• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    When null energy condition meets ADM mass

    2022-10-22 08:15:16RunQiuYangLiLiandRongGenCai
    Communications in Theoretical Physics 2022年9期

    Run-Qiu Yang,Li Li and Rong-Gen Cai

    1 Center for Joint Quantum Studies and Department of Physics,School of Science,Tianjin University,Yaguan Road 135,Jinnan District,Tianjin 300350,China

    2 CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China

    3 School of Fundamental Physics and Mathematical Sciences,Hangzhou Institute for Advanced Study,UCAS,Hangzhou 310024,China

    Abstract We give a conjecture on the lower bound of the ADM mass M by using the null energy condition.The conjecture includes a Penrose-like inequality 3M≥and the Penrose inequalitywithA the event horizon area and к the surface gravity.Both the conjecture in the static spherically symmetric case and the Penrose inequality for a dynamical spacetime with spherical symmetry are proved by imposing the null energy condition.We then generalize the conjecture to a general dynamical spacetime.Our results raise a new challenge for the famous unsettled question in general relativity: in what general case can the null energy condition replace other energy conditions to ensure the Penrose inequality?

    Keywords: Penrose inequality,black holes,ADM mass,energy conditions

    1.Motivation

    It is still an open and interesting question on the bound of mass in a given region of spacetime.The Penrose inequality provides a lower bound for the mass of spacetime in terms of the area of suitable surfaces that typically represent black holes.More precisely,Penrose’s motivation for his inequality is as follows.Suppose one begins with asymptotically flat initial data with the ADM mass M,and the apparent horizon σ with A[σ]the minimum area required to enclose σ.Evolving the system forward in time and supposing that the spacetime eventually settles down to a Kerr solution with its Bondi mass Mfand the area of the event horizon Af,one immediately finds 2Mf≥(in units of 16πG=c=1).Considering the null energy condition (NEC),the Bondi mass does not increase,while the area of the event/apparent horizon does not decrease,i.e.M≥MfandAf≥A[σ].Therefore,one obtains the ‘Penrose inequality’ 2M≥The Penrose inequality is important to gravitational collapse and the cosmic censorship conjecture.Nevertheless,finding the proof for this inequality is still a famous open problem in general relativity.In the special case that the spacetime is static,the inequality was proved by various methods assuming weak energy condition (WEC) [1–7](see [8]for a review).For the dynamical case,the only known proof was given for the spherically symmetric spacetime by considering the dominant energy condition (DEC) and using ‘ADM energy’instead of ADM mass[8,9].However,there are two obvious ‘gaps’: (1) only the NEC is involved in Penrose’s heuristic argument,but the current statement of the Penrose inequality requires WEC or even DEC,and(2)the spacetime is assumed to settle down to a stationary black hole in Penrose’s argument,but this assumption plays no role in current studies and proofs.Moreover,note that the ‘positive mass theorem’ is a corollary of Penrose inequality and [10–12]showed that the NEC can indeed insure nonnegative ADM mass.These raise an interesting question:if assuming that the spacetime will settle down to a stationary black hole finally,is it able to prove the Penrose inequality by using the NEC only? On the other hand,the surface gravity к and event horizon areaA are two important quantities of black holes.If taking both into account,can we obtain a new lower bound on the ADM mass?

    To answer these questions,we first consider the Kerr–Newman black hole with ADM mass M,angular momentum Ma,charge Q.We then have

    with rhthe location of the event horizon.We can obtain that

    and the saturation appears only if a=Q=0.Based on the above discussions,we propose a conjecture as follows.

    Conjecture 1.For a four-dimensional asymptotically flat,static or axisymmetric stationary black hole with ‘t-φ’reflection isometry,if(1)Einstein’s equation and the NEC are satisfied and (2) the cross-section of event horizon has S2topology,then there are two independent inequalities given as follows:

    and the Penrose inequality

    The equality is achieved only when the exterior of a black hole is Schwarzschild.Moreover,a regular stationary spacetime that is singularity free satisfiesM≥0 and M vanishes only for the Minkowski spacetime.

    Here we make some comments before going further.Firstly,the event horizon in Conjecture 1 is a Killing horizon for which the surface gravity к is well-defined.We note that the event horizon of a stationary black hole is not guaranteed to be a Killing horizon.According to Hawking and Ellis [13],when Einstein’s equation holds with matter satisfying suitable hyperbolic equations and the DEC,the event horizon of a stationary black hole is a Killing horizon.However,here we only use the NEC.Instead,Carter proved that for a static or axisymmetric stationary black hole with ‘t-φ’ reflection isometry,the event horizon is a Killing horizon and the surface gravity is a constant,regardless of Einstein’s equation and energy conditions [14].Secondly,the surface gravity к depends on the normalization of the Killing vector ξμ.This can be fixed by requiring ξμtμ|∞=-1,where tμis the tangent vector of the world-line of static observers at infinity.Thirdly,our inequality(3) and Penrose inequality(4)are two independent inequalities in general if we do not require other stronger energy conditions.In static case,if the strong energy condition is also imposed,one can use Komar integration to prove M≥кA/4π and find that the inequality(3)is a corollary of Penrose inequality.Since we here only impose NEC,it is possible that the strong energy condition is violated everywhere .In this situation one can find that M<кA/4π and the Penrose inequality becomes a corollary of inequality(3).Finally,our conjecture contains a ‘positive mass theorem’ as its corollary.Though we assume static or axisymmetric stationary symmetry,we only use NEC rather than DEC or WEC.If a spacetime satisfies the NEC while breaking the WEC,the scalar curvature of the maximal slice can be negative.Then the proofs proposed by Schoen and Yau[15,16]and various generalizations will lose their validity.The proofs based on spinor technique,originally proposed by Witten[17,18](see also the extension to black holes[19]),require the DEC to ensure the nonnegativity of energy integration,thus would lose their validity for a spacetime that satisfies the NEC only.Compared with the results of [10,11],which used the NEC to prove the nonnegativity of ADM mass,our paper offers a tighter lower bound for the ADM mass in terms of к andA.Moreover,if the WEC is broken,all proofs till now about the Penrose inequality will become invalid.

    2.Proof in static spherically symmetric case

    It is clear that the Kerr–Newman black hole satisfies our Conjecture 1.To further support our inequalities in Conjecture 1,we now give proof for the static spherically symmetric case for which the metric reads

    The asymptotic flatness yields

    with M the ADM mass and the constant α >0.For a black hole,we donate the location of its event horizon to be rhat which f(r) is vanishing,then the surface gravity к and the horizon areaA are given by

    For a regular case that is singularity free,both f and χ are smooth at r=0.The energy momentum tensorTμνhas a formTμν=diag [-ρ(r),pr(r),pT(r),pT(r)].Einstein’s equation gives the following independent equations

    We note that the NEC insuresχ′≤0.Therefore,we find from(6) that χ≥0.

    To prove the inequalities(3) and(4) for the spherically symmetric case,we introduce a new‘quasi-local mass’for an equal-r surface defined as

    Using equations (8)–(10),one can obtain that

    It is now manifest that the NEC insuresm′(r)≥0 outside rh.Evaluating m(r)at both the infinity and the event horizon,one finds

    so inequality(3) follows.If the spacetime is regular,i.e.horizonless and all curvature invariants are regular everywhere ,we have M=m(∞)≥m(0)=0.

    Next,we prove the Penrose inequality(4).Solving f(r)e-χ(r)/r2in terms of m(r),one obtains from(12) that

    Evaluating(14)at r→∞and noting that 3m(r)-r≤3M-r under the NEC,one has

    Monotonicity of e-χ(r)/2ensures

    which leads to

    I nequality(15) then implies

    One immediately finds 2M≥rh,and therefore the inequality(4) follows.

    To prove the rigidity for both inequalities(3)and(4),we note that they are saturated only if χ(r)=0 and m(r)=M.This leads to f(r)=1-2M/r,i.e.the Schwarzschild spacetime.Moreover,a regular stationary spacetime satisfies M≥0 and M vanishes only for the Minkowski spacetime.

    Note that the Penrose inequality of dynamical spacetime was proved in the spherically symmetric case by considering the DEC and the ADM energy in the literature [8,9].Interestingly,our proof for the spherically symmetric case implies the following corollary,

    Corollary1.Consider a dynamical spacetime that has spherical symmetry and settles down to a static black hole finally.For an initial data set containing an apparent horizonσ,the NEC and Einstein’s equation guarantee 2M≥where A[σ]is the minimum area required to enclose the apparent horizonσ.The proof is as follows.Based on proposition 9.2.1 of[13],if the initial data set contains an apparat horizon σ and the NEC is satisfied,there must be an event horizon H and the apparent horizon lies behind H.We denote the intersection of H and the initial data set as Γ0,so σ must be inside Γ0.Since A[σ]is the minimum area required to enclose the apparent horizon,one has A[σ]≤ A(Γ0).The NEC ensures that the area of the event horizon is nondecreasing,so we haveA(Γ0)≤A∞,where A∞is the event horizon area at the future timelike infinity.Moreover,the mass of the final black hole is given by the Bondi mass MB.Note that we have proved the Penrose inequality for a static black hole with spherical symmetry.Therefore,we have

    where we have used the fact that the Bondi mass is equal or smaller than the ADM mass.Corollary 1 shows that in a spherically symmetric case,the NEC is enough to ensure the Penrose inequality,the same as Penrose’s heuristic argument.Compared to previous proofs in the spherically symmetric case [8],we have a natural requirement that the system will finally settle down to a static black hole.Nevertheless,our result is stronger in the following two aspects: we use the ADM mass rather than the ADM energy,and we use the NEC rather than the DEC.We also stress that A[σ]is not defined by the area of the apparent horizon σ.As pointed out by[20],the apparent horizon area,in general,may not satisfy the Penrose inequality.

    3.Generalization to dynamical black holes

    To generalize Conjecture 1 to the dynamical case,we should first clarify two conceptions in a non-stationary black hole:the ‘horizon’ and the ‘surface gravity’.Two possible candidates for the horizon in the dynamical case are the ‘future outer trapping horizon’ (FOTH) introduced by Hayward [21]and the‘dynamical horizon’(DH)proposed by Ashtekar[22].In this paper,we will take the former.

    The definition of the ‘surface gravity’ in the dynamic spacetime is also a subtle issue.Once again,one has two potential choices,the‘trapped gravity’proposed by Hayward[21]and the ‘effective surface gravity’ by Ashtekar [22],respectively.However,both of them cannot reduce to the surface gravity even in the static spherically symmetric case,equation (7).We now propose a new candidate of surface gravity as follows.Near the null infinities{I-,I+} and spatial infinity i0,there is an asymptotically time-like Killing vector tμwhich stands for the 4-velocity of a static observer.Take lμand kμto be,respectively,the infalling and outgoing null vectors of a FOTH.We can extend them into the whole spacetime by requiring that: (1) they are tangent vectors of null geodesics,(2) lμis affinely parameterized and satisfies lμtμ=-1 at {I-,I+,i0},(3) kμis normalized by requiring kμlμ=-1 everywhere .Then,according to the null vector fields {lμ,kμ} and their expansions {θ(l),θ(k)},our ‘surface gravity’ is defined as

    The surface gravity defined in this way is always nonnegative and will reduce to equation (7) in the static spherically symmetric case.

    We now generalize Conjecture 1 to the dynamical case as follows.

    Conjecture 2.For the most outer FOTH which coincides with the event horizon at the future timelike infinity,if (1)Einstein’s equation and the NEC are satisfied,and (2) all marginal trapped surfaces of the FOTH have spherical topology,then the areaA of a marginal trapped surfaceS,the surface gravity к,and the ADM mass of spacetime will satisfy

    and

    If it is saturated on one marginal surface of FOTH,then the FOTH is the event horizon,and the exterior of the event horizon is Schwarzschild.

    It has been proved in [21]that the area of marginal surface of FOTH is nondecreasing.Therefore,one can find that inequality(19) is a corollary of(4) in Conjecture 1.

    We now give a nontrivial check for the inequality(18)by considering the generalized Vaidya solution [23]:

    Note that the ADM mass M is defined at the spatial infinity,i.e.M=M(∞,∞).The marginal trapped surfaces are given byv=const.andr=const.,thanks to the spherical symmetry.Then the infalling and outgoing null rays are,respectively,lμ=(0,-1,0,0) and kμ=(1,f/2,0,0) with their expansions θ(k)=f/r and θ(l)=-2/r<0.Therefore,the FOTH is given by f(v,r)=0 for which we denote its solution to be r=rh(v).We then have

    from which

    The corresponding energy–momentum tensor reads [24]

    with

    This in general (u ≠0) describes the Type II fluids [13].The NEC demands

    as well as the following constraint onM(v,r)

    so the inequality(18) follows.To saturate the inequality,we needM(v,r) to be a constant,so the exterior is nothing but Schwarzschild.This provides nontrivial evidence to support our Conjecture 2.Note that,in the present case,the WEC requires {u≥0,ρ≥0,P≥0} and the DEC gives {u≥0,ρ≥P≥0},both are stronger than the NEC.

    4.Summary

    To summarize,we have proposed a Penrose-like inequality involving ADM mass,surface gravity,and horizon area.For static or axisymmetric stationary black holes,our Conjecture 1 suggests that Einstein’s equation and the NEC ensure the Penrose-like inequality as well as the Penrose inequality.We have given a proof for the static spherically symmetric case and offered evidence for the dynamical case.In addition,the Penrose inequality for spherically symmetric(dynamic) spacetime has been proved by using the NEC rather than the DEC.Our conjecture applies in some situations not covered by previous inequalities.

    Our results not only provide a new conjecture to bound the ADM mass by horizon area and surface gravity for the first time,but also raise a new challenge for the famous unsettled question in general relativity: can the NEC ensure the Penrose inequality if a spacetime settles down to a stationary black hole finally?

    Acknowledgments

    This work was partially supported by the National Natural Science Foundation of China Grants No.12122513,No.12075298,No.11821505,No.11991052,No.12047503,and No.12005155,and by the Key Research Program of the Chinese Academy of Sciences(CAS)Grant No.XDPB15,the CAS Project for Young Scientists in Basic Research YSBR-006 and the Key Research Program of Frontier Sciences of CAS.

    熟妇人妻久久中文字幕3abv| 在线天堂中文资源库| а√天堂www在线а√下载| 真人一进一出gif抽搐免费| svipshipincom国产片| 99国产精品99久久久久| 亚洲全国av大片| 男女床上黄色一级片免费看| 国产色视频综合| 婷婷丁香在线五月| 欧美不卡视频在线免费观看 | 亚洲成人免费电影在线观看| 日韩欧美三级三区| 99riav亚洲国产免费| 午夜久久久在线观看| 亚洲中文日韩欧美视频| 97碰自拍视频| 国产精品爽爽va在线观看网站 | 亚洲成国产人片在线观看| 国产成人精品久久二区二区免费| 99国产极品粉嫩在线观看| 国产三级黄色录像| 老司机午夜十八禁免费视频| 好看av亚洲va欧美ⅴa在| 欧美+亚洲+日韩+国产| 免费高清视频大片| 日本一区二区免费在线视频| 精品国内亚洲2022精品成人| 国产精品影院久久| 少妇裸体淫交视频免费看高清 | 日本免费a在线| x7x7x7水蜜桃| 中文字幕精品免费在线观看视频| 在线视频色国产色| 黄频高清免费视频| 日韩欧美在线二视频| 岛国在线观看网站| 国产蜜桃级精品一区二区三区| 国产成人精品久久二区二区91| 欧美黄色淫秽网站| 欧美激情久久久久久爽电影 | 亚洲在线自拍视频| 日韩免费av在线播放| 国产欧美日韩精品亚洲av| 男人的好看免费观看在线视频 | 一卡2卡三卡四卡精品乱码亚洲| 亚洲va日本ⅴa欧美va伊人久久| 人人妻人人澡欧美一区二区 | 一二三四在线观看免费中文在| 男女下面进入的视频免费午夜 | 久久九九热精品免费| 正在播放国产对白刺激| 老汉色∧v一级毛片| www.999成人在线观看| 国产亚洲av嫩草精品影院| 国产精品一区二区在线不卡| 悠悠久久av| 国产欧美日韩精品亚洲av| 欧美色视频一区免费| 亚洲欧美日韩高清在线视频| 神马国产精品三级电影在线观看 | 亚洲熟妇中文字幕五十中出| 欧美日韩一级在线毛片| 一级毛片高清免费大全| av天堂在线播放| 天天添夜夜摸| 欧美色欧美亚洲另类二区 | 久久亚洲真实| 成人18禁高潮啪啪吃奶动态图| 国产视频一区二区在线看| 免费av毛片视频| 久久人妻熟女aⅴ| 精品欧美国产一区二区三| 亚洲自偷自拍图片 自拍| 一进一出抽搐gif免费好疼| 久久久水蜜桃国产精品网| 男人操女人黄网站| 99久久99久久久精品蜜桃| 久久久久亚洲av毛片大全| or卡值多少钱| 自拍欧美九色日韩亚洲蝌蚪91| av电影中文网址| 女人被躁到高潮嗷嗷叫费观| 成人av一区二区三区在线看| 在线播放国产精品三级| 夜夜躁狠狠躁天天躁| 色老头精品视频在线观看| 好男人电影高清在线观看| 国产蜜桃级精品一区二区三区| 又紧又爽又黄一区二区| 久热爱精品视频在线9| 操美女的视频在线观看| 这个男人来自地球电影免费观看| 久久久水蜜桃国产精品网| 99精品欧美一区二区三区四区| 亚洲精品在线观看二区| www日本在线高清视频| 我的亚洲天堂| 正在播放国产对白刺激| 午夜久久久在线观看| 国产国语露脸激情在线看| 老鸭窝网址在线观看| 亚洲成人国产一区在线观看| ponron亚洲| 国产欧美日韩精品亚洲av| 90打野战视频偷拍视频| 少妇被粗大的猛进出69影院| 国产av在哪里看| 悠悠久久av| 麻豆成人av在线观看| 麻豆一二三区av精品| 欧美中文综合在线视频| 桃色一区二区三区在线观看| 99在线视频只有这里精品首页| 久久精品国产亚洲av高清一级| 久久久国产精品麻豆| 99re在线观看精品视频| 少妇粗大呻吟视频| www日本在线高清视频| 人妻丰满熟妇av一区二区三区| 久久久国产成人精品二区| 好男人在线观看高清免费视频 | 国产亚洲精品第一综合不卡| 欧美 亚洲 国产 日韩一| 欧美精品啪啪一区二区三区| 免费无遮挡裸体视频| 久久精品亚洲熟妇少妇任你| 黑人巨大精品欧美一区二区mp4| 国语自产精品视频在线第100页| 成人特级黄色片久久久久久久| 老司机靠b影院| 亚洲成人久久性| 亚洲全国av大片| 麻豆久久精品国产亚洲av| 精品少妇一区二区三区视频日本电影| 变态另类成人亚洲欧美熟女 | 视频区欧美日本亚洲| 88av欧美| 国产精品,欧美在线| 亚洲av日韩精品久久久久久密| 午夜福利免费观看在线| 亚洲熟妇熟女久久| 亚洲熟妇熟女久久| 免费女性裸体啪啪无遮挡网站| 亚洲精品国产精品久久久不卡| or卡值多少钱| 久久精品影院6| 亚洲精品粉嫩美女一区| 国产亚洲欧美在线一区二区| 嫩草影院精品99| 人成视频在线观看免费观看| 亚洲精华国产精华精| 桃红色精品国产亚洲av| 久久午夜亚洲精品久久| 精品无人区乱码1区二区| 十分钟在线观看高清视频www| 亚洲avbb在线观看| 亚洲国产中文字幕在线视频| www国产在线视频色| 老司机午夜福利在线观看视频| 老司机福利观看| 国产片内射在线| 亚洲在线自拍视频| 亚洲自偷自拍图片 自拍| 午夜两性在线视频| 久久久久亚洲av毛片大全| 欧美av亚洲av综合av国产av| 午夜福利一区二区在线看| 99国产精品免费福利视频| 免费高清在线观看日韩| 露出奶头的视频| 日韩三级视频一区二区三区| 一二三四社区在线视频社区8| 长腿黑丝高跟| 91av网站免费观看| 午夜福利在线观看吧| 久久香蕉激情| www.熟女人妻精品国产| 国产精品永久免费网站| 久久人人爽av亚洲精品天堂| 9191精品国产免费久久| 淫妇啪啪啪对白视频| 久久 成人 亚洲| 曰老女人黄片| 99久久久亚洲精品蜜臀av| 午夜福利18| 美女高潮到喷水免费观看| 久久久久久大精品| 一夜夜www| 国产成人精品无人区| 午夜福利在线观看吧| 国产欧美日韩一区二区精品| 成人手机av| 人人妻人人澡人人看| 欧美乱色亚洲激情| 9191精品国产免费久久| 亚洲专区国产一区二区| 欧美一区二区精品小视频在线| avwww免费| 欧美成人性av电影在线观看| av视频在线观看入口| 给我免费播放毛片高清在线观看| 成年女人毛片免费观看观看9| 欧美久久黑人一区二区| 国产成人精品久久二区二区免费| 黄色成人免费大全| 亚洲av成人不卡在线观看播放网| 伊人久久大香线蕉亚洲五| 美女高潮喷水抽搐中文字幕| 欧美日韩亚洲综合一区二区三区_| 久久久久久久午夜电影| 久久中文字幕人妻熟女| 国产成人影院久久av| 99香蕉大伊视频| 一卡2卡三卡四卡精品乱码亚洲| 99久久99久久久精品蜜桃| 91九色精品人成在线观看| 亚洲一区二区三区不卡视频| 亚洲国产精品合色在线| 在线观看66精品国产| 久久久久久免费高清国产稀缺| 国产高清视频在线播放一区| 天天躁狠狠躁夜夜躁狠狠躁| 波多野结衣av一区二区av| 男女午夜视频在线观看| 国产精品香港三级国产av潘金莲| 免费av毛片视频| 男女床上黄色一级片免费看| 色综合站精品国产| 久久久精品欧美日韩精品| 69av精品久久久久久| a在线观看视频网站| 国产精品美女特级片免费视频播放器 | 18禁黄网站禁片午夜丰满| 婷婷丁香在线五月| 国产精品野战在线观看| 一级a爱视频在线免费观看| 精品人妻1区二区| 国产黄a三级三级三级人| 在线观看日韩欧美| 淫妇啪啪啪对白视频| 一本大道久久a久久精品| 激情视频va一区二区三区| 人人妻人人澡欧美一区二区 | 性欧美人与动物交配| 欧美中文综合在线视频| 黑人欧美特级aaaaaa片| 色播在线永久视频| 午夜福利影视在线免费观看| 亚洲精品国产区一区二| 国产蜜桃级精品一区二区三区| 久久中文字幕一级| 国产成人av教育| 淫妇啪啪啪对白视频| 国产精品乱码一区二三区的特点 | 美女高潮到喷水免费观看| 一个人观看的视频www高清免费观看 | 久久影院123| 免费一级毛片在线播放高清视频 | 久久香蕉国产精品| 1024视频免费在线观看| 国内精品久久久久久久电影| 久久人人爽av亚洲精品天堂| 97人妻天天添夜夜摸| 亚洲自拍偷在线| 天天添夜夜摸| 香蕉丝袜av| 国产亚洲av嫩草精品影院| 国产单亲对白刺激| 中文字幕久久专区| 超碰成人久久| 嫩草影视91久久| 亚洲成人国产一区在线观看| 国产av精品麻豆| 桃红色精品国产亚洲av| 成人三级做爰电影| 中文字幕av电影在线播放| 老司机在亚洲福利影院| 大型黄色视频在线免费观看| 久久天堂一区二区三区四区| 亚洲九九香蕉| 日韩av在线大香蕉| 亚洲人成电影免费在线| 欧美一级毛片孕妇| 看免费av毛片| 动漫黄色视频在线观看| 搡老岳熟女国产| 视频区欧美日本亚洲| 69精品国产乱码久久久| 国产亚洲欧美精品永久| 亚洲av片天天在线观看| 亚洲国产欧美日韩在线播放| 久久婷婷人人爽人人干人人爱 | xxx96com| 亚洲欧美日韩另类电影网站| 在线观看免费视频网站a站| 久久人妻熟女aⅴ| 久久这里只有精品19| 制服人妻中文乱码| 一级黄色大片毛片| 久久狼人影院| 一个人观看的视频www高清免费观看 | 亚洲黑人精品在线| 后天国语完整版免费观看| 久久人妻av系列| 色婷婷久久久亚洲欧美| 日本免费一区二区三区高清不卡 | 久久香蕉激情| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品一卡2卡三卡4卡5卡| 搡老岳熟女国产| 国产亚洲精品久久久久5区| 人妻久久中文字幕网| 搞女人的毛片| av在线播放免费不卡| 两性夫妻黄色片| 国产成+人综合+亚洲专区| 亚洲,欧美精品.| 中文字幕人妻熟女乱码| 中文字幕久久专区| 亚洲精品在线美女| 日韩精品免费视频一区二区三区| 亚洲无线在线观看| 欧美日韩一级在线毛片| 淫妇啪啪啪对白视频| 女同久久另类99精品国产91| 国产真人三级小视频在线观看| 少妇裸体淫交视频免费看高清 | 久久人妻av系列| 在线观看免费视频日本深夜| 久热这里只有精品99| 女性生殖器流出的白浆| 欧美色视频一区免费| svipshipincom国产片| 变态另类成人亚洲欧美熟女 | 国产成人啪精品午夜网站| 国产精品99久久99久久久不卡| 欧美午夜高清在线| 欧美人与性动交α欧美精品济南到| 久久人人爽av亚洲精品天堂| 夜夜看夜夜爽夜夜摸| 男女做爰动态图高潮gif福利片 | 亚洲成av人片免费观看| 人妻久久中文字幕网| 搞女人的毛片| 精品人妻在线不人妻| 午夜福利视频1000在线观看 | 亚洲精品国产区一区二| 国产在线观看jvid| 高清黄色对白视频在线免费看| 精品日产1卡2卡| 一级a爱视频在线免费观看| 两个人免费观看高清视频| 久久久国产精品麻豆| 禁无遮挡网站| 亚洲欧洲精品一区二区精品久久久| 国产精品乱码一区二三区的特点 | 亚洲成a人片在线一区二区| 超碰成人久久| 两个人免费观看高清视频| a在线观看视频网站| 亚洲天堂国产精品一区在线| 日韩国内少妇激情av| 亚洲国产毛片av蜜桃av| 亚洲一码二码三码区别大吗| √禁漫天堂资源中文www| 麻豆成人av在线观看| 亚洲熟妇熟女久久| 波多野结衣一区麻豆| 日韩三级视频一区二区三区| 午夜福利在线观看吧| 国产99久久九九免费精品| 女人高潮潮喷娇喘18禁视频| 免费看美女性在线毛片视频| 国产熟女午夜一区二区三区| 波多野结衣巨乳人妻| 女人被躁到高潮嗷嗷叫费观| 美女高潮到喷水免费观看| 国产熟女午夜一区二区三区| 免费久久久久久久精品成人欧美视频| 999久久久精品免费观看国产| 欧美激情极品国产一区二区三区| 国产亚洲欧美98| 天天一区二区日本电影三级 | 午夜免费激情av| 免费久久久久久久精品成人欧美视频| 久久国产精品人妻蜜桃| 窝窝影院91人妻| 大型黄色视频在线免费观看| 美女高潮到喷水免费观看| 如日韩欧美国产精品一区二区三区| 级片在线观看| 精品电影一区二区在线| 精品国产乱码久久久久久男人| 在线av久久热| 亚洲欧美精品综合一区二区三区| 国产午夜精品久久久久久| 可以在线观看的亚洲视频| 欧美乱码精品一区二区三区| 久久国产精品男人的天堂亚洲| 母亲3免费完整高清在线观看| 正在播放国产对白刺激| 日本黄色视频三级网站网址| 琪琪午夜伦伦电影理论片6080| 日本vs欧美在线观看视频| 老熟妇乱子伦视频在线观看| 淫秽高清视频在线观看| 久久伊人香网站| 欧美av亚洲av综合av国产av| 国产欧美日韩一区二区精品| 国产精品亚洲一级av第二区| 美女大奶头视频| 久久久久久国产a免费观看| 欧美中文综合在线视频| 在线观看www视频免费| or卡值多少钱| 日本三级黄在线观看| 亚洲中文字幕一区二区三区有码在线看 | 91九色精品人成在线观看| 亚洲专区中文字幕在线| 国产精品九九99| 最新在线观看一区二区三区| 精品少妇一区二区三区视频日本电影| 亚洲中文av在线| 最新在线观看一区二区三区| av免费在线观看网站| 在线天堂中文资源库| 人妻久久中文字幕网| 天天一区二区日本电影三级 | 极品人妻少妇av视频| 亚洲午夜精品一区,二区,三区| 女生性感内裤真人,穿戴方法视频| 性欧美人与动物交配| 精品不卡国产一区二区三区| 欧美日韩福利视频一区二区| 操出白浆在线播放| 一本综合久久免费| 国产私拍福利视频在线观看| 国产麻豆69| 一级黄色大片毛片| 90打野战视频偷拍视频| 中文字幕最新亚洲高清| 亚洲自拍偷在线| 亚洲国产精品成人综合色| 窝窝影院91人妻| 国产精品久久久av美女十八| 在线观看午夜福利视频| 国产精品野战在线观看| 午夜a级毛片| 精品欧美国产一区二区三| 成人永久免费在线观看视频| 他把我摸到了高潮在线观看| 亚洲人成电影免费在线| 免费无遮挡裸体视频| 长腿黑丝高跟| 成人三级做爰电影| 一区二区三区高清视频在线| 亚洲黑人精品在线| 精品久久久久久久人妻蜜臀av | 高潮久久久久久久久久久不卡| 日本 av在线| 可以在线观看的亚洲视频| 女性被躁到高潮视频| 欧美日本中文国产一区发布| 亚洲欧美精品综合久久99| 女人被躁到高潮嗷嗷叫费观| 欧美在线一区亚洲| 真人做人爱边吃奶动态| 久久精品国产亚洲av香蕉五月| 麻豆av在线久日| 黑人欧美特级aaaaaa片| 国产又色又爽无遮挡免费看| 国产成人精品无人区| √禁漫天堂资源中文www| 纯流量卡能插随身wifi吗| 久久精品91无色码中文字幕| 熟妇人妻久久中文字幕3abv| 亚洲熟妇熟女久久| 欧美国产日韩亚洲一区| 18禁观看日本| 一区二区三区精品91| 99国产精品一区二区三区| 99精品欧美一区二区三区四区| 国产成人欧美在线观看| 亚洲精品国产区一区二| 午夜亚洲福利在线播放| 午夜免费鲁丝| 国产精品免费一区二区三区在线| 狂野欧美激情性xxxx| 国产一级毛片七仙女欲春2 | 国产成人系列免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美性长视频在线观看| 99在线人妻在线中文字幕| 欧美日韩亚洲国产一区二区在线观看| 精品电影一区二区在线| 丝袜人妻中文字幕| 超碰成人久久| 91成年电影在线观看| 怎么达到女性高潮| 丰满的人妻完整版| 99久久综合精品五月天人人| 久久久久久人人人人人| www.www免费av| 老司机在亚洲福利影院| 一夜夜www| 真人做人爱边吃奶动态| 十八禁网站免费在线| 亚洲国产中文字幕在线视频| 亚洲美女黄片视频| 18禁黄网站禁片午夜丰满| 丝袜在线中文字幕| 日韩有码中文字幕| 亚洲全国av大片| 别揉我奶头~嗯~啊~动态视频| 国产午夜福利久久久久久| 欧美成狂野欧美在线观看| 亚洲三区欧美一区| 18美女黄网站色大片免费观看| 国产精品亚洲一级av第二区| 日韩大码丰满熟妇| 国产一级毛片七仙女欲春2 | 一级,二级,三级黄色视频| 又黄又粗又硬又大视频| 大陆偷拍与自拍| 精品高清国产在线一区| 久久香蕉国产精品| 精品一区二区三区av网在线观看| 国产又色又爽无遮挡免费看| 性欧美人与动物交配| 最好的美女福利视频网| 人人妻人人澡人人看| 久久久久亚洲av毛片大全| 免费不卡黄色视频| 神马国产精品三级电影在线观看 | 国产精品 国内视频| 好看av亚洲va欧美ⅴa在| av有码第一页| 国内精品久久久久精免费| 国产精品,欧美在线| 午夜成年电影在线免费观看| 在线观看一区二区三区| 久久精品国产99精品国产亚洲性色 | 成人永久免费在线观看视频| 国产精品爽爽va在线观看网站 | 亚洲第一电影网av| 国产精品久久久av美女十八| 久久性视频一级片| 亚洲精品中文字幕一二三四区| 亚洲天堂国产精品一区在线| 久热这里只有精品99| 国产麻豆成人av免费视频| 欧美一区二区精品小视频在线| 制服诱惑二区| 亚洲成人久久性| 一级作爱视频免费观看| 精品国产超薄肉色丝袜足j| 桃红色精品国产亚洲av| 又紧又爽又黄一区二区| 午夜亚洲福利在线播放| 亚洲中文日韩欧美视频| 久久久水蜜桃国产精品网| 国产精品一区二区在线不卡| 日本 av在线| 国产亚洲欧美98| av中文乱码字幕在线| 午夜精品在线福利| 中文亚洲av片在线观看爽| 国产成人影院久久av| 欧美成人午夜精品| 最近最新免费中文字幕在线| 国语自产精品视频在线第100页| 99国产精品一区二区蜜桃av| 久久精品亚洲熟妇少妇任你| 黄色视频,在线免费观看| 久久国产亚洲av麻豆专区| 国产91精品成人一区二区三区| 欧美国产日韩亚洲一区| 丰满的人妻完整版| 高清在线国产一区| av视频免费观看在线观看| 熟女少妇亚洲综合色aaa.| 亚洲成人精品中文字幕电影| 亚洲免费av在线视频| 亚洲美女黄片视频| 女人被狂操c到高潮| 亚洲自拍偷在线| www国产在线视频色| 国产精品久久久av美女十八| 成年女人毛片免费观看观看9| 村上凉子中文字幕在线| 夜夜夜夜夜久久久久| 亚洲国产毛片av蜜桃av| 一卡2卡三卡四卡精品乱码亚洲| 一级a爱片免费观看的视频| 国产麻豆69| 亚洲欧美日韩无卡精品| 国产激情久久老熟女| 国产高清激情床上av| 亚洲天堂国产精品一区在线| 欧美老熟妇乱子伦牲交| 50天的宝宝边吃奶边哭怎么回事| 一二三四社区在线视频社区8| 久久久久久久久免费视频了| 亚洲熟妇熟女久久| 色综合婷婷激情| 久久人妻福利社区极品人妻图片| 国产精品国产高清国产av| 午夜亚洲福利在线播放| 99国产精品一区二区三区| 亚洲五月天丁香| 日韩中文字幕欧美一区二区| 亚洲人成电影观看| 黑人巨大精品欧美一区二区mp4| 久久天躁狠狠躁夜夜2o2o|