精品| 成人国产一区最新在线观看| 久久久久久久午夜电影| 99久久精品国产亚洲精品| 在线观看66精品国产| 黄色视频,在线免费观看| 观看免费一级毛片| 久久精品aⅴ一区二区三区四区| 无人区码免费观看不卡| 老汉色∧v一级毛片| 18禁美女被吸乳视频| 午夜免费鲁丝| 少妇被粗大的猛进出69影院| 很黄的视频免费| 亚洲国产高清在线一区二区三 | 可以在线观看毛片的网站| av欧美777| 三级毛片av免费| 日本成人三级电影网站| 黑丝袜美女国产一区| 日本一本二区三区精品| 国产真人三级小视频在线观看| 操出白浆在线播放| 色哟哟哟哟哟哟| 啪啪无遮挡十八禁网站| 欧美绝顶高潮抽搐喷水| 90打野战视频偷拍视频| 脱女人内裤的视频| 欧美黑人欧美精品刺激| 中文字幕最新亚洲高清| 亚洲精品久久成人aⅴ小说| 国内精品久久久久久久电影| 久久久久久人人人人人| 香蕉国产在线看| 日韩精品中文字幕看吧| 香蕉丝袜av| 脱女人内裤的视频| 日本精品一区二区三区蜜桃| 中文字幕最新亚洲高清| 久久精品国产亚洲av香蕉五月| 久久久精品国产亚洲av高清涩受| 999久久久精品免费观看国产| or卡值多少钱| 女警被强在线播放| 国产片内射在线| 欧美激情久久久久久爽电影| 天天躁狠狠躁夜夜躁狠狠躁| 欧美人与性动交α欧美精品济南到| 老司机在亚洲福利影院| av视频在线观看入口| 黄色毛片三级朝国网站| 哪里可以看免费的av片| 九色国产91popny在线| 国产真人三级小视频在线观看| 无人区码免费观看不卡| 午夜福利高清视频| 后天国语完整版免费观看| 黄色成人免费大全| 国产精品久久久久久人妻精品电影| netflix在线观看网站| 美女高潮喷水抽搐中文字幕| 国产人伦9x9x在线观看| 国产精品久久久人人做人人爽| 久久精品国产99精品国产亚洲性色| 悠悠久久av| 18禁裸乳无遮挡免费网站照片 | 久久久水蜜桃国产精品网| 久久伊人香网站| 国产精品久久久av美女十八| 女人被狂操c到高潮| 国产午夜福利久久久久久| 国产三级黄色录像| 亚洲精品久久国产高清桃花| 看片在线看免费视频| 波多野结衣高清无吗| 国产黄色小视频在线观看| 少妇的丰满在线观看| 亚洲av五月六月丁香网| 变态另类丝袜制服| 久久九九热精品免费| 欧美久久黑人一区二区| 天天躁夜夜躁狠狠躁躁| 欧美激情高清一区二区三区| 亚洲男人的天堂狠狠| 一区二区三区激情视频| 国产精品自产拍在线观看55亚洲| 国产久久久一区二区三区| 12—13女人毛片做爰片一| 国产欧美日韩精品亚洲av| 一进一出抽搐动态| 在线十欧美十亚洲十日本专区| 亚洲,欧美精品.| 中文字幕人妻熟女乱码| 国产成人精品久久二区二区免费| 亚洲 国产 在线| 制服丝袜大香蕉在线| 日韩欧美在线二视频| 亚洲人成网站在线播放欧美日韩| 久久香蕉国产精品| tocl精华| 国产一区二区三区在线臀色熟女| 国产极品粉嫩免费观看在线| 亚洲人成网站高清观看| 老熟妇仑乱视频hdxx| 久久精品国产亚洲av高清一级| 欧美中文综合在线视频| 美女国产高潮福利片在线看| 在线永久观看黄色视频| 久久九九热精品免费| 国产伦在线观看视频一区| 两个人免费观看高清视频| 久9热在线精品视频| 欧美 亚洲 国产 日韩一| 88av欧美| 亚洲一区高清亚洲精品| 在线观看免费视频日本深夜| 欧美日韩中文字幕国产精品一区二区三区| 色av中文字幕| 少妇粗大呻吟视频| 欧美zozozo另类| 亚洲 欧美一区二区三区| 国产真人三级小视频在线观看| 后天国语完整版免费观看| 久久久久国产精品人妻aⅴ院| 亚洲熟妇中文字幕五十中出| 欧美中文日本在线观看视频| 国产成人欧美| 国产成人精品无人区| 日日爽夜夜爽网站| 丰满的人妻完整版| 免费看日本二区| 悠悠久久av| 大型av网站在线播放| 欧美 亚洲 国产 日韩一| 制服丝袜大香蕉在线| 国产伦一二天堂av在线观看| 一夜夜www| 两性午夜刺激爽爽歪歪视频在线观看 | 中文亚洲av片在线观看爽| 这个男人来自地球电影免费观看| 精品国产亚洲在线| 欧美色视频一区免费| 国产一级毛片七仙女欲春2 | 美女大奶头视频| 两人在一起打扑克的视频| 最好的美女福利视频网| 欧美一级毛片孕妇| 日韩欧美一区视频在线观看| svipshipincom国产片| 久久精品国产亚洲av香蕉五月| 亚洲国产精品久久男人天堂| 国产一卡二卡三卡精品| 黄色a级毛片大全视频| 亚洲熟妇中文字幕五十中出| 真人做人爱边吃奶动态| 午夜福利免费观看在线| 成人永久免费在线观看视频| 国产高清有码在线观看视频 | 欧美zozozo另类| 亚洲国产精品合色在线| 久久精品91无色码中文字幕| 国产精品亚洲一级av第二区| 欧美色视频一区免费| 每晚都被弄得嗷嗷叫到高潮| 无人区码免费观看不卡| 色在线成人网| www.精华液| 丰满的人妻完整版| 久久热在线av| 黄色视频不卡| 国产熟女xx| 91av网站免费观看| 免费无遮挡裸体视频| a级毛片在线看网站| 精品少妇一区二区三区视频日本电影| 香蕉国产在线看| 午夜视频精品福利| e午夜精品久久久久久久| 在线视频色国产色| 久久伊人香网站| 国产私拍福利视频在线观看| 怎么达到女性高潮| 久久久精品欧美日韩精品| 国产伦一二天堂av在线观看| 欧美在线一区亚洲| 日韩中文字幕欧美一区二区| 欧美日韩一级在线毛片| 亚洲美女黄片视频| 日韩欧美在线二视频| 91麻豆精品激情在线观看国产| 九色国产91popny在线| 天堂√8在线中文| 一区二区三区国产精品乱码| 国产亚洲精品久久久久5区| 少妇熟女aⅴ在线视频| 久久久久久久精品吃奶| 夜夜看夜夜爽夜夜摸| 最近在线观看免费完整版| 国内少妇人妻偷人精品xxx网站 | 后天国语完整版免费观看| 精品电影一区二区在线| 国产成人欧美在线观看| 午夜福利在线在线| 精品午夜福利视频在线观看一区| 久热这里只有精品99| 精品第一国产精品| 亚洲中文av在线| 国产亚洲精品av在线| 十八禁网站免费在线| 天堂影院成人在线观看| 美女免费视频网站| 色综合婷婷激情| 日本 av在线| 精品熟女少妇八av免费久了| 久热爱精品视频在线9| 国产黄色小视频在线观看| 热re99久久国产66热| 欧美黑人欧美精品刺激| 一卡2卡三卡四卡精品乱码亚洲| 好男人电影高清在线观看| 国产精品一区二区精品视频观看| 国产黄色小视频在线观看| 亚洲色图av天堂| 国产成人影院久久av| 丝袜在线中文字幕| 久99久视频精品免费| 午夜影院日韩av| 成人亚洲精品av一区二区| 91麻豆精品激情在线观看国产| 啦啦啦观看免费观看视频高清| 亚洲av日韩精品久久久久久密| 国产成+人综合+亚洲专区| 一个人观看的视频www高清免费观看 | 淫秽高清视频在线观看| 亚洲自偷自拍图片 自拍| 国产精品久久久久久人妻精品电影| 亚洲人成网站在线播放欧美日韩| 国产真实乱freesex| 欧美日本亚洲视频在线播放| 久久伊人香网站| 亚洲精品美女久久久久99蜜臀| 色综合婷婷激情| 日日干狠狠操夜夜爽| 欧美成人午夜精品| 18禁黄网站禁片午夜丰满| 亚洲国产精品sss在线观看| 午夜久久久在线观看| 亚洲男人天堂网一区| 色综合婷婷激情| 大型av网站在线播放| 亚洲电影在线观看av| 国产成人一区二区三区免费视频网站| 国产一区在线观看成人免费| 最近最新中文字幕大全电影3 | 久久久久久久久免费视频了| 久久久国产精品麻豆| 岛国在线观看网站| 青草久久国产| 欧美日本亚洲视频在线播放| 黄色丝袜av网址大全| 欧美激情极品国产一区二区三区| 无限看片的www在线观看| 视频在线观看一区二区三区| 91字幕亚洲| 成人三级做爰电影| 亚洲精品美女久久久久99蜜臀| 国产熟女xx| 久久精品91无色码中文字幕| 日韩免费av在线播放| 中出人妻视频一区二区| 岛国视频午夜一区免费看| 亚洲av成人一区二区三| 日韩av在线大香蕉| 12—13女人毛片做爰片一| 久久久国产成人精品二区| 在线永久观看黄色视频| 热re99久久国产66热| cao死你这个sao货| 妹子高潮喷水视频| 欧美黄色淫秽网站| 亚洲,欧美精品.| 久久精品国产综合久久久| 亚洲五月天丁香| 久久久久久人人人人人| 欧美日韩亚洲国产一区二区在线观看| 长腿黑丝高跟| 女性被躁到高潮视频| 给我免费播放毛片高清在线观看| 久久人人精品亚洲av| 午夜久久久久精精品| 精品久久久久久久毛片微露脸| 国产精品一区二区精品视频观看| 18禁黄网站禁片午夜丰满| 国产精品香港三级国产av潘金莲| 中文字幕久久专区| av视频在线观看入口| 国产成人欧美| 成熟少妇高潮喷水视频| 久久精品影院6| 欧美精品啪啪一区二区三区| 麻豆成人午夜福利视频| 巨乳人妻的诱惑在线观看| 我的亚洲天堂| 51午夜福利影视在线观看| 欧美日韩黄片免| 成年女人毛片免费观看观看9| 亚洲男人天堂网一区| 欧美乱色亚洲激情| 国产亚洲av嫩草精品影院| 色在线成人网| 淫妇啪啪啪对白视频| 51午夜福利影视在线观看| 亚洲精品中文字幕在线视频| 婷婷丁香在线五月| 19禁男女啪啪无遮挡网站| 激情在线观看视频在线高清| 18禁黄网站禁片午夜丰满| 久久精品aⅴ一区二区三区四区| 久久 成人 亚洲| 日本 欧美在线| 日韩欧美国产一区二区入口| 国产人伦9x9x在线观看| 久久中文字幕一级| 亚洲中文字幕一区二区三区有码在线看 | 亚洲无线在线观看| 久热爱精品视频在线9| 亚洲欧美激情综合另类| 欧美激情 高清一区二区三区| 久久久久免费精品人妻一区二区 | 欧美不卡视频在线免费观看 | 亚洲国产欧美网| 99riav亚洲国产免费| 午夜福利18| 亚洲欧美日韩高清在线视频| 国产成人精品无人区| 日本免费一区二区三区高清不卡| 日本三级黄在线观看| 亚洲狠狠婷婷综合久久图片| 国产精品影院久久| 国产av一区在线观看免费| 嫩草影院精品99| 亚洲三区欧美一区| www国产在线视频色| 99在线人妻在线中文字幕| 欧美日韩精品网址| 精品一区二区三区四区五区乱码| 香蕉av资源在线| 成人永久免费在线观看视频| 国产欧美日韩一区二区精品| 久久亚洲精品不卡| 91在线观看av| 给我免费播放毛片高清在线观看| 美女午夜性视频免费| 成人精品一区二区免费| 十八禁人妻一区二区| 男人舔奶头视频| 最近最新中文字幕大全电影3 | 99久久99久久久精品蜜桃| 国产精华一区二区三区| 精华霜和精华液先用哪个| 久久国产亚洲av麻豆专区| www.www免费av| 成人三级黄色视频| 国产精品电影一区二区三区| av超薄肉色丝袜交足视频| 2021天堂中文幕一二区在线观 | 亚洲性夜色夜夜综合| 亚洲人成网站在线播放欧美日韩| 老司机午夜福利在线观看视频| 久久香蕉国产精品| 国产精品亚洲一级av第二区| 久久久久国产一级毛片高清牌| 久久久久久国产a免费观看| 国产视频一区二区在线看| 可以免费在线观看a视频的电影网站| 国产午夜精品久久久久久| 精品少妇一区二区三区视频日本电影| 欧美中文日本在线观看视频| 久久香蕉国产精品| 亚洲熟女毛片儿| 91麻豆av在线| 淫秽高清视频在线观看| 国产99白浆流出| 国产久久久一区二区三区| 日韩欧美免费精品| 一区二区三区高清视频在线| 级片在线观看| 两个人视频免费观看高清| 亚洲av成人不卡在线观看播放网| 欧美久久黑人一区二区|