• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thawing k-essence dark energy in the PAge space

    2022-10-22 08:15:18ZhiqiHuang
    Communications in Theoretical Physics 2022年9期

    Zhiqi Huang

    School of Physics and Astronomy,Sun Yat-sen University,2 Daxue Road,Tangjia,Zhuhai 519082,China CSST Science Center for the Guangdong-Hongkong-Macau Greater Bay Area,Sun Yat-sen University,2 Daxue Road,Tangjia,Zhuhai 519082,China

    Abstract A broad class of dark energy models can be written in the form of k-essence,whose Lagrangian density is a two-variable function of a scalar field φ and its kinetic energy X ≡? μφ?μφ.In the thawing scenario,the scalar field becomes dynamic only when the Hubble friction drops below its mass scale in the late Universe.Thawing k-essence dark energy models can be randomly sampled by generating the Taylor expansion coefficients of its Lagrangian density from random matrices[Huang Z 2021 Phys.Rev.D 104 103533].Reference[Huang Z 2021 Phys.Rev.D 104 103533]points out that the non-uniform distribution of the effective equation of state parameters(w0,wa)of the thawing k-essence model can be used to improve the statistics of model selection.The present work studies the statistics of thawing k-essence in a more general framework that is Parameterized by the Age of the Universe (PAge) [Huang Z 2020 Astrophys.J.Lett.892 L28].For fixed matter fraction Ωm,the random thawing k-essence models cluster in a narrow band in the PAge parameter space,providing a strong theoretical prior.We simulate cosmic shear power spectrum data for the Chinese Space Station Telescope optical survey,and compare the fisher forecast with and without the theoretical prior of thawing k-essence.For an optimal tomography binning scheme,the theoretical prior improves the figure of merit in PAge space by a factor of 3.3.

    Keywords: dark energy,cosmological parameters,large-scale structure of universe

    1.Introduction

    Since the discovery of the accelerated expansion of the late Universe [3–5],it has been widely accepted that the current Universe is dominated by a dark energy component with negative pressure,whose microscopic nature is often interpreted as a cosmological constant (vacuum energy) that is conventionally denoted as Λ.Over the past two decades,the standard six-parameter Λ cold dark matter (ΛCDM) model has been confronted with a host of observational tests.The high-precision measurements of the temperature and polarization anisotropies of the cosmic microwave background(CMB)provide so far the most stringent constraints on the cosmological parameters [6,7],which agree well with many other observations such as the baryon acoustic oscillations [8–12],the Type Ia supernovae (SN) [13,14],the redshift-space distortion [15,16],and the cosmic chronometers (CC) [17–24].

    Despite the observational success,the extraordinary smallness of the vacuum energy (fine-tuning problem) and the coincidence that Λ dominates the Universe only recently(coincidence problem)have,at least philosophically,disturbed cosmologists for decades [25].Moreover,as the accuracy of observations improves,the great observational success of the ΛCDM model is now challenged by a few anomalies.For instance,the Hubble constant H0inferred from CMB+ΛCDM is in~5σ tension with the distance-ladder measurements [26,27].Less significant challenges include a 3.4σ tension in the matter density fluctuation parameter S8between CMB and some cosmic shear data [28–30],a 2.8σ excess of lensing smearing in the CMB power spectra [7],and the lack of large-angle correlation in CMB temperature [31–34],etc.See [35]for a recent comprehensive review of the observational challenges to the ΛCDM model.

    Given that Λ might not be the ultimate truth,we are well motivated to construct alternative dark energy models.A simple and in some sense also minimal construction is to introduce a scalar degree of freedom.Because high-order derivative theories typically suffer from the Ostrogradsky instability [36],it is often assumed that the Lagrangian density only depends on the scalar field value and its kinetic energyX=?μφ?μφ.This class of dark energy models,often dubbed as k-essence models,allows a variety of cosmological solutions with rich phenomena [37–73].In the early time when k-essence dark energy was first proposed,interests were more focused on using the so-called tracking solutions,where the field has attractor-like dynamics in the early Universe,to resolve the coincidence problem[74–77].It was understood later that the tracking k-essence models are not very successful solutions to the coincidence problem,because they require additional fine-tuning and superluminal fluctuations [78–80].Moreover,tracking models typically predict moderate deviation from Λ,which is more and more disfavored as the accuracy of observations improves [7,81].Alternatively,one can consider the so-called thawing k-essence[1,82–85],whose mass scale is close to or less than the current expansion rate of the Universe.In the thawing picture,the k-essence field is frozen by the large Hubble friction in the early Universe.Only at low redshift when the expansion rate drops below its mass scale,the field starts to roll.The lightness assumption (mass ?H0) of thawing k-essence naturally leads to non-clustering dark energy whose perturbations are suppressed on sub-horizon scales.There do exist,however,models of dark energy with noticeable subhorizon perturbations[86–91].In the present work we do not discuss clustering dark energy models,as they typically need to be treated in a one-by-one manner.

    The assumption of a thawing scenario significantly reduces the model complexity.Generating the Taylor expansion coefficients of L(φ,X) from random matrices [1],shows that a majority of k-essence dark energy models follows an approximate consistency relationwa≈(1+w0),where Ωmis the present matter density fraction and w0,waare the Chevallier–Polarski–Linder (CPL) parameters for dark energy equation of state(EOS)[92,93].The consistency relation can be understood as follows.Due to the thawing nature,the present rolling speed of the scalar field,which is characterized by 1+w0,is typically correlated to the acceleration of late-time rolling,which is characterized by wa.

    The approximate consistency relation can be combined with observational data to improve the constraining power of cosmological data,which is often measured with the so-called figure of merit in marginalized w0–waspace.For a concrete model,however,the dark EOS does not exactly follow the CPL form w(a)=w0+wa(1-a),where a denotes the scale factor.The parameters w0,watherefore only have an approximate meaning and should be considered as an effective description of dark energy at low redshift.In the present work,we consider another effective description of dark energy with the Parameterization based on cosmic Age (PAge) [2,94–99].Compared to the CPL w0–waeffective description,PAge does not suffer from a strong parameter degeneracy that is commonly found between w0and wa.Thus,the parameter space of PAge is more compact.The Figure of Merit for the parameterization based on cosmic Age,which we abbreviate as FROMAge to show our French taste,is an equally good,if not better,indicator of the constraining power of cosmological data.

    The article is organized as follows.section 2 briefly reviews PAge cosmology.In section 3,we use the numerical tool developed in [1]to generate an ensemble of random thawing k-essence dark energy models,which are then mapped into PAge parameter space.In section 4,we take a future cosmic shear survey as a working example to quantify by how much the thawing k-essence prior may improve the constraining power of cosmological data section 5 concludes.Throughout the paper we work with natural units c=?=1 and a spatially-flat Universe with Friedmann–Lemai^tre–Robertson–Walker background.The cosmological time and Hubble parameter are denoted as t and H,respectively.The dark EOS is denoted as w,which in general is a function of redshift z.A dot represents derivative with respect to the cosmological time.The current scale factor is normalized to unity.The Hubble constant is denoted as H0=100h km s-1Mpc-1.The square root of the cosmic variance of the mean density in a sphere with radius 8h-1Mpc is denoted as σ8,which then defines theparameter.

    2.PAge cosmology

    At redshift z ?100,where the radiation component can be ignored,PAge approximates the expansion history of the Universe with the following ansatz [2]

    where page=H0t0is the age of the Universe measured in units ofH0-1and η<1 is a phenomenological parameter approximately describing the deviation from an Einstein de-Sitter Universe.

    Although it may seem like a casual assumption,the PAge ansatz(1)makes use of quite a few physical conditions.First of all,the parameters H0and pageare physical quantities that can be directly computed for any given physical model.Secondly,ansatz(1)automatically sets the matter-dominated behavior at a high redshift (l imt→0+Ht=).Finally,ansatz(1) guarantees that the expansion rate H monotonically decreases as the Universe expands.Thanks to these physically motivated features,PAge well approximates much dark energy and modified gravity models [2,94],and performs better than many other phenomenological approaches,such as the oft-used polynomial approximation [100].

    At the background level,whenH0-1is treated as a time unit,the expansion history is determined by ppageand η,and therefore Ωmis not a parameter in PAge.While perturbation calculation is needed for the simulation of the cosmic shear data,we add Ωmto the PAge framework and employ the following linear growth equation

    Figure 1.The accuracy of PAge approximation.Left panel:EOS w(z)of a few randomly sampled k-essence dark energy models;right panel:relative error in luminosity distances when the models in the left panel are approximated with PAge.In all cases Ωm is fixed to 0.3.

    Table 1.k-essence generator program settings.

    The assumption that goes into the above equation is that dark energy perturbations at sub-horizon and linear scales can be ignored.

    Although more sophisticated approaches exist,for simplicity and to show the robustness of PAge approximation,we follow the simple method in[2]to map dark energy models to PAge space.The η parameter is calculated using the deceleration parameterq≡-evaluated at redshift zero.

    3.Thawing k-essence in PAge space

    We use the numerical tool developed in [1],which has been made publicly available at http://zhiqihuang.top/codes/scan_kessence.tar.gz,to generate random k-essence dark energy models.The program settings are shown in table 1.See also[1]for more detailed documentation of the program parameters.It has been shown in [1],and also tested in the present work,that increasing the truncation order and the sampling width do not change the distribution of sampled trajectories much.This is because models with increasing complexity typically violate the thawing condition (|1+w|?1 in the early Universe),the acceleration assumption (w<-)or the smoothness assumption (growth of density contrast ?102),and thus are rejected by the program.

    We generate 41 000 random k-essence dark energy models for a flat prior Ωm∈[0.25,0.35].The models are then mapped into PAge space to generate a joint distribution of(ppage,η,Ωm),which we refer to as the thawing k-essence prior.The mapping procedure comes with a tiny accuracy loss in predictions of cosmological observables.In the left panel of figure 1,we show a few k-essence dark energy EOS trajectories with different colors.The relative difference between the luminosity distances predicted from each model and that from its PAge approximation is shown with the same color in the right panel.The errors are typically at a sub-percent level.These tiny errors may be relevant for future cosmological surveys and can be corrected with a more sophisticated approach [97].We nevertheless work in the original simple PAge framework that is easier to interpret,because the main purpose of the present work is to study the impact of the thawing k-essence prior,rather than the accuracy of PAge approximation.

    Due to parameter degeneracy,if the dark energy EOS is a free function of redshift,an exact reconstruction of Ωmfrom the expansion history of the Universe is impossible.Since the Lagrangian density L(φ,X) is a free function,the EOS of k-essence is almost free,too.However,when the aforementioned physical assumptions are applied,the EOS of thawing k-essence dark energy is not free in a statistical sense.In figure 2 we compare the mapped (page,η) samples for Ωm=0.25,0.3 and 0.35,respectively.It is evident that one can obtain a statistical constraint on Ωmfrom the evolution history that is determined by (page,η).This is a non-trivial result.For a cosmic shear survey,the additional information on Ωmcan break the strong degeneracy between Ωmand σ8and lead to a better reconstruction of low-redshift physics.To make the idea more concrete,in the next section we take a future cosmic shear survey as a working example to quantify the impact of the thawing k-essence prior.

    Figure 2.Randomly sampled k-essence dark energy models mapped into the PAge space.

    4.Cosmic shear fisher forecast

    To make the analysis simple and easy to interpret,we only consider the statistics of the convergence field.The angular power spectrum between the redshift bins i and j is given by the Limber approximation [101–104]

    where the comoving angular diameter distance in a spatially flat Universe is given by

    The nonlinear matter power spectrum at redshift z,Pm(k;z)where k denotes the wavenumber,is calculated with the Bardeen–Bond–Kaiser–Szalay fitting formula [105]and the halo-fit formula[106,107].The weight function in the ith binz∈[zimin,zimax]is given by

    Figure 3.Simulated cosmic shear data with two redshift bins: z ∈[0,1](bin 0) and z ∈[1,3](bin 1).

    Table 2.Redshift binning schemes.

    The total number density of observed galaxies is then the sum ntotal=∑ini.

    The observed convergence power spectrum with shot noise is modeled as

    where δijis the Kronecker delta function and σ∈is the root mean square of the Galaxy intrinsic ellipticity.

    For the angular scales we take a conservative multipole range 10≤?≤2500.Due to the central limit theorem,the integrated convergence fields over this range are quite close to Gaussian [108–110],and therefore can be written as

    where fskyis the fraction of sky that is observed.

    Figure 4.Fisher forecast for different numbers of tomography bins.Photometric redshift error is taken to be 0.03(1+z).

    If the cosmological redshifts of galaxies were all perfectly known,an optimal analysis would be done within the limit of taking infinitely many redshift bins.In practice,however,the redshift of a photometric survey has a large uncertainty,which in our simulation is assumed to be σ(z)=0.03(1+z).Conventionally when doing a Fisher forecast,the photo-z errors are treated by marginalizing some shift parameters and spreading parameters [104,111],and the result inevitably depends on many assumptions that are difficult to justify at the stage of forecasting.To make the result robust and easy to interpret,we take a very conservative approach by simply discarding the galaxies samples around the edges of the redshift bins.More concretely,we cut each redshift bin [zimin,zimax]to a smaller one [zimin+σ(zimin),zimax-σ(zimin)].This approach is conservative because we have assumed almost no knowledge about the photo-z error distribution function,which in realistic surveys will be known to some extent.

    We have assumed that many other subtle effects such as the intrinsic alignment contamination [112],catastrophic redshift outliers[113],and the super-sample covariance[114]can be well calibrated.The reader is referred to [113,115–119]for a more detailed discussion about the calibration of these systematics.

    In our simulation we assume a galaxy intrinsic ellipticity σ∈=0.3,a galaxy distribution n(z)∝z2e-z/0.3that is normalized byntotal=28 arcmin-2,and a sky coverage fsky=0.424.The configuration roughly corresponds to the optical survey that will be carried out by the Chinese Space Station Telescope[120].In figure 3,we show the simulatedC?obsand their standard deviations for two redshift bins and thirty ?-bins.

    We employ the Fisher forecast approach to compute the constraining power on the five dimensional parameter vector:θ=(page,η,h,Ωm,σ8).The Fisher matrix is given by

    where the data vector d is the collection of the observed power spectraand Cov is the covariance matrix given in equation(8).The covariance of the parameter vector is estimated with the inverse of the Fisher matrix,Cov (θI,θJ) ≈ (F-1)IJ.

    We first study the dependence of the result on the number of redshift bins by comparing four binning schemes listed in table 2.

    The marginalized 68.3% confidence-level constraints for(page,η),as well as the FROMAges for the four binning schemes are shown in the left panel of figure 4.As we increase the number of redshift bins,the constraining power(FROMAge)increases at the beginning,and then drops when the photometric redshift error comes into play.A similar tendency is also observed for the other cosmological parameters,such as the (σ8,Ωm) combination presented in the right panel of figure 4.

    Finally,we apply the thawing k-essence prior in the Fisher analysis.We first bin and interpolate a prior likelihood P(Ωm,page,η) from the random samples obtained in the previous section.A full likelihood is obtained by multiplying the data likelihood by the prior likelihood.We run Monte Carlo Markov Chain simulations to obtain the posterior covariance matrix,which is plotted in figure 5 against the original Fisher forecast without thawing k-essence prior.For(page,η)the thawing k-essence prior improves the FROMAge by a factor of 3.3.A similar improvement is found for(σ8,Ωm),too.

    5.Conclusions

    We have shown,with a simple Fisher forecast of future cosmic shear survey,that a reasonable theoretical prior of dark energy can significantly improve the constraining power of the data.This raises the question of whether it is proper to judge the future dark energy surveys with a blind figure of merit without any theoretical prejudice.After all,the history of science has proven that theoretical prejudice is sometimes beneficial.

    Figure 5.Fisher forecast of the 1σ and 2σ constraints on cosmological parameters,with and without thawing k-essence prior.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (NSFC) under Grant No.12 073 088,National SKA Program of China No.2020SKA0110402,National key R&D Program of China (Grant No.2020YFC2201600),and Guangdong Major Project of Basic and Applied Basic Research (Grant No.2019B030302001).

    ORCID iDs

    av欧美777| 麻豆av在线久日| 精品国产超薄肉色丝袜足j| 在线观看免费高清a一片| 久久人妻熟女aⅴ| 久久久水蜜桃国产精品网| 悠悠久久av| av不卡在线播放| 91精品国产国语对白视频| 我的亚洲天堂| 欧美日韩亚洲综合一区二区三区_| 亚洲国产精品999| 国产在线观看jvid| 老司机靠b影院| 久久久久久免费高清国产稀缺| 精品久久久精品久久久| 国产成人a∨麻豆精品| 欧美大码av| 大片电影免费在线观看免费| 亚洲国产av新网站| 99香蕉大伊视频| 国产精品偷伦视频观看了| 久久免费观看电影| 久久99一区二区三区| 国内毛片毛片毛片毛片毛片| 日韩视频一区二区在线观看| 亚洲精品粉嫩美女一区| 国产精品二区激情视频| 他把我摸到了高潮在线观看 | 久久影院123| 熟女少妇亚洲综合色aaa.| 女人精品久久久久毛片| 国产区一区二久久| 日本vs欧美在线观看视频| 久久这里只有精品19| 一区在线观看完整版| 国产精品久久久久久人妻精品电影 | 亚洲中文av在线| 亚洲精品国产av蜜桃| 精品卡一卡二卡四卡免费| 777米奇影视久久| 成年人黄色毛片网站| 久久久国产精品麻豆| 国产xxxxx性猛交| 黄色 视频免费看| 精品卡一卡二卡四卡免费| 免费av中文字幕在线| 18在线观看网站| 一二三四社区在线视频社区8| 嫩草影视91久久| 9热在线视频观看99| 啦啦啦中文免费视频观看日本| 99久久精品国产亚洲精品| 大陆偷拍与自拍| 国产真人三级小视频在线观看| 激情视频va一区二区三区| 一本久久精品| 日本猛色少妇xxxxx猛交久久| 女警被强在线播放| 51午夜福利影视在线观看| 少妇被粗大的猛进出69影院| 每晚都被弄得嗷嗷叫到高潮| 两性夫妻黄色片| 国产精品.久久久| 青春草视频在线免费观看| 亚洲专区国产一区二区| 久久99热这里只频精品6学生| 成年女人毛片免费观看观看9 | www日本在线高清视频| 操出白浆在线播放| 亚洲av日韩精品久久久久久密| av在线app专区| 亚洲欧美精品综合一区二区三区| 正在播放国产对白刺激| 国产成人av教育| 亚洲av日韩在线播放| 亚洲七黄色美女视频| 视频区欧美日本亚洲| 老司机影院毛片| 久久精品人人爽人人爽视色| 亚洲国产日韩一区二区| 老汉色av国产亚洲站长工具| 蜜桃在线观看..| 国产又色又爽无遮挡免| 80岁老熟妇乱子伦牲交| 美女高潮喷水抽搐中文字幕| 久久毛片免费看一区二区三区| 日本91视频免费播放| 少妇裸体淫交视频免费看高清 | 搡老熟女国产l中国老女人| 一区二区三区四区激情视频| 亚洲精品久久午夜乱码| 久久ye,这里只有精品| 午夜成年电影在线免费观看| 国产成人啪精品午夜网站| 欧美日韩亚洲国产一区二区在线观看 | 大型av网站在线播放| 亚洲av日韩在线播放| 成年美女黄网站色视频大全免费| 黄频高清免费视频| 视频在线观看一区二区三区| 欧美日韩亚洲综合一区二区三区_| 成在线人永久免费视频| 国产欧美日韩精品亚洲av| 精品一品国产午夜福利视频| 国产野战对白在线观看| 97在线人人人人妻| 嫩草影视91久久| 亚洲全国av大片| 在线亚洲精品国产二区图片欧美| 激情视频va一区二区三区| 天堂俺去俺来也www色官网| 国产精品免费视频内射| 欧美日韩精品网址| 国产精品熟女久久久久浪| 搡老熟女国产l中国老女人| 天天躁日日躁夜夜躁夜夜| 99久久综合免费| 亚洲av片天天在线观看| 日日摸夜夜添夜夜添小说| 我的亚洲天堂| 91老司机精品| av一本久久久久| 久久久精品94久久精品| 欧美一级毛片孕妇| 午夜激情久久久久久久| 国产精品亚洲av一区麻豆| 狂野欧美激情性xxxx| 女人精品久久久久毛片| e午夜精品久久久久久久| 91av网站免费观看| 精品国产一区二区三区四区第35| 热re99久久精品国产66热6| av不卡在线播放| 亚洲色图综合在线观看| 国产亚洲欧美精品永久| 亚洲国产av影院在线观看| 如日韩欧美国产精品一区二区三区| 高清黄色对白视频在线免费看| 国产免费福利视频在线观看| 亚洲欧美一区二区三区黑人| 精品福利永久在线观看| 18在线观看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 69精品国产乱码久久久| 女人精品久久久久毛片| av网站在线播放免费| 一级毛片电影观看| 人人妻人人添人人爽欧美一区卜| 国精品久久久久久国模美| av片东京热男人的天堂| 国产国语露脸激情在线看| 爱豆传媒免费全集在线观看| 国产亚洲欧美精品永久| 久久影院123| 国产成人精品久久二区二区免费| 亚洲专区字幕在线| 亚洲欧美日韩另类电影网站| 日韩中文字幕欧美一区二区| 成年av动漫网址| av在线老鸭窝| 国产av一区二区精品久久| 一二三四社区在线视频社区8| 欧美日韩亚洲综合一区二区三区_| 亚洲av欧美aⅴ国产| 成人黄色视频免费在线看| 女人精品久久久久毛片| 久久国产精品人妻蜜桃| 久久国产亚洲av麻豆专区| 欧美日韩av久久| 久久久久久人人人人人| 欧美日韩黄片免| 免费少妇av软件| 91成年电影在线观看| 一区二区三区精品91| 777米奇影视久久| 亚洲情色 制服丝袜| 免费在线观看视频国产中文字幕亚洲 | 五月天丁香电影| 欧美国产精品va在线观看不卡| 亚洲国产精品成人久久小说| 亚洲中文字幕日韩| 婷婷成人精品国产| 极品少妇高潮喷水抽搐| 欧美精品高潮呻吟av久久| 大片免费播放器 马上看| 亚洲精品av麻豆狂野| 夜夜骑夜夜射夜夜干| 岛国在线观看网站| 九色亚洲精品在线播放| 亚洲精品中文字幕在线视频| 人人妻,人人澡人人爽秒播| 天天躁狠狠躁夜夜躁狠狠躁| 曰老女人黄片| 国产亚洲av高清不卡| 婷婷成人精品国产| 久久精品国产a三级三级三级| 国产xxxxx性猛交| 免费在线观看完整版高清| 十八禁网站免费在线| 久久中文字幕一级| 亚洲国产欧美一区二区综合| 后天国语完整版免费观看| 极品人妻少妇av视频| 国产激情久久老熟女| 黄片播放在线免费| 欧美日韩国产mv在线观看视频| 亚洲自偷自拍图片 自拍| 狂野欧美激情性bbbbbb| 久久久久久久大尺度免费视频| 99国产极品粉嫩在线观看| 国产日韩欧美在线精品| 亚洲精品一二三| 人人妻人人澡人人爽人人夜夜| 亚洲七黄色美女视频| 超色免费av| bbb黄色大片| 久久久国产一区二区| 伦理电影免费视频| 99久久综合免费| 老司机在亚洲福利影院| 国产高清视频在线播放一区 | 美女主播在线视频| 18禁裸乳无遮挡动漫免费视频| 久久国产精品人妻蜜桃| 精品久久久精品久久久| 麻豆乱淫一区二区| 午夜视频精品福利| 精品国产一区二区三区四区第35| 免费在线观看完整版高清| 国产有黄有色有爽视频| 日韩大码丰满熟妇| 18禁黄网站禁片午夜丰满| 老司机午夜福利在线观看视频 | 中亚洲国语对白在线视频| 最黄视频免费看| 日本撒尿小便嘘嘘汇集6| 亚洲成人国产一区在线观看| 97在线人人人人妻| 国产亚洲精品第一综合不卡| 免费少妇av软件| 久久毛片免费看一区二区三区| 18禁国产床啪视频网站| 亚洲av美国av| 人人妻人人澡人人爽人人夜夜| 亚洲精品中文字幕一二三四区 | 在线天堂中文资源库| 99精国产麻豆久久婷婷| 久久精品国产亚洲av高清一级| 色精品久久人妻99蜜桃| av超薄肉色丝袜交足视频| 男人操女人黄网站| 两人在一起打扑克的视频| 成人三级做爰电影| 久久午夜综合久久蜜桃| 久久青草综合色| 欧美日韩av久久| 中文字幕制服av| 亚洲视频免费观看视频| 俄罗斯特黄特色一大片| 国产黄色免费在线视频| 日本撒尿小便嘘嘘汇集6| 久久午夜综合久久蜜桃| 岛国在线观看网站| 18禁观看日本| 欧美老熟妇乱子伦牲交| 俄罗斯特黄特色一大片| 最新的欧美精品一区二区| 女警被强在线播放| 天堂8中文在线网| 老司机在亚洲福利影院| 男女午夜视频在线观看| 19禁男女啪啪无遮挡网站| 久久天躁狠狠躁夜夜2o2o| 操美女的视频在线观看| 精品少妇久久久久久888优播| 亚洲五月色婷婷综合| 国产日韩欧美在线精品| 午夜福利在线免费观看网站| 成人黄色视频免费在线看| 国产精品一区二区在线不卡| 女性被躁到高潮视频| 日本91视频免费播放| 丝袜美腿诱惑在线| 国产激情久久老熟女| 一区二区三区乱码不卡18| 手机成人av网站| 99国产极品粉嫩在线观看| 啦啦啦 在线观看视频| 久久精品亚洲av国产电影网| 男女高潮啪啪啪动态图| 在线 av 中文字幕| 99国产极品粉嫩在线观看| 女性生殖器流出的白浆| 国产在线一区二区三区精| 欧美老熟妇乱子伦牲交| 国产福利在线免费观看视频| 日韩一卡2卡3卡4卡2021年| 搡老熟女国产l中国老女人| 丝瓜视频免费看黄片| 性高湖久久久久久久久免费观看| 久久性视频一级片| 熟女少妇亚洲综合色aaa.| 精品少妇内射三级| 一二三四在线观看免费中文在| 亚洲精品一区蜜桃| 岛国毛片在线播放| 黄片大片在线免费观看| 国产男人的电影天堂91| 黄色a级毛片大全视频| 精品福利观看| 乱人伦中国视频| 人人妻人人爽人人添夜夜欢视频| 啪啪无遮挡十八禁网站| 亚洲国产欧美在线一区| 国产成+人综合+亚洲专区| 999久久久国产精品视频| 免费在线观看完整版高清| av网站免费在线观看视频| 首页视频小说图片口味搜索| 亚洲中文日韩欧美视频| 日韩一区二区三区影片| 涩涩av久久男人的天堂| 女性生殖器流出的白浆| 亚洲色图 男人天堂 中文字幕| 正在播放国产对白刺激| www日本在线高清视频| 在线观看人妻少妇| 精品国产一区二区三区久久久樱花| 汤姆久久久久久久影院中文字幕| 日韩中文字幕视频在线看片| netflix在线观看网站| 在线亚洲精品国产二区图片欧美| 国产91精品成人一区二区三区 | 日本欧美视频一区| 性高湖久久久久久久久免费观看| 精品熟女少妇八av免费久了| av在线播放精品| 每晚都被弄得嗷嗷叫到高潮| 久久久久精品人妻al黑| 免费观看a级毛片全部| xxxhd国产人妻xxx| 亚洲中文字幕日韩| 成人免费观看视频高清| 最近最新免费中文字幕在线| 在线av久久热| 啦啦啦中文免费视频观看日本| 精品少妇一区二区三区视频日本电影| 欧美精品高潮呻吟av久久| 日韩熟女老妇一区二区性免费视频| 欧美亚洲 丝袜 人妻 在线| 18禁裸乳无遮挡动漫免费视频| 啦啦啦中文免费视频观看日本| 欧美成人午夜精品| 一区福利在线观看| 精品免费久久久久久久清纯 | 热99国产精品久久久久久7| 国产精品麻豆人妻色哟哟久久| 纵有疾风起免费观看全集完整版| 成人国语在线视频| 国产精品熟女久久久久浪| 午夜福利视频在线观看免费| 国产有黄有色有爽视频| av又黄又爽大尺度在线免费看| 9热在线视频观看99| 久久久欧美国产精品| 欧美精品一区二区免费开放| 免费在线观看日本一区| 美女视频免费永久观看网站| 亚洲中文av在线| 性少妇av在线| av不卡在线播放| 一区福利在线观看| 十八禁人妻一区二区| 国产精品一区二区免费欧美 | 亚洲av国产av综合av卡| 亚洲情色 制服丝袜| 久久久久久久大尺度免费视频| 免费高清在线观看日韩| 久久久久视频综合| 亚洲精品第二区| 亚洲精品美女久久av网站| e午夜精品久久久久久久| 亚洲一区中文字幕在线| 午夜福利,免费看| 国产国语露脸激情在线看| 无限看片的www在线观看| 日韩欧美一区二区三区在线观看 | 成人影院久久| 三上悠亚av全集在线观看| 91av网站免费观看| 男女高潮啪啪啪动态图| 每晚都被弄得嗷嗷叫到高潮| 丝袜美腿诱惑在线| 免费av中文字幕在线| 久久久久久免费高清国产稀缺| 久久女婷五月综合色啪小说| 国产成人啪精品午夜网站| 12—13女人毛片做爰片一| 国产有黄有色有爽视频| 夫妻午夜视频| 亚洲av成人不卡在线观看播放网 | 国产成人精品久久二区二区免费| 女人高潮潮喷娇喘18禁视频| 久久人妻熟女aⅴ| 两个人看的免费小视频| 韩国高清视频一区二区三区| 国产精品二区激情视频| 精品欧美一区二区三区在线| 婷婷色av中文字幕| 国产一区二区激情短视频 | 亚洲三区欧美一区| 国产一区二区三区综合在线观看| 精品一区二区三区四区五区乱码| 免费在线观看视频国产中文字幕亚洲 | 久久久水蜜桃国产精品网| 日韩一卡2卡3卡4卡2021年| 岛国在线观看网站| 黄片小视频在线播放| 国产精品久久久久成人av| 欧美97在线视频| 一区二区三区精品91| 99国产精品99久久久久| 国产在线观看jvid| 国产成人影院久久av| 国产99久久九九免费精品| 丁香六月天网| 久久人妻熟女aⅴ| www.熟女人妻精品国产| 成人av一区二区三区在线看 | 黄色怎么调成土黄色| 日韩欧美国产一区二区入口| 中文字幕另类日韩欧美亚洲嫩草| 亚洲综合色网址| 热re99久久精品国产66热6| 精品久久久久久久毛片微露脸 | 一本久久精品| 午夜福利乱码中文字幕| a在线观看视频网站| 久久国产亚洲av麻豆专区| 国产成人系列免费观看| 免费人妻精品一区二区三区视频| 黄色毛片三级朝国网站| 蜜桃国产av成人99| 丝袜美腿诱惑在线| 正在播放国产对白刺激| 欧美+亚洲+日韩+国产| 欧美精品一区二区大全| 久久青草综合色| 免费少妇av软件| 亚洲熟女精品中文字幕| 国产精品久久久久成人av| 免费在线观看完整版高清| 久久久久久亚洲精品国产蜜桃av| 亚洲五月色婷婷综合| 午夜福利免费观看在线| 夫妻午夜视频| 成人国产一区最新在线观看| 母亲3免费完整高清在线观看| xxxhd国产人妻xxx| 巨乳人妻的诱惑在线观看| 欧美精品一区二区免费开放| av电影中文网址| 人妻一区二区av| 首页视频小说图片口味搜索| 国产亚洲一区二区精品| 免费观看人在逋| 午夜免费鲁丝| 美女午夜性视频免费| 男人操女人黄网站| 人成视频在线观看免费观看| 欧美中文综合在线视频| 老熟妇仑乱视频hdxx| av超薄肉色丝袜交足视频| 精品少妇内射三级| 欧美午夜高清在线| 日韩大片免费观看网站| 欧美日韩黄片免| 国产成人精品久久二区二区91| 国产av国产精品国产| 日韩欧美一区视频在线观看| 性少妇av在线| 国产亚洲av高清不卡| 性色av乱码一区二区三区2| 一级毛片女人18水好多| 日韩电影二区| 国产成人一区二区三区免费视频网站| 手机成人av网站| 人人妻人人澡人人爽人人夜夜| 欧美少妇被猛烈插入视频| 日本五十路高清| 如日韩欧美国产精品一区二区三区| 色婷婷久久久亚洲欧美| av有码第一页| 久久综合国产亚洲精品| 久久狼人影院| 国产一区二区在线观看av| 亚洲精品在线美女| 久久99一区二区三区| 亚洲欧美一区二区三区久久| 国产淫语在线视频| 免费观看a级毛片全部| 老司机亚洲免费影院| 亚洲精品粉嫩美女一区| 欧美另类亚洲清纯唯美| 亚洲国产欧美日韩在线播放| 国产成人精品久久二区二区91| 看免费av毛片| 精品国产一区二区三区四区第35| 午夜精品久久久久久毛片777| 免费日韩欧美在线观看| 1024香蕉在线观看| 三级毛片av免费| 日韩 亚洲 欧美在线| 黑丝袜美女国产一区| 国产人伦9x9x在线观看| 91字幕亚洲| 最新的欧美精品一区二区| 亚洲精品国产av成人精品| 欧美老熟妇乱子伦牲交| 爱豆传媒免费全集在线观看| 国产精品久久久久久精品古装| 成年美女黄网站色视频大全免费| 黄色怎么调成土黄色| 日韩电影二区| 国产精品秋霞免费鲁丝片| 欧美成人午夜精品| 欧美日韩亚洲综合一区二区三区_| 91老司机精品| 精品一品国产午夜福利视频| 一区二区av电影网| 黑人巨大精品欧美一区二区mp4| 国产免费现黄频在线看| 久久国产精品人妻蜜桃| 巨乳人妻的诱惑在线观看| 中文字幕人妻熟女乱码| 少妇 在线观看| 中文字幕另类日韩欧美亚洲嫩草| 免费在线观看日本一区| 久久毛片免费看一区二区三区| 美女扒开内裤让男人捅视频| 国产又爽黄色视频| 亚洲综合色网址| 青春草视频在线免费观看| 国产成人欧美在线观看 | 嫁个100分男人电影在线观看| 97人妻天天添夜夜摸| 狠狠狠狠99中文字幕| 亚洲自偷自拍图片 自拍| 国产av精品麻豆| 午夜日韩欧美国产| 五月开心婷婷网| av国产精品久久久久影院| 18禁国产床啪视频网站| 国产精品一区二区在线不卡| 人妻 亚洲 视频| www.精华液| 国产一卡二卡三卡精品| 老汉色∧v一级毛片| 亚洲精品日韩在线中文字幕| 欧美精品亚洲一区二区| 亚洲欧美一区二区三区黑人| 一本大道久久a久久精品| 俄罗斯特黄特色一大片| 午夜91福利影院| 天天添夜夜摸| 99九九在线精品视频| 亚洲av电影在线进入| 亚洲av片天天在线观看| 久久久国产精品麻豆| 精品高清国产在线一区| 成人免费观看视频高清| 亚洲中文日韩欧美视频| 视频区欧美日本亚洲| 99国产精品99久久久久| 人人妻人人澡人人爽人人夜夜| 午夜福利视频精品| 女性生殖器流出的白浆| 国产成人a∨麻豆精品| av有码第一页| 真人做人爱边吃奶动态| av有码第一页| 99国产精品99久久久久| 成人亚洲精品一区在线观看| 丝袜美足系列| 黄色视频,在线免费观看| 人妻人人澡人人爽人人| 91av网站免费观看| 不卡av一区二区三区| 国产成人精品无人区| 老司机在亚洲福利影院| 一级片免费观看大全| 国产精品免费视频内射| 久久精品成人免费网站| 亚洲三区欧美一区| 国产色视频综合| 国产成人欧美| 国产欧美日韩综合在线一区二区| 成年av动漫网址| 少妇人妻久久综合中文| 精品亚洲成国产av| 在线av久久热| 久久狼人影院| svipshipincom国产片| 18禁国产床啪视频网站| 91老司机精品| 国产精品九九99| 真人做人爱边吃奶动态| 在线天堂中文资源库| 少妇猛男粗大的猛烈进出视频| 亚洲av日韩精品久久久久久密| 黑人操中国人逼视频| 99国产精品一区二区蜜桃av | 国产一区二区三区av在线| 韩国精品一区二区三区|