• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    When null energy condition meets ADM mass

    2022-10-22 08:15:16RunQiuYangLiLiandRongGenCai
    Communications in Theoretical Physics 2022年9期

    Run-Qiu Yang,Li Li and Rong-Gen Cai

    1 Center for Joint Quantum Studies and Department of Physics,School of Science,Tianjin University,Yaguan Road 135,Jinnan District,Tianjin 300350,China

    2 CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China

    3 School of Fundamental Physics and Mathematical Sciences,Hangzhou Institute for Advanced Study,UCAS,Hangzhou 310024,China

    Abstract We give a conjecture on the lower bound of the ADM mass M by using the null energy condition.The conjecture includes a Penrose-like inequality 3M≥and the Penrose inequalitywithA the event horizon area and к the surface gravity.Both the conjecture in the static spherically symmetric case and the Penrose inequality for a dynamical spacetime with spherical symmetry are proved by imposing the null energy condition.We then generalize the conjecture to a general dynamical spacetime.Our results raise a new challenge for the famous unsettled question in general relativity: in what general case can the null energy condition replace other energy conditions to ensure the Penrose inequality?

    Keywords: Penrose inequality,black holes,ADM mass,energy conditions

    1.Motivation

    It is still an open and interesting question on the bound of mass in a given region of spacetime.The Penrose inequality provides a lower bound for the mass of spacetime in terms of the area of suitable surfaces that typically represent black holes.More precisely,Penrose’s motivation for his inequality is as follows.Suppose one begins with asymptotically flat initial data with the ADM mass M,and the apparent horizon σ with A[σ]the minimum area required to enclose σ.Evolving the system forward in time and supposing that the spacetime eventually settles down to a Kerr solution with its Bondi mass Mfand the area of the event horizon Af,one immediately finds 2Mf≥(in units of 16πG=c=1).Considering the null energy condition (NEC),the Bondi mass does not increase,while the area of the event/apparent horizon does not decrease,i.e.M≥MfandAf≥A[σ].Therefore,one obtains the ‘Penrose inequality’ 2M≥The Penrose inequality is important to gravitational collapse and the cosmic censorship conjecture.Nevertheless,finding the proof for this inequality is still a famous open problem in general relativity.In the special case that the spacetime is static,the inequality was proved by various methods assuming weak energy condition (WEC) [1–7](see [8]for a review).For the dynamical case,the only known proof was given for the spherically symmetric spacetime by considering the dominant energy condition (DEC) and using ‘ADM energy’instead of ADM mass[8,9].However,there are two obvious ‘gaps’: (1) only the NEC is involved in Penrose’s heuristic argument,but the current statement of the Penrose inequality requires WEC or even DEC,and(2)the spacetime is assumed to settle down to a stationary black hole in Penrose’s argument,but this assumption plays no role in current studies and proofs.Moreover,note that the ‘positive mass theorem’ is a corollary of Penrose inequality and [10–12]showed that the NEC can indeed insure nonnegative ADM mass.These raise an interesting question:if assuming that the spacetime will settle down to a stationary black hole finally,is it able to prove the Penrose inequality by using the NEC only? On the other hand,the surface gravity к and event horizon areaA are two important quantities of black holes.If taking both into account,can we obtain a new lower bound on the ADM mass?

    To answer these questions,we first consider the Kerr–Newman black hole with ADM mass M,angular momentum Ma,charge Q.We then have

    with rhthe location of the event horizon.We can obtain that

    and the saturation appears only if a=Q=0.Based on the above discussions,we propose a conjecture as follows.

    Conjecture 1.For a four-dimensional asymptotically flat,static or axisymmetric stationary black hole with ‘t-φ’reflection isometry,if(1)Einstein’s equation and the NEC are satisfied and (2) the cross-section of event horizon has S2topology,then there are two independent inequalities given as follows:

    and the Penrose inequality

    The equality is achieved only when the exterior of a black hole is Schwarzschild.Moreover,a regular stationary spacetime that is singularity free satisfiesM≥0 and M vanishes only for the Minkowski spacetime.

    Here we make some comments before going further.Firstly,the event horizon in Conjecture 1 is a Killing horizon for which the surface gravity к is well-defined.We note that the event horizon of a stationary black hole is not guaranteed to be a Killing horizon.According to Hawking and Ellis [13],when Einstein’s equation holds with matter satisfying suitable hyperbolic equations and the DEC,the event horizon of a stationary black hole is a Killing horizon.However,here we only use the NEC.Instead,Carter proved that for a static or axisymmetric stationary black hole with ‘t-φ’ reflection isometry,the event horizon is a Killing horizon and the surface gravity is a constant,regardless of Einstein’s equation and energy conditions [14].Secondly,the surface gravity к depends on the normalization of the Killing vector ξμ.This can be fixed by requiring ξμtμ|∞=-1,where tμis the tangent vector of the world-line of static observers at infinity.Thirdly,our inequality(3) and Penrose inequality(4)are two independent inequalities in general if we do not require other stronger energy conditions.In static case,if the strong energy condition is also imposed,one can use Komar integration to prove M≥кA/4π and find that the inequality(3)is a corollary of Penrose inequality.Since we here only impose NEC,it is possible that the strong energy condition is violated everywhere .In this situation one can find that M<кA/4π and the Penrose inequality becomes a corollary of inequality(3).Finally,our conjecture contains a ‘positive mass theorem’ as its corollary.Though we assume static or axisymmetric stationary symmetry,we only use NEC rather than DEC or WEC.If a spacetime satisfies the NEC while breaking the WEC,the scalar curvature of the maximal slice can be negative.Then the proofs proposed by Schoen and Yau[15,16]and various generalizations will lose their validity.The proofs based on spinor technique,originally proposed by Witten[17,18](see also the extension to black holes[19]),require the DEC to ensure the nonnegativity of energy integration,thus would lose their validity for a spacetime that satisfies the NEC only.Compared with the results of [10,11],which used the NEC to prove the nonnegativity of ADM mass,our paper offers a tighter lower bound for the ADM mass in terms of к andA.Moreover,if the WEC is broken,all proofs till now about the Penrose inequality will become invalid.

    2.Proof in static spherically symmetric case

    It is clear that the Kerr–Newman black hole satisfies our Conjecture 1.To further support our inequalities in Conjecture 1,we now give proof for the static spherically symmetric case for which the metric reads

    The asymptotic flatness yields

    with M the ADM mass and the constant α >0.For a black hole,we donate the location of its event horizon to be rhat which f(r) is vanishing,then the surface gravity к and the horizon areaA are given by

    For a regular case that is singularity free,both f and χ are smooth at r=0.The energy momentum tensorTμνhas a formTμν=diag [-ρ(r),pr(r),pT(r),pT(r)].Einstein’s equation gives the following independent equations

    We note that the NEC insuresχ′≤0.Therefore,we find from(6) that χ≥0.

    To prove the inequalities(3) and(4) for the spherically symmetric case,we introduce a new‘quasi-local mass’for an equal-r surface defined as

    Using equations (8)–(10),one can obtain that

    It is now manifest that the NEC insuresm′(r)≥0 outside rh.Evaluating m(r)at both the infinity and the event horizon,one finds

    so inequality(3) follows.If the spacetime is regular,i.e.horizonless and all curvature invariants are regular everywhere ,we have M=m(∞)≥m(0)=0.

    Next,we prove the Penrose inequality(4).Solving f(r)e-χ(r)/r2in terms of m(r),one obtains from(12) that

    Evaluating(14)at r→∞and noting that 3m(r)-r≤3M-r under the NEC,one has

    Monotonicity of e-χ(r)/2ensures

    which leads to

    I nequality(15) then implies

    One immediately finds 2M≥rh,and therefore the inequality(4) follows.

    To prove the rigidity for both inequalities(3)and(4),we note that they are saturated only if χ(r)=0 and m(r)=M.This leads to f(r)=1-2M/r,i.e.the Schwarzschild spacetime.Moreover,a regular stationary spacetime satisfies M≥0 and M vanishes only for the Minkowski spacetime.

    Note that the Penrose inequality of dynamical spacetime was proved in the spherically symmetric case by considering the DEC and the ADM energy in the literature [8,9].Interestingly,our proof for the spherically symmetric case implies the following corollary,

    Corollary1.Consider a dynamical spacetime that has spherical symmetry and settles down to a static black hole finally.For an initial data set containing an apparent horizonσ,the NEC and Einstein’s equation guarantee 2M≥where A[σ]is the minimum area required to enclose the apparent horizonσ.The proof is as follows.Based on proposition 9.2.1 of[13],if the initial data set contains an apparat horizon σ and the NEC is satisfied,there must be an event horizon H and the apparent horizon lies behind H.We denote the intersection of H and the initial data set as Γ0,so σ must be inside Γ0.Since A[σ]is the minimum area required to enclose the apparent horizon,one has A[σ]≤ A(Γ0).The NEC ensures that the area of the event horizon is nondecreasing,so we haveA(Γ0)≤A∞,where A∞is the event horizon area at the future timelike infinity.Moreover,the mass of the final black hole is given by the Bondi mass MB.Note that we have proved the Penrose inequality for a static black hole with spherical symmetry.Therefore,we have

    where we have used the fact that the Bondi mass is equal or smaller than the ADM mass.Corollary 1 shows that in a spherically symmetric case,the NEC is enough to ensure the Penrose inequality,the same as Penrose’s heuristic argument.Compared to previous proofs in the spherically symmetric case [8],we have a natural requirement that the system will finally settle down to a static black hole.Nevertheless,our result is stronger in the following two aspects: we use the ADM mass rather than the ADM energy,and we use the NEC rather than the DEC.We also stress that A[σ]is not defined by the area of the apparent horizon σ.As pointed out by[20],the apparent horizon area,in general,may not satisfy the Penrose inequality.

    3.Generalization to dynamical black holes

    To generalize Conjecture 1 to the dynamical case,we should first clarify two conceptions in a non-stationary black hole:the ‘horizon’ and the ‘surface gravity’.Two possible candidates for the horizon in the dynamical case are the ‘future outer trapping horizon’ (FOTH) introduced by Hayward [21]and the‘dynamical horizon’(DH)proposed by Ashtekar[22].In this paper,we will take the former.

    The definition of the ‘surface gravity’ in the dynamic spacetime is also a subtle issue.Once again,one has two potential choices,the‘trapped gravity’proposed by Hayward[21]and the ‘effective surface gravity’ by Ashtekar [22],respectively.However,both of them cannot reduce to the surface gravity even in the static spherically symmetric case,equation (7).We now propose a new candidate of surface gravity as follows.Near the null infinities{I-,I+} and spatial infinity i0,there is an asymptotically time-like Killing vector tμwhich stands for the 4-velocity of a static observer.Take lμand kμto be,respectively,the infalling and outgoing null vectors of a FOTH.We can extend them into the whole spacetime by requiring that: (1) they are tangent vectors of null geodesics,(2) lμis affinely parameterized and satisfies lμtμ=-1 at {I-,I+,i0},(3) kμis normalized by requiring kμlμ=-1 everywhere .Then,according to the null vector fields {lμ,kμ} and their expansions {θ(l),θ(k)},our ‘surface gravity’ is defined as

    The surface gravity defined in this way is always nonnegative and will reduce to equation (7) in the static spherically symmetric case.

    We now generalize Conjecture 1 to the dynamical case as follows.

    Conjecture 2.For the most outer FOTH which coincides with the event horizon at the future timelike infinity,if (1)Einstein’s equation and the NEC are satisfied,and (2) all marginal trapped surfaces of the FOTH have spherical topology,then the areaA of a marginal trapped surfaceS,the surface gravity к,and the ADM mass of spacetime will satisfy

    and

    If it is saturated on one marginal surface of FOTH,then the FOTH is the event horizon,and the exterior of the event horizon is Schwarzschild.

    It has been proved in [21]that the area of marginal surface of FOTH is nondecreasing.Therefore,one can find that inequality(19) is a corollary of(4) in Conjecture 1.

    We now give a nontrivial check for the inequality(18)by considering the generalized Vaidya solution [23]:

    Note that the ADM mass M is defined at the spatial infinity,i.e.M=M(∞,∞).The marginal trapped surfaces are given byv=const.andr=const.,thanks to the spherical symmetry.Then the infalling and outgoing null rays are,respectively,lμ=(0,-1,0,0) and kμ=(1,f/2,0,0) with their expansions θ(k)=f/r and θ(l)=-2/r<0.Therefore,the FOTH is given by f(v,r)=0 for which we denote its solution to be r=rh(v).We then have

    from which

    The corresponding energy–momentum tensor reads [24]

    with

    This in general (u ≠0) describes the Type II fluids [13].The NEC demands

    as well as the following constraint onM(v,r)

    so the inequality(18) follows.To saturate the inequality,we needM(v,r) to be a constant,so the exterior is nothing but Schwarzschild.This provides nontrivial evidence to support our Conjecture 2.Note that,in the present case,the WEC requires {u≥0,ρ≥0,P≥0} and the DEC gives {u≥0,ρ≥P≥0},both are stronger than the NEC.

    4.Summary

    To summarize,we have proposed a Penrose-like inequality involving ADM mass,surface gravity,and horizon area.For static or axisymmetric stationary black holes,our Conjecture 1 suggests that Einstein’s equation and the NEC ensure the Penrose-like inequality as well as the Penrose inequality.We have given a proof for the static spherically symmetric case and offered evidence for the dynamical case.In addition,the Penrose inequality for spherically symmetric(dynamic) spacetime has been proved by using the NEC rather than the DEC.Our conjecture applies in some situations not covered by previous inequalities.

    Our results not only provide a new conjecture to bound the ADM mass by horizon area and surface gravity for the first time,but also raise a new challenge for the famous unsettled question in general relativity: can the NEC ensure the Penrose inequality if a spacetime settles down to a stationary black hole finally?

    Acknowledgments

    This work was partially supported by the National Natural Science Foundation of China Grants No.12122513,No.12075298,No.11821505,No.11991052,No.12047503,and No.12005155,and by the Key Research Program of the Chinese Academy of Sciences(CAS)Grant No.XDPB15,the CAS Project for Young Scientists in Basic Research YSBR-006 and the Key Research Program of Frontier Sciences of CAS.

    欧美少妇被猛烈插入视频| 高清不卡的av网站| 亚洲精品乱久久久久久| 国产精品爽爽va在线观看网站| 亚洲精品日韩在线中文字幕| 午夜激情久久久久久久| 午夜福利影视在线免费观看| 亚洲va在线va天堂va国产| 能在线免费看毛片的网站| 色婷婷久久久亚洲欧美| a级毛色黄片| 国产精品蜜桃在线观看| 嘟嘟电影网在线观看| 麻豆成人午夜福利视频| 一级毛片我不卡| 亚洲综合精品二区| 51国产日韩欧美| 日韩欧美一区视频在线观看 | 亚洲av成人精品一二三区| www.色视频.com| 国产精品国产三级国产av玫瑰| 精品国产乱码久久久久久小说| 国产爱豆传媒在线观看| 午夜日本视频在线| 欧美精品一区二区免费开放| 精品久久久久久久久亚洲| 亚洲av.av天堂| 2018国产大陆天天弄谢| 久久久久人妻精品一区果冻| 观看美女的网站| 亚洲av电影在线观看一区二区三区| 一区二区av电影网| 国产一区二区三区av在线| 少妇丰满av| 亚洲综合色惰| 免费久久久久久久精品成人欧美视频 | 最近中文字幕高清免费大全6| 美女国产视频在线观看| 亚洲av.av天堂| xxx大片免费视频| 久久韩国三级中文字幕| 免费观看性生交大片5| 高清不卡的av网站| 国产成人免费无遮挡视频| 18禁裸乳无遮挡免费网站照片| 国精品久久久久久国模美| 亚洲精品国产成人久久av| 免费久久久久久久精品成人欧美视频 | 国产欧美日韩一区二区三区在线 | 免费大片黄手机在线观看| 日韩亚洲欧美综合| 亚洲精品456在线播放app| 最近2019中文字幕mv第一页| 伊人久久国产一区二区| 精品视频人人做人人爽| 美女中出高潮动态图| 欧美老熟妇乱子伦牲交| 日韩成人伦理影院| 国产欧美亚洲国产| 在线天堂最新版资源| 日韩,欧美,国产一区二区三区| 欧美人与善性xxx| 网址你懂的国产日韩在线| 伦理电影大哥的女人| 人体艺术视频欧美日本| 国产亚洲精品久久久com| 高清欧美精品videossex| 亚洲欧美清纯卡通| 国产美女午夜福利| 少妇人妻精品综合一区二区| 亚洲精品中文字幕在线视频 | 最黄视频免费看| 一级毛片 在线播放| 久久久国产一区二区| 天堂8中文在线网| 日韩欧美精品免费久久| 中文字幕精品免费在线观看视频 | 最后的刺客免费高清国语| 我要看黄色一级片免费的| 国产片特级美女逼逼视频| 青春草国产在线视频| 亚洲欧美日韩另类电影网站 | 国产精品不卡视频一区二区| 国产在线视频一区二区| 欧美三级亚洲精品| 2022亚洲国产成人精品| 久久精品久久久久久噜噜老黄| 精品久久久久久久久亚洲| 午夜福利在线在线| 精华霜和精华液先用哪个| 在线观看av片永久免费下载| 久久久久精品久久久久真实原创| 国产男人的电影天堂91| 亚洲,一卡二卡三卡| 亚洲国产色片| 久久99热6这里只有精品| 国产大屁股一区二区在线视频| 成人一区二区视频在线观看| 欧美激情极品国产一区二区三区 | 日韩不卡一区二区三区视频在线| 亚洲高清免费不卡视频| 老司机影院成人| 97热精品久久久久久| 丝袜脚勾引网站| 在线观看av片永久免费下载| 国产成人a区在线观看| 久久久久久久亚洲中文字幕| 在线观看一区二区三区激情| 国产亚洲av片在线观看秒播厂| 免费观看的影片在线观看| 国产中年淑女户外野战色| 国产深夜福利视频在线观看| 国产精品国产av在线观看| 看免费成人av毛片| 欧美三级亚洲精品| 久久精品人妻少妇| 亚洲欧美成人综合另类久久久| 久久久成人免费电影| 色哟哟·www| 国产av国产精品国产| 久久精品国产亚洲网站| 久久久久国产网址| 久久久久视频综合| 亚洲精品成人av观看孕妇| 欧美老熟妇乱子伦牲交| 男女边摸边吃奶| av免费观看日本| 又大又黄又爽视频免费| 视频区图区小说| 精品午夜福利在线看| 91在线精品国自产拍蜜月| 日韩 亚洲 欧美在线| 老熟女久久久| 久久av网站| 午夜福利高清视频| 久久精品久久精品一区二区三区| 亚洲精品国产av蜜桃| 国产一区二区三区综合在线观看 | 日韩视频在线欧美| 18禁在线播放成人免费| 人妻一区二区av| 看免费成人av毛片| 国产乱人视频| 纵有疾风起免费观看全集完整版| 我要看黄色一级片免费的| 最后的刺客免费高清国语| 亚洲高清免费不卡视频| xxx大片免费视频| 国产免费视频播放在线视频| 久久久久性生活片| 丝袜喷水一区| 黄色一级大片看看| 国产精品一二三区在线看| 91狼人影院| 久久久久精品久久久久真实原创| 国产黄片视频在线免费观看| av在线老鸭窝| 国产 一区精品| 亚洲国产最新在线播放| 午夜免费男女啪啪视频观看| 乱系列少妇在线播放| 最后的刺客免费高清国语| 麻豆乱淫一区二区| 国产日韩欧美亚洲二区| 伊人久久精品亚洲午夜| 免费播放大片免费观看视频在线观看| 七月丁香在线播放| 一级毛片电影观看| 日韩av免费高清视频| 久久人人爽av亚洲精品天堂 | 欧美日韩精品成人综合77777| 一级片'在线观看视频| 三级国产精品片| 一个人看的www免费观看视频| 高清日韩中文字幕在线| 熟女人妻精品中文字幕| 高清视频免费观看一区二区| 一本—道久久a久久精品蜜桃钙片| 国模一区二区三区四区视频| 在线观看免费视频网站a站| 亚洲天堂av无毛| 最后的刺客免费高清国语| 一区二区av电影网| 在线免费观看不下载黄p国产| 久久亚洲国产成人精品v| 国产精品av视频在线免费观看| 成人无遮挡网站| 日韩电影二区| 日本午夜av视频| 春色校园在线视频观看| 黄色配什么色好看| 欧美少妇被猛烈插入视频| 午夜精品国产一区二区电影| 欧美精品人与动牲交sv欧美| av国产久精品久网站免费入址| 中文字幕人妻熟人妻熟丝袜美| 我的老师免费观看完整版| 国产精品精品国产色婷婷| 国产在线一区二区三区精| 成人毛片a级毛片在线播放| 人人妻人人添人人爽欧美一区卜 | 久久久午夜欧美精品| 91久久精品国产一区二区成人| 国产久久久一区二区三区| 成人亚洲欧美一区二区av| 久久ye,这里只有精品| 中文字幕免费在线视频6| 大话2 男鬼变身卡| 久久 成人 亚洲| 国产免费又黄又爽又色| 久久精品国产自在天天线| 日本欧美国产在线视频| 看免费成人av毛片| 男女下面进入的视频免费午夜| 亚洲精品国产色婷婷电影| 精品午夜福利在线看| 久久久久久久精品精品| 久久人人爽人人片av| 蜜桃在线观看..| 蜜臀久久99精品久久宅男| 五月玫瑰六月丁香| 青春草亚洲视频在线观看| 日韩亚洲欧美综合| 我要看黄色一级片免费的| 午夜精品国产一区二区电影| a级一级毛片免费在线观看| 欧美精品一区二区大全| 少妇人妻久久综合中文| 日本av手机在线免费观看| 国产色婷婷99| 免费人妻精品一区二区三区视频| 国产免费一区二区三区四区乱码| 亚洲av成人精品一区久久| 国产精品偷伦视频观看了| 啦啦啦中文免费视频观看日本| 伊人久久国产一区二区| 这个男人来自地球电影免费观看 | 精品一区二区三卡| 日韩人妻高清精品专区| 午夜免费鲁丝| 男人和女人高潮做爰伦理| 又爽又黄a免费视频| 亚洲精品一二三| 蜜臀久久99精品久久宅男| 亚洲欧美清纯卡通| 亚洲无线观看免费| 高清av免费在线| 三级国产精品片| 国产免费福利视频在线观看| 在线观看美女被高潮喷水网站| 中文字幕制服av| 99精国产麻豆久久婷婷| 亚洲aⅴ乱码一区二区在线播放| 狠狠精品人妻久久久久久综合| a级一级毛片免费在线观看| 国产精品秋霞免费鲁丝片| 我要看黄色一级片免费的| 看免费成人av毛片| 男女边吃奶边做爰视频| 亚洲人成网站高清观看| 日本色播在线视频| 在线免费观看不下载黄p国产| 日日摸夜夜添夜夜添av毛片| 爱豆传媒免费全集在线观看| 国产深夜福利视频在线观看| 男女啪啪激烈高潮av片| 老司机影院成人| 欧美老熟妇乱子伦牲交| 久久久精品94久久精品| 中文字幕免费在线视频6| 国产极品天堂在线| 91久久精品国产一区二区成人| 日日啪夜夜爽| 免费高清在线观看视频在线观看| 亚洲精品国产色婷婷电影| 亚洲精品国产av成人精品| 人妻系列 视频| 久久久欧美国产精品| 亚洲美女视频黄频| 国产精品女同一区二区软件| 性色avwww在线观看| 亚洲图色成人| 伊人久久精品亚洲午夜| 国产午夜精品久久久久久一区二区三区| 黑人猛操日本美女一级片| av不卡在线播放| 亚洲国产毛片av蜜桃av| 精品国产一区二区三区久久久樱花 | 亚洲人成网站高清观看| 亚洲四区av| 色视频www国产| 免费大片黄手机在线观看| 国产成人精品婷婷| 91精品国产九色| 亚洲一区二区三区欧美精品| videossex国产| 成人一区二区视频在线观看| 国内揄拍国产精品人妻在线| 国产精品熟女久久久久浪| 久久av网站| 麻豆国产97在线/欧美| 蜜桃亚洲精品一区二区三区| 一区二区三区精品91| 午夜福利影视在线免费观看| 99热这里只有是精品50| 又大又黄又爽视频免费| 日韩一区二区三区影片| 亚洲精品视频女| videossex国产| 黄色一级大片看看| 免费av中文字幕在线| 亚洲av成人精品一区久久| 亚洲欧美日韩无卡精品| 男人狂女人下面高潮的视频| 国产女主播在线喷水免费视频网站| 成人18禁高潮啪啪吃奶动态图 | 精品亚洲成国产av| 国内揄拍国产精品人妻在线| 亚洲精品第二区| 日本黄大片高清| 嫩草影院新地址| 91狼人影院| 国产一区亚洲一区在线观看| 免费黄频网站在线观看国产| 少妇被粗大猛烈的视频| 狂野欧美白嫩少妇大欣赏| h视频一区二区三区| 夜夜看夜夜爽夜夜摸| 国产精品一区二区在线观看99| 午夜福利在线观看免费完整高清在| 久久精品久久久久久噜噜老黄| 久久久久人妻精品一区果冻| 久久久久网色| 免费看日本二区| 欧美变态另类bdsm刘玥| 亚洲美女黄色视频免费看| 综合色丁香网| 国产大屁股一区二区在线视频| 日产精品乱码卡一卡2卡三| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美成人精品一区二区| 丰满人妻一区二区三区视频av| 欧美最新免费一区二区三区| 久久精品久久精品一区二区三区| 黄色欧美视频在线观看| 日韩中文字幕视频在线看片 | 日本与韩国留学比较| 久久韩国三级中文字幕| 亚洲精华国产精华液的使用体验| 亚洲精品乱久久久久久| 亚洲va在线va天堂va国产| 亚洲性久久影院| 最近最新中文字幕免费大全7| 99热全是精品| 成人毛片60女人毛片免费| 免费观看的影片在线观看| 亚洲无线观看免费| 天美传媒精品一区二区| 久久婷婷青草| 国产精品免费大片| 80岁老熟妇乱子伦牲交| 自拍欧美九色日韩亚洲蝌蚪91 | 国产av一区二区精品久久 | av女优亚洲男人天堂| 国产精品99久久久久久久久| 啦啦啦中文免费视频观看日本| 一级爰片在线观看| av又黄又爽大尺度在线免费看| 国产精品一二三区在线看| 交换朋友夫妻互换小说| 最近手机中文字幕大全| 一级毛片黄色毛片免费观看视频| 狂野欧美激情性xxxx在线观看| 欧美高清性xxxxhd video| 自拍偷自拍亚洲精品老妇| 2021少妇久久久久久久久久久| 久久久久国产网址| 天堂8中文在线网| 欧美激情国产日韩精品一区| 大片电影免费在线观看免费| 涩涩av久久男人的天堂| 欧美日韩视频精品一区| 狂野欧美激情性bbbbbb| 亚洲av国产av综合av卡| 国产片特级美女逼逼视频| 亚洲精品aⅴ在线观看| av卡一久久| 国产黄片美女视频| 我要看日韩黄色一级片| 不卡视频在线观看欧美| 国产精品欧美亚洲77777| 高清在线视频一区二区三区| 日韩中字成人| 久久国内精品自在自线图片| 精品少妇黑人巨大在线播放| 国产伦在线观看视频一区| 亚洲人成网站高清观看| 国产 一区精品| 亚洲av电影在线观看一区二区三区| 精品一区二区三区视频在线| 亚洲欧美成人精品一区二区| 日韩人妻高清精品专区| 亚洲欧美精品专区久久| 免费久久久久久久精品成人欧美视频 | 久热这里只有精品99| 婷婷色综合大香蕉| 欧美日韩国产mv在线观看视频 | 国产伦精品一区二区三区视频9| 99久国产av精品国产电影| 大又大粗又爽又黄少妇毛片口| 我的老师免费观看完整版| 美女福利国产在线 | 国产一级毛片在线| 成人毛片60女人毛片免费| 亚洲国产精品一区三区| 黑丝袜美女国产一区| 哪个播放器可以免费观看大片| 高清不卡的av网站| 国产又色又爽无遮挡免| 3wmmmm亚洲av在线观看| 亚洲婷婷狠狠爱综合网| 久热久热在线精品观看| 高清视频免费观看一区二区| 日韩精品有码人妻一区| 色婷婷久久久亚洲欧美| 亚洲av二区三区四区| 高清av免费在线| 日日啪夜夜爽| 久久久午夜欧美精品| 男人和女人高潮做爰伦理| 亚洲人成网站在线观看播放| 美女主播在线视频| 一区二区三区免费毛片| 丝袜脚勾引网站| 高清午夜精品一区二区三区| 中国国产av一级| 国产爽快片一区二区三区| 国产女主播在线喷水免费视频网站| 大码成人一级视频| 久久韩国三级中文字幕| 一级爰片在线观看| 久久99精品国语久久久| 国产老妇伦熟女老妇高清| 成人高潮视频无遮挡免费网站| 亚洲国产欧美人成| 麻豆精品久久久久久蜜桃| 高清视频免费观看一区二区| 一区二区三区精品91| 亚洲精品日本国产第一区| 欧美人与善性xxx| 精品久久国产蜜桃| 亚洲精品国产av蜜桃| 亚洲一区二区三区欧美精品| 高清不卡的av网站| 国产伦精品一区二区三区四那| 亚洲熟女精品中文字幕| 欧美xxxx性猛交bbbb| 国产黄频视频在线观看| 天堂俺去俺来也www色官网| 国产一区二区在线观看日韩| 亚洲美女搞黄在线观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美清纯卡通| 久久国产精品大桥未久av | 国产精品一区二区在线观看99| 日本wwww免费看| 国产精品久久久久久久久免| 22中文网久久字幕| 欧美成人精品欧美一级黄| 色婷婷av一区二区三区视频| 亚洲国产精品国产精品| 亚洲国产欧美人成| 日韩视频在线欧美| 少妇裸体淫交视频免费看高清| 午夜免费观看性视频| 观看av在线不卡| 午夜激情福利司机影院| 亚洲精品自拍成人| 精品久久久精品久久久| 国产精品一区二区在线观看99| 午夜激情久久久久久久| 亚洲国产毛片av蜜桃av| 国内揄拍国产精品人妻在线| 香蕉精品网在线| 中文天堂在线官网| 欧美zozozo另类| 免费看光身美女| 高清av免费在线| 亚洲国产毛片av蜜桃av| 少妇人妻一区二区三区视频| 久久久久性生活片| 欧美区成人在线视频| 国产成人a∨麻豆精品| 欧美日本视频| 日韩制服骚丝袜av| 国产精品嫩草影院av在线观看| 尾随美女入室| 国产成人91sexporn| 一级a做视频免费观看| 亚洲伊人久久精品综合| 国产视频内射| 三级经典国产精品| 亚洲,一卡二卡三卡| 国产精品一区二区三区四区免费观看| 亚洲国产精品专区欧美| 中文字幕人妻熟人妻熟丝袜美| 欧美xxⅹ黑人| 丰满少妇做爰视频| 夜夜爽夜夜爽视频| 一级毛片 在线播放| 女的被弄到高潮叫床怎么办| 国产成人一区二区在线| 久久久成人免费电影| 亚洲欧美一区二区三区国产| 26uuu在线亚洲综合色| 一级爰片在线观看| 多毛熟女@视频| 女性生殖器流出的白浆| 性色avwww在线观看| 中文字幕av成人在线电影| 中文字幕制服av| 久久99热这里只有精品18| 成人一区二区视频在线观看| 久久久久人妻精品一区果冻| 美女脱内裤让男人舔精品视频| 久久97久久精品| 国产精品一区二区性色av| 日韩强制内射视频| 99re6热这里在线精品视频| 我要看黄色一级片免费的| 三级国产精品欧美在线观看| 一级黄片播放器| 少妇人妻久久综合中文| 精品久久久噜噜| 日本爱情动作片www.在线观看| 日韩欧美一区视频在线观看 | 欧美xxxx性猛交bbbb| 日韩中字成人| 中文在线观看免费www的网站| 少妇的逼好多水| 99久久精品一区二区三区| 91精品国产国语对白视频| 国产探花极品一区二区| 在线观看免费高清a一片| 日韩人妻高清精品专区| 成年免费大片在线观看| 一级毛片 在线播放| 亚洲第一av免费看| 午夜免费鲁丝| 国产av一区二区精品久久 | 纵有疾风起免费观看全集完整版| 久久久久人妻精品一区果冻| 亚洲av成人精品一区久久| 日韩不卡一区二区三区视频在线| 干丝袜人妻中文字幕| 亚洲av国产av综合av卡| 国产视频内射| 22中文网久久字幕| 色视频www国产| 美女主播在线视频| 国产欧美日韩精品一区二区| 亚洲国产精品一区三区| 欧美三级亚洲精品| 亚洲成人一二三区av| www.色视频.com| 欧美日本视频| 欧美zozozo另类| 午夜福利高清视频| 日日啪夜夜爽| 一级a做视频免费观看| 波野结衣二区三区在线| 麻豆精品久久久久久蜜桃| 亚洲欧美成人综合另类久久久| 97在线人人人人妻| 看非洲黑人一级黄片| 秋霞伦理黄片| 免费大片18禁| 男女免费视频国产| 国产在线免费精品| 日韩制服骚丝袜av| av视频免费观看在线观看| 亚洲国产最新在线播放| 精品熟女少妇av免费看| 女的被弄到高潮叫床怎么办| 亚洲av成人精品一二三区| 熟妇人妻不卡中文字幕| 精品99又大又爽又粗少妇毛片| 91狼人影院| av又黄又爽大尺度在线免费看| 丝瓜视频免费看黄片| 日本vs欧美在线观看视频 | 久久综合国产亚洲精品| 成人亚洲精品一区在线观看 | 午夜免费男女啪啪视频观看| 国产免费一区二区三区四区乱码| 美女脱内裤让男人舔精品视频| 丰满少妇做爰视频| 欧美最新免费一区二区三区| 亚洲va在线va天堂va国产| 一级黄片播放器| 亚洲最大成人中文| 国产精品欧美亚洲77777| 丝袜喷水一区| 久久国产乱子免费精品| 国产深夜福利视频在线观看| 免费播放大片免费观看视频在线观看| 国产精品久久久久久精品古装| 国产av精品麻豆| 成年人午夜在线观看视频| 寂寞人妻少妇视频99o| 亚洲精品第二区| 国产乱人视频| 久久精品久久久久久久性| 黄片无遮挡物在线观看| 国产欧美日韩一区二区三区在线 |