• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modelling drying pathways of an evaporating soft matter droplet

    2022-10-22 08:15:26GuangleDuFangfuYeHaoLuoGuangyinJingMasaoDoiandFanlongMeng
    Communications in Theoretical Physics 2022年9期

    Guangle Du,Fangfu Ye,Hao Luo,Guangyin Jing,Masao Doi and Fanlong Meng

    1 CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China

    2 Wenzhou Institute,University of Chinese Academy of Sciences,Wenzhou 325001,China

    3 School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    4 Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    5 Songshan Lake Materials Laboratory,Dongguan 523808,China

    6 School of Physics,and State Key Laboratory of Photon-Technology in Western China Energy,Northwest University,Xi’an 710069,China

    7 Center of Soft Matter Physics and its Applications,Beihang University,Beijing 100191,China

    Abstract Micro-droplets of soft matter solutions have different morphologies upon drying,and can become wrinkled,buckled or cavitated particles.We investigate the morphology evolution of a drying soft matter droplet in this work:at the early stage of drying,wrinkling or cavitation instability can occur in the droplet,depending on the comparison between the critical wrinkling and cavitation pressure;at a later stage of drying,no wrinkles will appear if cavitation happens first,while cavitation can still occur if wrinkling happens first.A three-dimensional phase diagram in the space of elastic length,gel layer thickness and weight loss is provided to illustrate the drying pathways of a soft matter droplet.This diagram can help guide future fabrications of micro-particles with desired morphologies.

    Keywords: soft matter solution,drying,instabilities

    A soft matter droplet consisting of polymer solutions or colloidal dispersions can exhibit different morphologies such as buckling[1–4],wrinkling[5–8],or cavitation[9–12]during the drying process.When all solvents evaporate,the soft matter droplets can turn out to be solid,hollow,wrinkled or buckled particles as the final products [13–17].This drying process,especially spray drying,has been widely utilised to produce micro-particles of different morphologies in industrial circumstances such as food or pharmaceutical particle production[17–21],amorphous material crystallisation[22–24],functional encapsulated particle manufacture[25–27],etc.,where different shapes are achieved by empirically changing the drying temperature,concentration and constitution of the soft matter solution [3,28–36].

    In the drying process of a soft matter droplet,the competition of solute advection towards the droplet surface as the deposition due to drying and solute diffusion homogenising the solute concentration is captured by the Péclet number.When the Péclet number is sufficiently large,the solution at the outmost layer of the droplet can solidify to become a gel-like layer[16,37–39],which grows with time.This gel layer has been believed to relate to the morphology evolution and the final configurations of drying soft matter droplets [12,33,40–42].However,how the properties of the gel layer can determine the drying process of the soft matter droplet still remains unclear.

    In this work,we will study how the morphology of a drying soft matter droplet can evolve with time depending on the physical properties of the gel layer such as its elasticity and dimension,by considering the prepared state of the droplet as a spherical core–shell structured system as in spray drying(shown in figure 1).The core will be simply regarded as liquid,whose amount decreases continuously due to solvent evaporation;the shell(skin layer)will be treated with non-evolving elastic properties and thickness for simplicity,as the evolution of the skin layer,such as mass growth from further diffusion and deposition of the solute,would not change the results qualitatively.By taking these simplifications,we can construct the analytical energy form of the system,and then discuss the morphology evolution of the drying soft matter droplet.

    Figure 1.Drying pathways of an evaporating soft matter droplet.

    Compared to solvent evaporation,the mechanically equilibrating process of the gel layer is a fast process;in other words,we can use the mass loss of the droplet due to evaporation,ΔW=W0-W,as the controllable variable of the system,where W0and W denote the initial and current mass of the droplet,respectively.Then we can discuss the morphology evolution of the droplet by optimising the total free energy of the system under given ΔW.By taking the initial radius of the droplet as R0,and the radius of the cavity as Rc[reduced cavity volumevc≡(RcR0)3],the volume of the droplet can be expressed asfrom volume conservation.The total Gibbs free energy of the system can be written as

    where γ denotes the interfacial tension between the cavity and the fluid,Δpol=po-pland Δplc=pl-pc,with po~105Pa,pland pcas the pressure of the outside,the liquid and the cavity,respectively.The pressure of the cavity can be expressed as8See supplementary materials available online at stacks.iop.org/CTP/74/095605/mmedia.where vlis the volume of a single liquid molecule,PL(x)is the principal branch of Lambert W function and peqis the bulk vapor pressure.Taking typical values of vl~10-29m3and peq~105Pa,we have peqvl/(kBT)~10-3,and then the pressure in the cavity can be approximated bypc≈peqexp [-2γ vl/(RckBT)].In equation(1),the first term on the right-hand-side(RHS)denotes the interfacial energy of the interface between the cavity and the liquid,the second term denotes the work done by the pressure difference between the liquid and the cavity,and the last term denotes the elastic energy of the gel layer.In the last term,Eαβand Kαβare the stretching and the bending strains,respectively,Nαβand Mαβare the stretching stress and the bending moment,respectively,w is the normal displacement along the radial direction of the gel layer.Note that the normal displacement is taken as positive if it is pointing towards the droplet centre.Here we adopt the Donnell–Mushtari–Vlasov (DMV) strain-displacement relations,which are valid for small deformations,as Eαβ=(?βuα+?αuβ)/2-bαβw+?αw ?βw/2 and Kαβ=?α?βw,where ?is covariant derivative,uαis the tangential displacement along α direction and bαβis curvature tensor of the gel layer shell [43].The stretching stress Nαβand the bending moment Mαβcan be expressed as functions of the strain tensors:Nαβ=Eh[(1-ν)Eαβ+νgαβEγγ]/(1-ν2) andMαβ=Eh3[(1-ν)Kαβ+νgαβKγγ]/[12 (1-ν2)],with gαβbeing the metric tensor of the shell surface,and h,E and ν being the thickness,Young’s modulus and the Poisson ratio of the gel layer,respectively [43].

    Critical wrinkling pressure.The gel layer can wrinkle or buckle during the drying process,and we first discuss the criterion of when wrinkling or buckling can occur on the surface of the droplet.If there is no cavity,the total energy reduces to the purely elastic one (last term on the RHS of equation (1)).To obtain the critical wrinkling pressure,we perform the linear instability analysis on the Euler–Lagrange (EL) equations obtained from the variation of the elastic energy functional(see footnote 8).The uniform solution of the EL equations is uφ=uθ=0,w0=(1-ν) ΔpolR02/(2Eh),which represents the uniform contraction of the gel layer under the pressure difference between the outside and the liquid Δpol.By adding a small perturbation w1to the uniform normal displacement,i.e.,w=w0+w1and introducing a small perturbation χ1in the Airy stress function [43],we can obtain

    after keeping terms up to the linear order in the EL equations.By expressing w1and χ1with spherical harmonicsYlm(φ,θ)(eigenmodes of Laplace operator),asw1=AYlmandχ1=BYlm,then from equation (2) we can obtain the possible eigenmodes denoted by l as a function of the pressure Δpol,

    where D=Eh3/[12(1-ν2)].The minimal pressure Δpoldenoted by *pwto have a real and positive l(l+1),i.e.,the critical pressure leading to wrinkling,is [43]

    It is clear that the gel layer can easily wrinkle if it is soft(small Young’s modulus) and the thickness is small compared to the droplet size.If there is a ring-like defect with a smaller Young’s modulus in the gel layer,then buckling can easily occur and the corresponding buckling pressure can be obtained by shallow shell approximation,which gives the same value as the critical wrinkling pressure *pw(See footnote 8).Note this critical wrinkling pressure is obtained for a perfect sphere and is sensitive to imperfections [44,45].If imperfections are present in shell possibly due to density inhomogeneity [46],orthotropic elasticity [47],etc.,the critical wrinkling pressure can drop considerably by an empirical proportion.Nevertheless,the above critical wrinkling pressure can still dominate the wrinkling behavior.In the following discussions,we use the term‘wrinkling instability’ to denote both wrinkling and buckling instability without losing generality.

    Critical cavitation pressure.There is a critical cavitation pressure *pcif there is no wrinkling.In this case,the elastic energy of the gel layer is simplyFelastic=12πhKew02[41],where Ke=E/[3(1-ν)]is the effective elastic modulus.After the insertion of the mass conservation relation,the total Gibbs free energy of the system is

    where Δpoc=po-pc.The critical point for the above total Gibbs free energy to have a non-zero local minimum point is determined by ?Ftot/?vc=0 and Ftot(vc)=Ftot(0),from which we can obtain the critical cavity volume asvc*=[le(2h)]3/4with the elastic length defined by le≡2γ/Keand the critical weight loss for cavitation as[41].Utilisation of the mass conservation under uniform contraction with no cavity gives the relation between the pressure and the weight loss Δpol=2hKe/R0·ΔW/W0.Then the critical cavitation pressure,i.e.,the minimal pressure Δpoldenoted by*pcto have cavity,is

    By comparing the critical wrinkling pressure *pwand the critical cavitation pressure *pc,we can obtain the criterion for wrinkling happening ahead of the droplet cavitation at an early stage of the drying process,written explicitly as

    otherwise,cavitation occurs first.In other words,if the gel layer is thin and soft,the droplet tends to wrinkle at the surface.More importantly,such divergence in the instabilities at the early stage of the drying process leads to different drying pathways and can determine the final morphology of the drying droplet as discussed below.

    Drying pathway–no wrinkling after cavitation.We investigate whether wrinkling still occurs if cavitation happens first.As shown in the inset of figure 2(b),Δpolconstantly increases before cavitation and becomesafter cavitation.At the critical cavitation point,which is smaller than the critical cavitation pressure *pc.Meanwhile,the first derivative of Δpolafter cavitation with regards to the weight loss,?Δpol/?ΔW=-2γ/(R0W0)means that Δpoldecreases further with increasing weight loss ΔW.This indicates that no wrinkling can happen after cavitation since the critical wrinkling pressure can not be reached any more [drying pathway in figure 1 as (a)→(b)→(c1)→(c2)].

    Drying pathway–cavitation after wrinkling.We proceed to investigate whether the cavity can still form if wrinkling occurs first.By assuming the wrinkles as a perturbation with the form of a spherical harmonic mode and assuming that the perturbation amplitude is small,then the Helmholtz free energy can be expressed in the same form as that in equation (5),but with a modified effective elastic modulus(see footnote 8)

    whereA′=A/his the ratio of the perturbation amplitude over the gel layer thickness.Then it is clear that cavitation can still happen after wrinkling,with the critical weight loss for cavitation aswhereis the new elastic length.Meanwhile,the effective elastic modulusKe′ is smaller than the one without wrinkling Ke,resulting in a larger value of the critical weight loss than that in the case without wrinkling.Note that according to the previous discussion,the pressure difference between the outside and the liquid Δpoldrops at cavitation and decreases after cavitation with the increase of weight loss (see inset of figure 2(b)),thus the wrinkles may disappear due to the decrease of Δpol.However,in a practical drying process,the formed wrinkles of the gel layer can become rigid,e.g.turn glassy [40],and the decrease of Δpolinduced by the cavitation is not high enough to flatten the wrinkles on the gel layer with increased rigidity.In this case,the wrinkles can still remain regardless of the decrease of the pressure difference between the outside and the liquid after cavitation (drying pathway in figure 1 as(a)→(b)→(d1)→(d2)).Note that the gel layer can still be permeable to solvents despite its rigidification,and the subsequent evaporation and cavity enlargement are not hindered.

    In figure 2(a),a 3D phase diagram summarising the above discussions of the drying pathways of a soft matter droplet is provided in the space of elastic length,gel layer thickness and weight loss,together with its two cross sections of a given fixed elastic length in figure 2(b) and of a given fixed thickness in figure 2(c),respectively.Note that the weight loss in the phase diagram can play the role of time if the evaporation rate of the droplet is known [39,48].At the early stage of the drying process,i.e.,when ΔW is small,either wrinkling or cavitation instability can occur,resulting from the competition between the surface energy of the cavity,and the bending and stretching elastic energy of the gel layer.When the gel layer is thin and soft(small h and small Ke(large le)),then wrinkling occurs,which is obvious in figure 2(b) and figure 2(c);otherwise,cavitation happens.Meanwhile,the choice in either wrinkling or cavitation instability at the early stage of the drying process,determines the later morphology evolution and the final product of the drying soft matter droplet: (a) if wrinkling takes place ahead of the cavitation,then there will still be cavity formed in the droplet with the ongoing evaporation of the solvents and the final configuration of the drying droplet will be a hollow and wrinkled particle;(b)if cavitation happens first,then there will be no wrinkling in the later drying process due to the decreasing pressure difference between the outside and the droplet,and a spherical shell is left after finishing the whole evaporation process.

    Figure 2.(a)3D phase diagram with three dimensionless varying variables,i.e.,elastic length over shell thickness le/h,shell thickness over initial droplet radius h/R0,and the reduced weight loss of the droplet ΔW/W0.Here Poisson ratio ν=0.5.(b) Cross section of 3D phase diagram with fixed le/h=0.037.Inset: the pressure difference between the outside and the liquid is smaller than the critical cavitation pressure and constantly decreases after cavitation,impeding the occurrence of wrinkling.In the inset,le/h=0.1.(c) Cross section of 3D phase diagram with fixed h/R0=0.2.

    We investigate here how the morphology of a drying soft matter droplet can evolve with time based on a pseudo-dynamic analysis.The elastic properties of the gel layer formed at the surface of the soft matter droplet play a key role in determining the drying pathways of the droplet,including both the instabilities triggered at the early stage of the drying process,the later morphology evolution,and the final configurations.A quasiequilibrium treatment is taken for discussing how morphology of a droplet evolves with time by performing energy minimisation,which at certain conditions should be revised,e.g.,if the evaporation is fast where sub-processes such as solute diffusion,gel-layer formation,etc occur at a comparable time scale as solvent evaporation.Regardless of the simplifications for analytic discussions in this work,we believe this portable model has captured the essential physics underlying the morphology evolution of a drying soft matter droplet,which can guide the industrial fabrications of micro-particles with desired morphologies and functions.

    Acknowledgments

    F M acknowledges supports from Chinese Academy of Sciences (No.XDA17010504 and No.XDPB15),and the National Natural Science Foundation of China (No.12 047 503).F Y acknowledges the support of the National Natural Science Foundation of China(Grant No.11 774 394)and the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(Grant No.QYZDB-SSW-SYS003).G D thanks Xiao Lin for fruitful discussions.

    ORCID iDs

    国产黄片美女视频| 黄色视频在线播放观看不卡| 青青草视频在线视频观看| 少妇人妻 视频| 插逼视频在线观看| 赤兔流量卡办理| 又爽又黄a免费视频| 国产成人免费无遮挡视频| 国国产精品蜜臀av免费| 亚洲国产av新网站| 亚洲真实伦在线观看| 人妻夜夜爽99麻豆av| 精品酒店卫生间| 老女人水多毛片| 蜜桃亚洲精品一区二区三区| 国产人妻一区二区三区在| 色视频在线一区二区三区| 久久久精品94久久精品| 日韩制服骚丝袜av| 日本与韩国留学比较| 一个人看视频在线观看www免费| 免费人成在线观看视频色| 在线亚洲精品国产二区图片欧美 | 国产成人免费无遮挡视频| 久久人人爽人人爽人人片va| 少妇丰满av| 免费高清在线观看视频在线观看| 久久人妻熟女aⅴ| 国产成人精品福利久久| 国产av一区二区精品久久 | 秋霞伦理黄片| 高清毛片免费看| 三级国产精品片| 男人和女人高潮做爰伦理| 国产av国产精品国产| 男女边吃奶边做爰视频| 亚洲精品乱久久久久久| 视频区图区小说| 在线观看免费日韩欧美大片 | 国产真实伦视频高清在线观看| 亚洲成色77777| 亚洲无线观看免费| 又黄又爽又刺激的免费视频.| 国产精品国产三级国产专区5o| 一本一本综合久久| 又粗又硬又长又爽又黄的视频| 婷婷色综合大香蕉| 亚洲中文av在线| 在线精品无人区一区二区三 | 黑丝袜美女国产一区| av在线老鸭窝| 纯流量卡能插随身wifi吗| 99热这里只有是精品在线观看| 91久久精品国产一区二区三区| 国产国拍精品亚洲av在线观看| 最近最新中文字幕免费大全7| 看非洲黑人一级黄片| 亚洲欧美精品专区久久| 人妻夜夜爽99麻豆av| 老司机影院毛片| 不卡视频在线观看欧美| 联通29元200g的流量卡| 免费黄网站久久成人精品| 秋霞在线观看毛片| av不卡在线播放| 国产精品爽爽va在线观看网站| 国产亚洲91精品色在线| 日韩制服骚丝袜av| 久久精品久久久久久噜噜老黄| 久久99蜜桃精品久久| 在线观看av片永久免费下载| 久久人妻熟女aⅴ| 精品国产一区二区三区久久久樱花 | 午夜精品国产一区二区电影| 在线免费观看不下载黄p国产| 亚洲精品日本国产第一区| 久久精品久久精品一区二区三区| 一级毛片电影观看| 中文精品一卡2卡3卡4更新| 99热国产这里只有精品6| 亚洲精品日韩在线中文字幕| 男的添女的下面高潮视频| 人人妻人人澡人人爽人人夜夜| 99国产精品免费福利视频| 免费黄网站久久成人精品| 亚洲av不卡在线观看| 妹子高潮喷水视频| 人妻系列 视频| 99热全是精品| 丝瓜视频免费看黄片| 国产成人a区在线观看| 伊人久久国产一区二区| 晚上一个人看的免费电影| 日本黄色片子视频| 噜噜噜噜噜久久久久久91| 免费久久久久久久精品成人欧美视频 | 大片免费播放器 马上看| 日韩成人av中文字幕在线观看| 精品久久国产蜜桃| 一级片'在线观看视频| 老女人水多毛片| 伊人久久国产一区二区| 亚洲精品国产av蜜桃| 一级av片app| 美女高潮的动态| 亚洲av综合色区一区| 欧美xxxx性猛交bbbb| 国产精品熟女久久久久浪| 美女福利国产在线 | 亚洲av成人精品一二三区| 国产精品无大码| 日产精品乱码卡一卡2卡三| 亚洲第一区二区三区不卡| av.在线天堂| 人体艺术视频欧美日本| 国产黄片美女视频| av福利片在线观看| 精品国产一区二区三区久久久樱花 | 亚洲欧美一区二区三区国产| 我要看黄色一级片免费的| 精品久久久精品久久久| 偷拍熟女少妇极品色| 午夜免费鲁丝| 一级毛片电影观看| 搡老乐熟女国产| 在线观看国产h片| 深爱激情五月婷婷| 最近中文字幕高清免费大全6| 国产精品爽爽va在线观看网站| 激情 狠狠 欧美| 丰满迷人的少妇在线观看| 日韩三级伦理在线观看| 十分钟在线观看高清视频www | 丝袜脚勾引网站| 国产精品久久久久成人av| 男男h啪啪无遮挡| 能在线免费看毛片的网站| 亚洲av免费高清在线观看| 毛片女人毛片| 男人爽女人下面视频在线观看| 97精品久久久久久久久久精品| 免费在线观看成人毛片| 亚洲av综合色区一区| 中文字幕亚洲精品专区| 亚洲国产精品国产精品| 国产乱人偷精品视频| 精品99又大又爽又粗少妇毛片| 国产精品久久久久久久久免| 欧美 日韩 精品 国产| 国产精品久久久久久精品古装| 国产欧美日韩一区二区三区在线 | 久久久欧美国产精品| 夜夜爽夜夜爽视频| 成人一区二区视频在线观看| 亚洲人成网站在线观看播放| 久久亚洲国产成人精品v| 99国产精品免费福利视频| av视频免费观看在线观看| 欧美+日韩+精品| 精品亚洲成a人片在线观看 | 日韩人妻高清精品专区| 你懂的网址亚洲精品在线观看| 美女脱内裤让男人舔精品视频| 大香蕉久久网| 国产成人精品福利久久| 久久久久久久久久人人人人人人| 国产精品久久久久久久电影| 高清午夜精品一区二区三区| 久久人妻熟女aⅴ| 日韩人妻高清精品专区| 五月伊人婷婷丁香| 少妇被粗大猛烈的视频| 男女边摸边吃奶| 日本与韩国留学比较| 3wmmmm亚洲av在线观看| 亚洲成人中文字幕在线播放| 国产精品无大码| 精品国产乱码久久久久久小说| 免费播放大片免费观看视频在线观看| 欧美日韩精品成人综合77777| 少妇被粗大猛烈的视频| 亚洲国产精品专区欧美| av又黄又爽大尺度在线免费看| 成人国产av品久久久| 在线观看av片永久免费下载| 国产成人91sexporn| 日韩中文字幕视频在线看片 | 蜜桃亚洲精品一区二区三区| 女的被弄到高潮叫床怎么办| 女的被弄到高潮叫床怎么办| 欧美日韩亚洲高清精品| 嘟嘟电影网在线观看| 亚洲不卡免费看| 久久国产精品男人的天堂亚洲 | 日日摸夜夜添夜夜爱| 亚洲国产最新在线播放| 热99国产精品久久久久久7| 人妻少妇偷人精品九色| 欧美丝袜亚洲另类| 色视频www国产| 极品教师在线视频| 中文字幕人妻熟人妻熟丝袜美| 中文字幕久久专区| 亚洲国产精品999| 成人免费观看视频高清| 大又大粗又爽又黄少妇毛片口| 国产精品国产av在线观看| 中文字幕制服av| 新久久久久国产一级毛片| 秋霞伦理黄片| 久久久久国产网址| av天堂中文字幕网| 伦理电影大哥的女人| 寂寞人妻少妇视频99o| 国产黄色免费在线视频| 搡女人真爽免费视频火全软件| 国产成人精品婷婷| 国产伦精品一区二区三区视频9| 亚洲自偷自拍三级| 国产精品一区二区在线不卡| 91精品伊人久久大香线蕉| 国产人妻一区二区三区在| 99热全是精品| 久久久久性生活片| 国产91av在线免费观看| 欧美97在线视频| 97超碰精品成人国产| 黄色日韩在线| 三级经典国产精品| 边亲边吃奶的免费视频| 成人毛片a级毛片在线播放| 婷婷色麻豆天堂久久| 黄片wwwwww| 亚洲国产精品专区欧美| 国产男人的电影天堂91| 久久综合国产亚洲精品| 午夜福利视频精品| 在现免费观看毛片| 少妇 在线观看| 在线亚洲精品国产二区图片欧美 | 女人十人毛片免费观看3o分钟| 国产免费视频播放在线视频| 男人爽女人下面视频在线观看| 国产精品久久久久久久久免| 国产日韩欧美在线精品| 91精品一卡2卡3卡4卡| 伊人久久精品亚洲午夜| 国产有黄有色有爽视频| freevideosex欧美| 91午夜精品亚洲一区二区三区| 精品久久久久久久久亚洲| 少妇的逼好多水| 久久久久久久精品精品| 亚洲四区av| 国产精品久久久久久精品古装| 一级爰片在线观看| 看免费成人av毛片| 亚洲欧美一区二区三区黑人 | 国产精品久久久久成人av| 妹子高潮喷水视频| 亚洲三级黄色毛片| 成人高潮视频无遮挡免费网站| 日本-黄色视频高清免费观看| 欧美精品一区二区免费开放| 久久久久视频综合| 黄色怎么调成土黄色| 丝袜脚勾引网站| 国产在线一区二区三区精| 久久久久久久国产电影| 免费少妇av软件| 国产亚洲av片在线观看秒播厂| 亚洲人成网站在线观看播放| 国产黄片美女视频| 一区二区三区精品91| 久久精品人妻少妇| 搡女人真爽免费视频火全软件| 成人影院久久| 高清av免费在线| 91久久精品国产一区二区成人| 熟女人妻精品中文字幕| 中文字幕制服av| 精品一区二区三卡| 久久久久久久久久成人| 身体一侧抽搐| av在线app专区| 久久久欧美国产精品| 国产黄片美女视频| 日日啪夜夜撸| 国产 一区精品| 日韩制服骚丝袜av| 亚洲精品国产成人久久av| 亚洲色图综合在线观看| 在线免费十八禁| 香蕉精品网在线| 人人妻人人看人人澡| 中文欧美无线码| 卡戴珊不雅视频在线播放| 伊人久久国产一区二区| 欧美xxⅹ黑人| 免费av中文字幕在线| 成年免费大片在线观看| 熟女av电影| 国产高潮美女av| 十分钟在线观看高清视频www | 日本爱情动作片www.在线观看| 国产美女午夜福利| av线在线观看网站| 日韩在线高清观看一区二区三区| 免费av不卡在线播放| 日产精品乱码卡一卡2卡三| 日本wwww免费看| 中国国产av一级| 国产在视频线精品| 国产精品一二三区在线看| 久久久久久久亚洲中文字幕| av在线app专区| 看十八女毛片水多多多| 国产黄色免费在线视频| 亚洲欧美成人综合另类久久久| 国国产精品蜜臀av免费| 亚洲va在线va天堂va国产| 18禁动态无遮挡网站| 久久精品国产a三级三级三级| 伦精品一区二区三区| 亚洲激情五月婷婷啪啪| 又粗又硬又长又爽又黄的视频| 国产亚洲午夜精品一区二区久久| 97热精品久久久久久| 久久久久久人妻| 国产又色又爽无遮挡免| av.在线天堂| 哪个播放器可以免费观看大片| 啦啦啦在线观看免费高清www| 国产免费视频播放在线视频| 少妇熟女欧美另类| 久热这里只有精品99| 免费观看av网站的网址| 国产精品av视频在线免费观看| 丰满迷人的少妇在线观看| 热99国产精品久久久久久7| 高清在线视频一区二区三区| 女人久久www免费人成看片| 欧美日韩综合久久久久久| av播播在线观看一区| 国产精品欧美亚洲77777| 亚洲精品国产av成人精品| 精品亚洲乱码少妇综合久久| 80岁老熟妇乱子伦牲交| 欧美区成人在线视频| 亚洲欧美成人综合另类久久久| 91在线精品国自产拍蜜月| 欧美xxxx性猛交bbbb| h视频一区二区三区| 国产白丝娇喘喷水9色精品| 黄片无遮挡物在线观看| 成人影院久久| 狂野欧美激情性bbbbbb| 免费人成在线观看视频色| 国产白丝娇喘喷水9色精品| 日本午夜av视频| 亚洲精品久久午夜乱码| 性色av一级| 成年av动漫网址| 国产伦理片在线播放av一区| 欧美精品一区二区大全| 2018国产大陆天天弄谢| 五月天丁香电影| 久久精品久久久久久久性| 久久国产精品男人的天堂亚洲 | 人妻夜夜爽99麻豆av| 国产av码专区亚洲av| 亚洲电影在线观看av| 视频区图区小说| 欧美日韩视频高清一区二区三区二| 人妻少妇偷人精品九色| 观看免费一级毛片| 在线天堂最新版资源| 九九久久精品国产亚洲av麻豆| 美女内射精品一级片tv| 亚洲图色成人| 在线观看免费视频网站a站| 黑丝袜美女国产一区| 亚洲伊人久久精品综合| 免费大片18禁| 国产精品99久久99久久久不卡 | 日日摸夜夜添夜夜爱| 国产成人精品一,二区| 欧美成人精品欧美一级黄| 国产伦理片在线播放av一区| 日韩大片免费观看网站| 2021少妇久久久久久久久久久| 国产久久久一区二区三区| 久久久久久九九精品二区国产| 91在线精品国自产拍蜜月| 日韩在线高清观看一区二区三区| 噜噜噜噜噜久久久久久91| 午夜免费观看性视频| 国产国拍精品亚洲av在线观看| 尤物成人国产欧美一区二区三区| 色吧在线观看| 日本欧美视频一区| 精品午夜福利在线看| 国产亚洲av片在线观看秒播厂| 亚洲av男天堂| 国产大屁股一区二区在线视频| 久久久久久伊人网av| 久久久久久久大尺度免费视频| 国产一区二区三区av在线| a级毛色黄片| av在线观看视频网站免费| 简卡轻食公司| 免费高清在线观看视频在线观看| 免费看av在线观看网站| 五月伊人婷婷丁香| 高清毛片免费看| 国产伦精品一区二区三区视频9| 亚洲美女搞黄在线观看| 精品久久久久久电影网| 丝袜喷水一区| 免费久久久久久久精品成人欧美视频 | 一区二区三区乱码不卡18| 免费av不卡在线播放| 久久国产亚洲av麻豆专区| 黄色配什么色好看| 精品久久久久久久末码| 亚洲电影在线观看av| 99久国产av精品国产电影| 高清黄色对白视频在线免费看 | 黄片无遮挡物在线观看| 欧美成人精品欧美一级黄| 少妇人妻 视频| 亚洲国产精品国产精品| 黑人高潮一二区| 男人添女人高潮全过程视频| 欧美另类一区| 欧美人与善性xxx| 91在线精品国自产拍蜜月| 亚洲经典国产精华液单| 色婷婷久久久亚洲欧美| 男女边摸边吃奶| 国产视频内射| 婷婷色综合大香蕉| 高清毛片免费看| 亚洲av成人精品一二三区| 久久久久久人妻| 精品一区二区免费观看| 一级爰片在线观看| 一级毛片电影观看| 国产成人一区二区在线| 91久久精品国产一区二区成人| 伦理电影大哥的女人| 国模一区二区三区四区视频| 亚洲av日韩在线播放| 欧美xxxx性猛交bbbb| 一区二区三区精品91| 香蕉精品网在线| 少妇人妻 视频| 一级爰片在线观看| 激情 狠狠 欧美| 内射极品少妇av片p| 国产成人免费无遮挡视频| 久久久久久久久久人人人人人人| 男人和女人高潮做爰伦理| 国内少妇人妻偷人精品xxx网站| 免费在线观看成人毛片| 3wmmmm亚洲av在线观看| 国产色爽女视频免费观看| 国产男女内射视频| 色5月婷婷丁香| 卡戴珊不雅视频在线播放| 熟女电影av网| 水蜜桃什么品种好| 亚洲熟女精品中文字幕| 久久精品国产亚洲av天美| 国产精品国产三级国产av玫瑰| a级一级毛片免费在线观看| 丰满迷人的少妇在线观看| 九草在线视频观看| 国产亚洲精品久久久com| 久久热精品热| 国产一级毛片在线| 久久久久久久久大av| 大又大粗又爽又黄少妇毛片口| 丰满迷人的少妇在线观看| 国产白丝娇喘喷水9色精品| 夜夜骑夜夜射夜夜干| 亚洲av中文av极速乱| 亚洲av不卡在线观看| 亚洲av男天堂| 国产又色又爽无遮挡免| 久久6这里有精品| 国产精品久久久久久久电影| 亚洲精品成人av观看孕妇| 日本色播在线视频| 国产色爽女视频免费观看| 国产视频首页在线观看| 国产精品一区二区三区四区免费观看| 日本一二三区视频观看| 亚洲av中文av极速乱| 狠狠精品人妻久久久久久综合| 日韩大片免费观看网站| 日韩成人伦理影院| 六月丁香七月| 纵有疾风起免费观看全集完整版| a级毛色黄片| 亚洲伊人久久精品综合| h视频一区二区三区| 免费观看性生交大片5| 欧美区成人在线视频| 黄色视频在线播放观看不卡| 观看av在线不卡| 亚洲精品一区蜜桃| 国产亚洲午夜精品一区二区久久| 黄色一级大片看看| 热99国产精品久久久久久7| 午夜福利在线在线| 久久精品国产亚洲av天美| 国产亚洲午夜精品一区二区久久| www.av在线官网国产| 91精品伊人久久大香线蕉| 亚洲av欧美aⅴ国产| 婷婷色av中文字幕| 精品久久久久久电影网| 午夜免费男女啪啪视频观看| 在线观看免费高清a一片| 身体一侧抽搐| 建设人人有责人人尽责人人享有的 | 国产精品欧美亚洲77777| 日韩国内少妇激情av| av国产久精品久网站免费入址| 高清黄色对白视频在线免费看 | 国产成人精品一,二区| 一级二级三级毛片免费看| 熟女电影av网| 干丝袜人妻中文字幕| 亚洲av.av天堂| 在线观看免费视频网站a站| 久久99热这里只频精品6学生| 成年美女黄网站色视频大全免费 | 国产精品偷伦视频观看了| 国产中年淑女户外野战色| 久久热精品热| 国产 精品1| 欧美xxⅹ黑人| 国语对白做爰xxxⅹ性视频网站| 欧美激情国产日韩精品一区| 狂野欧美激情性xxxx在线观看| av在线老鸭窝| 国产精品国产三级国产av玫瑰| 亚洲国产精品国产精品| 在线观看免费日韩欧美大片 | 夜夜骑夜夜射夜夜干| 纵有疾风起免费观看全集完整版| 毛片女人毛片| 精品国产露脸久久av麻豆| 亚洲成人手机| 人人妻人人澡人人爽人人夜夜| 在线观看免费高清a一片| 国产精品.久久久| 久久韩国三级中文字幕| 国产欧美亚洲国产| 久久韩国三级中文字幕| 亚洲成人av在线免费| 性色avwww在线观看| 欧美三级亚洲精品| 日本欧美国产在线视频| 日本黄大片高清| 在线免费十八禁| 日韩人妻高清精品专区| 最近的中文字幕免费完整| 日韩av在线免费看完整版不卡| 少妇人妻精品综合一区二区| 国产精品福利在线免费观看| 晚上一个人看的免费电影| 九九久久精品国产亚洲av麻豆| 国产乱人偷精品视频| 男女下面进入的视频免费午夜| 国产成人精品一,二区| 久久97久久精品| 成人毛片a级毛片在线播放| 国产91av在线免费观看| 国产精品爽爽va在线观看网站| 国产男女超爽视频在线观看| 少妇熟女欧美另类| 十分钟在线观看高清视频www | 看十八女毛片水多多多| 秋霞在线观看毛片| av免费在线看不卡| 欧美+日韩+精品| 色婷婷久久久亚洲欧美| 亚洲欧美成人综合另类久久久| 小蜜桃在线观看免费完整版高清| 亚洲综合精品二区| 婷婷色综合大香蕉| 人人妻人人看人人澡| 99久久精品国产国产毛片| 欧美bdsm另类| 亚洲精华国产精华液的使用体验| 丰满少妇做爰视频| 欧美精品一区二区免费开放| 国产免费又黄又爽又色| 嫩草影院入口| 国产精品福利在线免费观看| 美女中出高潮动态图| 久久午夜福利片| 自拍偷自拍亚洲精品老妇| 亚洲三级黄色毛片| 91精品伊人久久大香线蕉| 自拍偷自拍亚洲精品老妇| 日韩电影二区| 国产免费一区二区三区四区乱码| 深夜a级毛片| 亚洲丝袜综合中文字幕| 精品久久久久久久末码| 国产 一区精品|