• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The effective hydrodynamic radius in the Stokes–Einstein relation is not a constant

    2022-10-22 08:15:24GanRen任淦
    Communications in Theoretical Physics 2022年9期

    Gan Ren (任淦)

    School of Science,Civil Aviation Flight University of China,Guanghan 618307,China

    Abstract Variants based on the assumption of effective hydrodynamic radius being a constant are usually adopted to test the Stokes–Einstein(SE)relation.The rationality of the assumption is examined by performing molecular dynamics simulations with the truncated Lennard-Jones-like (TLJ)model,Kob–Andersen model and ortho-terphenyl (OTP) model.The results indicate the assumption is generally not established except for special case.The effective hydrodynamic radius is observed to increase with decreasing temperature for TLJ model but is decreased for Kob–Andersen and OTP model;and which is almost a constant for TLJ particle with enough rigidity.The variant of SE relationD~T/ηis invalid for the three models except for the TLJ particle with enough rigidity.We propose similar inconsistency may be also existed in other liquids and the assumption should be critically evaluated when adopted to test the SE relation.

    Keywords: Stokes–Einstein relation,effective hydrodynamic radius,Stokes’ formula

    1.Introduction

    The Stokes–Einstein(SE)relation[1]D=kBT/Cη rcombines the Einstein relationD=kBT/αand Stokes’ formulaα=Cη r,which correlates the diffusion coefficient D and the frictional coefficientαor the viscosityη,where kBis the Boltzmann constant,T is the temperature,ris the effective hydrodynamic radius and is equal to the radius for a hard sphere particle,C is a constant depending on the boundary condition,and which is 6π for no-slip boundary condition and 4π for the slip [2].

    The SE relation has been successfully applied to many situations,such as the protein diffusion [3]and the oxygen transport [4]in solutions.However,it is proposed to be invalid for liquid undergoes supercooling [5–7].Instead of the original formulaD=kBT/Cη r,the three variants,D~T/η[5,8–11],D~τ-1[7,12–17],andD~T/τ[6,18–20],are usually adopted to test the SE relation,where τ is the structural relaxationtime.The variantD~T/ηis basedon the assumptionthatris a constant.Both the variantD~τ-1andD~T/τare based onD~T/η.TheD~τ-1is based on a further assumption that τ has a similar temperature dependence asη/T.TheD~T/τdepends on another approximate relationη=G∞τ,where G∞is the instantaneous shear modulus and is presumed to be a constant.Therefore the three variants are all based on the assumption thatris constant under different conditions.Its rationality is important to the conclusion drawn on the validity or not of the SE relation.

    However,there exists some evidences show thatris varied with conditions.A classical case is the deviations from SE relation for alkali ions in aqueous solutions[21,22].It is shown that the dielectric polarization leadsrto deviate from the crystallographic radius.Theris almost proportional to the volume fraction in a diluted organic aqueous solution[23].The gyration radius often adopted to estimaterin aqueous macromolecule solutions is also dependent on conditions[24].Another example is the smaller and lighter ion has a smaller D than the larger and heavier ion in ionic systems at a certain temperature,such as in NaCl aqueous solution [25],[EMI+][NO3-][26]and[EMI+][BF4-][27]ionic liquids at room temperature.The larger and heavier ion at a lower temperature may even have a greater D than the smaller and lighter ion at a higher temperature.The phenomena is different from the estimation according to the SE relation and the gas kinetic theory [28].If the SE relation is valid,rshould be changed with conditions,and otherwise the SE relation is breakdown.

    The SE relation is a result of the combination of Einstein relation and Stokes’s law.Einstein relation as a special case of the fluctuation-dissipation theorem and which is established in equilibrium and near equilibrium state.The supercooled liquids are still in equilibrium and the Einstein relation should be valid[29].Moreover,the viscosity increases with decreasing temperature and the Reynolds number is decreased,so the Stokes’s law applicable for liquids at the normal temperature should be also valid for supercooled liquids.In addition,the Stokes’s law is derived for hard sphere particle in fluids [2],there is no reasons thatris always or directly equal to the radius of soft sphere under different conditions.

    Based on the above facts,we have enough reasons to suspect the assumption especially when conditions have large changes,such as liquid undergoes supercooling.Therefore it is necessary to examine the rationality of the assumption.Becauseris directly equal to the radius of hard sphere[2]and the variantD~T/ηis observed to be breakdown in the two classical supercooled liquid models,Kob–Andersen model and ortho-terphenyl (OTP) [6],in this work,we performed molecular dynamics (MD) simulations with the truncated Lennard-Jones-like (TLJ) model with different rigidity,OTP and Kob–Andersen model to test the rationality of the assumption and to examine its influence on the validity of SE relation.

    2.Simulation details and analysis methods

    2.1.Simulation details

    The TLJ model potential [30]is given by

    We chooseσ=0.34 nm,ε/kB=120 K,mass of molecule ism=39.95 g mol-1.The positive parameter n determines the degree of softness of the pair potential,and the limitn→∞corresponds to the hard sphere system.Asr=0.5σfor hard sphere,we have chosen eight ns within 1.0–6.0 to explore the variations ofrwith temperature and rigidity.The system contains 8192 particles in a cubic box with size 6.802 nm.

    We adopt Lewis–Wahnstrom model of OTP [31],each phenyl ring is represented by a Lennard-Jones site(ε=5.276 kJ mol-1,σ=0.483 nm),and the three sites form a rigid isosceles triangle with an angle of 75° and the bond length is 0.483 nm.Each site has a massm=78 g mol-1.The system contains 3072 molecules with a constant density 1.0746 g cm-3.

    The Kob–Andersen system [32]contains a binary (80:20)mixture of 8000 Lennard-Jones particles consisting of two species of particles,A and B,in a cubic box with size 6.392 nm.The interaction between two particles of typeα,β∈{A,B}is given by

    All simulations were performed in NVT ensemble with the GROMACS package[33,34].The simulated temperature range is within 7–138 K with 12 temperatures for TLJ model,260–400 K with 13 temperatures for OTP and 66–500 K with 24 temperatures for Kob–Andersen model.The variant of SE relation is observed to be invalid in the chosen simulated temperature range for OTP and Kob–Andersen model [6].The system temperature was kept a constant by the Nosé–Hoover thermostat [35,36].The periodic boundary conditions were applied to all three dimensions.The interactions were calculated directly with the cutoff of 0.35 nm,2.0 nm and 0.85 nm for TLJ,OTP and Kob–Andersen model,respectively.ax=A· cos(qz)with the maximum A is applied in the X

    2.2.Analysis methods

    The method proposed by Hess [37]is adopted to calculateηfor its reliability and fast convergence.An external force direction,whereq=2π/lwith l the box size.The shear viscosity is described by

    where V is the maximum of the velocity in the X direction and ρ is the density.

    Theαis determined by introducing a small forcefeto a part of particles in the linear response regime.The frictional force on an ionfr=αvis equal tofeafter reaching the nonequilibrium steady state.The frictional coefficient is thus determined by

    In this work,64 TLJ particles,160 OTP molecules and 400 B particles are separately chosen for each model to keep enough statistical accuracy and avoid too much disturbance on the system.After getting theηandα,theris calculated by

    where we chooseC=4πin this work corresponding to the slip boundary conditions,for which the calculatedris equal to the radius of TLJ particle for low temperature or large n.

    The diffusion coefficient is calculated via its asymptotic relation with the mean square displacement by

    where Δr(t) is particle position displacement and〈〉denotes ensemble average.

    3.Results and discussion

    To examine the assumption and its possible influence on the SE relation,the viscosityη,frictional coefficientαand diffusion constant D for TLJ model at different temperature T are calculated and plotted in figure 1.If theris a constant,theηandαshould have the same changes with T.However,theηandαshow different variation with increasing T.Theαis increased with increasing T and n.Theηis also increased with increasing T for each n,but it is decreased with increasing n when n is within 1.0–2.0 at a certain temperature.The D is increased with increasing T for all n,and which is almost increased with increasing n at a certain temperature except for n = 6.

    Figure 1.Theη, α and D for TLJ model with different n as a function of T: (a)η versus T;(b)α versus T;(c) D versus T.

    Figure 2.(a)Ther as a function of T for TLJ model with different n;the black dotted line is the reference line r = 0.17 nm.Verification of the validities of the SE relationD~T/αand its variantD~T/ηfor the TLJ model:(b)D~T/αand(c)D~T/η.The calculated data are represented by symbols and the dotted line is y=x.

    Thercalculated by equation(5)is plotted in figure 2(a).It is not a constant but is increased as T decreases when n is within 1.0–2.0.Meanwhile,it is also increased with increasing n at a certain temperature.Theris approaching 0.17 nm with decreasing T as well as the increasing of n,and is around 0.17 nm for n = 3.0 and 6.0 at all temperatures.The results indicate theris varied with conditions except for the large rigidity,and the assumption is not valid for the TLJ model.As point out in the Stokes’ formula [2],theris equal to the radius of hard sphere.The minimum of T in our simulation is 7 K and the scale of the interaction isε/kB=120 K.The particle has no enough energy to penetrate the surrounding particles when n is large or T is small,and which looks like a hard sphere.On the contrary,it looks like a soft sphere with a smallerrespecially at a higher T and smaller n.

    The SE relationD~T/αand its variantD~T/ηare tested with the data shown in figure 1 and the related results are plotted in figures 2(b)and(c).The data are rescaled by the value at T = 7 K.The data forD~T/αwith different n are almost all fallen onto the same reference liney=x,which indicate that the SE relation is definitely established for all n.However,the variantD~T/ηdeviates fromy=xfor all ns except for n = 3.0 and 6.0.The deviations are decreasing with increasing n as shown by figure 2(c),which is consistent with thershown in figure 2(c).The results indicateD~T/ηis only valid when thercan be considered as a constant and otherwise is not equivalent to the SE relationD~T/α.

    Theη,αand D for OTP and Kob–Andersen model are plotted in figure 3.Bothηandαare increased with decreasing T and show awfully different changes compared with the TLJ model.The D is also increased with increasing T similar as the TLJ model.To examine the assumption,we rescaled therby the value r = 0.402 nm at T = 400 K for the OTP and r=0.133 nm at T = 500 K for Kob–Andersen model,respectively.As the figure 4(a)shown,the rescaled effective hydrodynamic radiusrsis not a constant for both OTP and Kob–Andersen model,and both are almost decreased with decreasing temperature.Similar results as shown byr~T/Dη or D~(η/T)-ξwithξ<1 are also observed in other supercooled liquids,including supercooled water [12],supercooled binary Lennard-Jones liquids[11,38],water/methanol solutions [10],and tris-Naphthylbenzene [39].However,the changes ofrshow opposite trend compared with the TLJ model.

    As discussed above,therof the TLJ model can be explained by the rigidity of the particle under different conditions.However,particles are interacting through Lennard-Jones potential in both OTP and Kob–Andersen model.Both repulsive and attractive interactions are present at the same time;and the negative attractive interaction usually plays a more important role.To give a unified picture,the trend ofrchanging with temperature can be understood as follows.A molecule is usually not freely moving in liquid but partially drags the effective shells composed of surrounding molecules to move together.The first coordination shell usually plays a more important role [25,40]and forms a composite particle along with the central molecule.The interaction between the central molecule and its first solvation shell is different under different conditions,which can be described by the coordination number n and a factor p.A larger p corresponds to a larger probability for molecules in the first shell to move together with the central molecule.Therefore the average number of molecules in the composite particle is 1+np,where 1 denotes the central molecule.By assuming both free molecule and the composite particle are spheres and adopting a mean field approach,the effective hydrodynamic radius of the composite particle is roughly [1+np]1/3r0,wherer0is the effective hydrodynamic radius of a free molecule.Because the frictional force applied to the composite particle~Cη v[1+np]1/3r0should be equal to the sum of the frictional force applied to each molecule in the composited particle~Cη v[1+np]r,where v is the mean velocity of the composite particle.Therefore the average effective hydrodynamic radiusrof a molecule can be described byThe p can be estimated byp=if we roughly separate the molecules into two parts,in the shell and out of the shell,andΔEis the energy difference of molecule in the shell and out of the shell.Then theris

    Figure 3.Theη,α and D as a function of T for OTP and Kob–Andersen model:(a)η versus T;(b)α versus T;(c)D versus T.The data for OTP is colored in black and the red is for Kob–Andersen model.

    Figure 4.(a) The rescaled effective hydrodynamic radiusrs as a function of T for OTP and Kob–Andersen model.(b)Verification of the validities of the SE relationD~T/αand its variantD~T/η for OTP and Kob–Andersen model;the calculated data are represented by symbols and the solid lines are fitted by D~(α/T)-ξand D~(η/T)-χ,respectively.The data for OTP is colored in black and the red is for Kob–Andersen model.

    Ifr0andΔEare known,we can calculate ther.Or if we knowΔE,we can calculate the ratio ofrat different temperature.However,ΔEis not a constant as the conditions vary[41].Its sign can be found from the correlation.Due to the pure repulsive interaction,TLJ molecules are more likely to stay out of the shell than in the shell;however,Kob–Andersen and OTP molecules are more likely to stay in the shell because of the attractive interaction.ThereforeΔE> 0 for TLJ model butΔE< 0 for Kob–Andersen and OTP model.With formulaand the sign ofΔE,the trend ofrchanging can be qualitatively explained.At lower temperatures or lager n,is large;TLJ molecules have a weaker correlation and behave like a free molecule.On the contrary,is small for Kob–Andersen and OTP model at lower temperatures;molecules have a stronger correlation and show a collective motion.The correlation is increased for TLJ model and is decreased for Kob–Andersen and OTP model as temperature increases.Therefore the trend ofrchanging with temperature for TLJ model is reverse with Kob–Andersen and OTP model.In summary,the changes ofris a collective effect,and which is caused by correlation between the central molecule and its surrounding shells.

    The SE relationD~T/αand the variantD~T/ηfor OTP and Kob–Andersen model are tested byD~(α/T)-ξandD~(η/T)-χ.Ifξorχ=1.0,the SE relation or the variant is established and otherwise invalid.The logarithm of D andTα,Tηfor OTP and Kob–Andersen are plotted in figure 4(b).The variantD~T/ηis breakdown and behaves as a fractional formD~(η/T)-χwithχ≈0.9 for the two liquids.The results are similar as previous studies[6]as well as the observed in other liquids such as supercooled water[8],aqueous NaCl solutions[42]and ionic liquids[43].However,the SE relationD~T/αis definitely valid for the two liquids,because the exponentξs inD~(α/T)-ξare so close to 1.0.

    Combined the results given by the TLJ model,OTP and Kob–Andersen model,it indicates that the assumption ofris constant is usually invalid except for some special case such as the particle having enough rigidity.The SE relation given by variantD~T/ηis only established whenrcan be considered as a constant.The SE relationD~T/αis valid for OTP and Kob–Andersen model even in the supercooled region.

    4.Conclusions

    In summary,we have examined the assumption ofrbeing a constant by performing MD simulations with TLJ model,OTP and Kob–Andersen model as well as explored its influence on the SE relation.Our results indicate the assumption is usually invalid.The trend ofrchanging is increased with decreasing T for TLJ model for small rigidity and is almost a constant for large rigidity.It is decreased with decreasing T for OTP and Kob–Andersen model.The changes ofrcan be qualitatively explained by the collective effect caused by the correlation of the molecule with its surrounding shells.Molecules have negative correlations with surrounding shells to move together due to the pure repulsive interaction in the TLJ model,especially at low temperatures;however,positive correlations are present in OTP and Kob–Andersen model because of the attractive interaction.The different correlations lead reverse changes ofrwith temperature comparing TLJ model with OTP and Kob–Andersen model.The SE relation given by variantD~T/ηis invalid for TLJ model,OTP and Kob–Andersen model,and which shows a fractional form for OTP and Kob–Andersen model.The SE relation is definitely established for the three models.Our simulations indicate thatris an important parameter to the conclusion drawn on the validity of SE relation and we propose the assumption should be carefully evaluated when used to test the SE relation.

    Our results only simulate three models,similar inconsistency may also appear in other supercooled liquids,especially for strongly correlated systems,such as ionic liquids and liquids at much lower temperatures.The temperature ranges of our MD simulations are limited to 260–400 K for OTP model and 66–500 K for Kob–Andersen model,respectively,it is still far from the glass transition point,the changes ofrneeds to be further explored.Moreover,the same assumption is also adopted when testing the Stokes–Einstein–Debye relation for the molecular rotation;its rationality is still need to be justified.Our future work could be,by employing more computer resources,extending our simulations to low temperatures to see the trend ofrchanging and explore the assumption in the Stokes–Einstein–Debye relation.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (No.12104502) and the Science Foundation of Civil Aviation Flight University of China(No.J2021-054).The computations of this work were conducted on the Tian-2 supercomputer,and the author thanks Yanting Wang (ITP CAS) for supporting.

    av免费观看日本| av卡一久久| 亚洲欧美中文字幕日韩二区| 精品亚洲乱码少妇综合久久| 伦理电影大哥的女人| 男人舔奶头视频| 日韩av免费高清视频| 亚洲va在线va天堂va国产| 特大巨黑吊av在线直播| 日韩一区二区视频免费看| av天堂中文字幕网| 丰满人妻一区二区三区视频av| 国产免费视频播放在线视频| 高清毛片免费看| 亚洲欧美日韩东京热| 久久久午夜欧美精品| 麻豆国产97在线/欧美| 亚洲四区av| 欧美极品一区二区三区四区| 免费看光身美女| 国产精品国产三级专区第一集| 九色成人免费人妻av| 亚洲婷婷狠狠爱综合网| 国产日韩欧美亚洲二区| 国产av码专区亚洲av| 视频区图区小说| av国产精品久久久久影院| 久久精品久久久久久久性| 久久毛片免费看一区二区三区| 1000部很黄的大片| 欧美国产精品一级二级三级 | 男人爽女人下面视频在线观看| 老师上课跳d突然被开到最大视频| 一个人看的www免费观看视频| 最黄视频免费看| 一级毛片久久久久久久久女| 91精品国产九色| 久久av网站| 亚洲精品久久久久久婷婷小说| 亚洲国产欧美人成| 日本黄色片子视频| 大香蕉久久网| 国产成人免费观看mmmm| 男人和女人高潮做爰伦理| 精品亚洲成a人片在线观看 | 久久99热6这里只有精品| 久久毛片免费看一区二区三区| 天天躁夜夜躁狠狠久久av| 在线观看三级黄色| 人妻少妇偷人精品九色| 日韩在线高清观看一区二区三区| 街头女战士在线观看网站| 成人特级av手机在线观看| 简卡轻食公司| 欧美日本视频| 黄片无遮挡物在线观看| 亚洲欧美日韩卡通动漫| 涩涩av久久男人的天堂| 成人毛片60女人毛片免费| 国产精品人妻久久久影院| 亚洲四区av| 精品久久久噜噜| 国产成人精品久久久久久| 日韩三级伦理在线观看| 最后的刺客免费高清国语| 中文在线观看免费www的网站| 国产av精品麻豆| 久久99热这里只有精品18| 国产av国产精品国产| 亚洲av不卡在线观看| 日韩成人伦理影院| 欧美日韩在线观看h| 免费大片18禁| 亚洲美女搞黄在线观看| 亚洲欧美精品自产自拍| 国国产精品蜜臀av免费| 亚洲精品中文字幕在线视频 | 在线天堂最新版资源| 各种免费的搞黄视频| 2021少妇久久久久久久久久久| 国产色婷婷99| 这个男人来自地球电影免费观看 | 大码成人一级视频| 99热6这里只有精品| 国产精品国产av在线观看| 91午夜精品亚洲一区二区三区| 有码 亚洲区| 国产 精品1| 久久久精品免费免费高清| av网站免费在线观看视频| 一级a做视频免费观看| 欧美xxxx性猛交bbbb| 丰满少妇做爰视频| 久久久久久久亚洲中文字幕| 男女免费视频国产| 偷拍熟女少妇极品色| 在线 av 中文字幕| av黄色大香蕉| 久久久久久九九精品二区国产| 国产精品三级大全| 极品教师在线视频| 亚洲电影在线观看av| 欧美精品国产亚洲| 久久久久性生活片| 伦理电影大哥的女人| 菩萨蛮人人尽说江南好唐韦庄| 嫩草影院入口| 美女中出高潮动态图| 天天躁夜夜躁狠狠久久av| 中国国产av一级| 美女高潮的动态| 亚洲欧美日韩东京热| 国产精品av视频在线免费观看| 亚洲婷婷狠狠爱综合网| 日韩一区二区视频免费看| 免费高清在线观看视频在线观看| 午夜福利视频精品| 久久婷婷青草| av播播在线观看一区| 人人妻人人添人人爽欧美一区卜 | 自拍偷自拍亚洲精品老妇| 国产高清有码在线观看视频| 亚洲美女搞黄在线观看| av网站免费在线观看视频| 在线观看国产h片| 男人狂女人下面高潮的视频| 高清午夜精品一区二区三区| 国产亚洲午夜精品一区二区久久| 欧美极品一区二区三区四区| 永久免费av网站大全| 国产亚洲最大av| 热re99久久精品国产66热6| 亚洲最大成人中文| 国产欧美另类精品又又久久亚洲欧美| a级毛色黄片| 国产在线视频一区二区| 亚洲欧美成人综合另类久久久| 中文字幕精品免费在线观看视频 | 亚洲色图综合在线观看| 欧美一级a爱片免费观看看| 91午夜精品亚洲一区二区三区| 综合色丁香网| 国产日韩欧美在线精品| 国产一区二区三区av在线| 91久久精品国产一区二区成人| 极品少妇高潮喷水抽搐| 日产精品乱码卡一卡2卡三| 国产高清有码在线观看视频| 一个人免费看片子| 亚洲欧美精品专区久久| 国语对白做爰xxxⅹ性视频网站| 少妇精品久久久久久久| 日本与韩国留学比较| 国产精品久久久久久av不卡| 高清欧美精品videossex| 国产欧美日韩精品一区二区| av国产免费在线观看| 一区二区三区乱码不卡18| 久久这里有精品视频免费| 国产精品福利在线免费观看| 国产免费一区二区三区四区乱码| 国产精品国产av在线观看| 精品国产乱码久久久久久小说| 免费观看的影片在线观看| 国产在线男女| 亚洲av.av天堂| 国产黄色视频一区二区在线观看| 国产高清不卡午夜福利| 亚洲av电影在线观看一区二区三区| 晚上一个人看的免费电影| 最近中文字幕2019免费版| 日韩av免费高清视频| 成人二区视频| 国产成人精品久久久久久| 成人漫画全彩无遮挡| 国产欧美日韩一区二区三区在线 | 国产成人精品福利久久| 丰满乱子伦码专区| 国产深夜福利视频在线观看| 免费高清在线观看视频在线观看| 国产亚洲精品久久久com| 国产精品人妻久久久久久| 久久精品久久久久久噜噜老黄| 毛片女人毛片| 五月开心婷婷网| av又黄又爽大尺度在线免费看| 少妇熟女欧美另类| 亚洲欧美精品自产自拍| 日本av手机在线免费观看| 日日啪夜夜爽| av播播在线观看一区| 欧美日韩国产mv在线观看视频 | 91在线精品国自产拍蜜月| 中文在线观看免费www的网站| 亚洲一区二区三区欧美精品| 春色校园在线视频观看| 久久久久国产网址| 亚洲精品乱久久久久久| 精品99又大又爽又粗少妇毛片| 人妻夜夜爽99麻豆av| 青青草视频在线视频观看| 老熟女久久久| 亚洲精品乱码久久久久久按摩| 欧美成人a在线观看| 联通29元200g的流量卡| 国产精品秋霞免费鲁丝片| 日本欧美国产在线视频| 亚洲成色77777| 麻豆国产97在线/欧美| 中文字幕免费在线视频6| 在线看a的网站| 久久久久久久精品精品| 丝袜喷水一区| 国内揄拍国产精品人妻在线| 青春草国产在线视频| 欧美最新免费一区二区三区| 综合色丁香网| 国产在线男女| 国产成人91sexporn| 欧美xxxx性猛交bbbb| 久久女婷五月综合色啪小说| 综合色丁香网| 日韩欧美一区视频在线观看 | 卡戴珊不雅视频在线播放| 黄色欧美视频在线观看| 少妇被粗大猛烈的视频| 少妇熟女欧美另类| 一级毛片黄色毛片免费观看视频| 最近中文字幕高清免费大全6| 久久国产精品男人的天堂亚洲 | 久久国产精品男人的天堂亚洲 | 中文字幕久久专区| 一区二区三区精品91| 深爱激情五月婷婷| 国产av一区二区精品久久 | 在线免费观看不下载黄p国产| 久久久久国产网址| 一级毛片电影观看| 精品一区二区三卡| 久久久成人免费电影| 久久久久国产精品人妻一区二区| 久久人妻熟女aⅴ| av在线播放精品| 国产淫语在线视频| 亚洲欧洲国产日韩| 三级国产精品片| 亚洲欧美精品自产自拍| 日韩欧美精品免费久久| 免费大片黄手机在线观看| 丰满乱子伦码专区| 久久精品熟女亚洲av麻豆精品| 男女下面进入的视频免费午夜| 国产精品99久久99久久久不卡 | 国产成人一区二区在线| 丰满乱子伦码专区| 精品一品国产午夜福利视频| 日韩中文字幕视频在线看片 | 777米奇影视久久| 中文字幕制服av| 国产高潮美女av| 卡戴珊不雅视频在线播放| kizo精华| 亚洲国产欧美人成| 成人美女网站在线观看视频| 99热网站在线观看| 亚洲人成网站在线播| 免费高清在线观看视频在线观看| a 毛片基地| 三级经典国产精品| 超碰av人人做人人爽久久| 成人一区二区视频在线观看| 亚洲国产欧美在线一区| 精品亚洲成a人片在线观看 | 国产色婷婷99| 亚洲精品色激情综合| 国产欧美日韩一区二区三区在线 | 日韩欧美 国产精品| 欧美成人一区二区免费高清观看| 成人免费观看视频高清| 日本av手机在线免费观看| 国产av一区二区精品久久 | 亚洲人成网站在线播| 国产亚洲5aaaaa淫片| 最近手机中文字幕大全| 久久久久久久久久人人人人人人| 久久6这里有精品| 亚洲精华国产精华液的使用体验| 日本猛色少妇xxxxx猛交久久| 国产爽快片一区二区三区| 我的老师免费观看完整版| 97热精品久久久久久| 免费看不卡的av| 日本wwww免费看| 亚洲精品456在线播放app| 男女边摸边吃奶| 五月天丁香电影| 99视频精品全部免费 在线| 天美传媒精品一区二区| 在线精品无人区一区二区三 | 久久久久久久久久久免费av| 国产成人免费无遮挡视频| 欧美+日韩+精品| 男女国产视频网站| 国产精品国产av在线观看| 大片电影免费在线观看免费| 成人综合一区亚洲| 久久久久视频综合| 少妇精品久久久久久久| 久久久久视频综合| 一级爰片在线观看| 国产精品国产三级国产av玫瑰| 中文字幕制服av| 91aial.com中文字幕在线观看| a 毛片基地| 国产免费福利视频在线观看| 王馨瑶露胸无遮挡在线观看| 久久国产精品大桥未久av | 高清毛片免费看| 91aial.com中文字幕在线观看| 久久久色成人| 午夜福利在线观看免费完整高清在| 少妇猛男粗大的猛烈进出视频| 熟女av电影| 一级片'在线观看视频| 亚洲精品乱码久久久v下载方式| 免费观看a级毛片全部| 韩国高清视频一区二区三区| 国产黄频视频在线观看| 美女高潮的动态| 婷婷色麻豆天堂久久| 国产片特级美女逼逼视频| 全区人妻精品视频| av不卡在线播放| 夫妻性生交免费视频一级片| 精品久久久精品久久久| 国产av精品麻豆| 嫩草影院入口| 女性生殖器流出的白浆| 18禁在线无遮挡免费观看视频| 黄色一级大片看看| 久久韩国三级中文字幕| .国产精品久久| 国产免费视频播放在线视频| 亚洲国产日韩一区二区| 国产成人免费无遮挡视频| 亚洲欧美日韩东京热| 色视频在线一区二区三区| 91狼人影院| 丰满迷人的少妇在线观看| 97超碰精品成人国产| 欧美另类一区| 午夜免费观看性视频| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩欧美 国产精品| 五月天丁香电影| 男女免费视频国产| 黄色视频在线播放观看不卡| 男人舔奶头视频| 狂野欧美白嫩少妇大欣赏| 天天躁夜夜躁狠狠久久av| 精品人妻熟女av久视频| 久久久亚洲精品成人影院| 成年人午夜在线观看视频| 三级国产精品欧美在线观看| 亚洲国产精品成人久久小说| 男女啪啪激烈高潮av片| 国产视频内射| 一区二区三区精品91| 三级国产精品片| av在线观看视频网站免费| 久久99热6这里只有精品| 一区二区三区精品91| 国产亚洲一区二区精品| 亚洲精品日韩av片在线观看| 中文字幕免费在线视频6| 免费播放大片免费观看视频在线观看| 国产深夜福利视频在线观看| 最近最新中文字幕免费大全7| 尤物成人国产欧美一区二区三区| 最近最新中文字幕免费大全7| 最近最新中文字幕大全电影3| 国产精品国产三级国产av玫瑰| 又黄又爽又刺激的免费视频.| 久久久久视频综合| 日韩一区二区视频免费看| 国产亚洲午夜精品一区二区久久| 国产成人午夜福利电影在线观看| 综合色丁香网| 网址你懂的国产日韩在线| 91精品国产国语对白视频| www.av在线官网国产| 91久久精品国产一区二区成人| h日本视频在线播放| av国产久精品久网站免费入址| 黑丝袜美女国产一区| 亚洲综合精品二区| 欧美精品一区二区大全| 人妻系列 视频| 日产精品乱码卡一卡2卡三| 久久99热6这里只有精品| 欧美日韩在线观看h| 欧美 日韩 精品 国产| 免费播放大片免费观看视频在线观看| 老师上课跳d突然被开到最大视频| 亚州av有码| 大又大粗又爽又黄少妇毛片口| 日韩av免费高清视频| 国产在线男女| 亚洲精品久久午夜乱码| av福利片在线观看| 日本欧美国产在线视频| 亚洲精品视频女| 伦理电影免费视频| 国产精品不卡视频一区二区| 亚洲色图综合在线观看| 精品国产一区二区三区久久久樱花 | 嫩草影院入口| 天堂中文最新版在线下载| 亚洲国产精品成人久久小说| 只有这里有精品99| 狠狠精品人妻久久久久久综合| 日韩精品有码人妻一区| 少妇精品久久久久久久| 免费av中文字幕在线| 亚洲无线观看免费| 啦啦啦视频在线资源免费观看| h日本视频在线播放| 亚洲综合精品二区| 天天躁夜夜躁狠狠久久av| 天堂俺去俺来也www色官网| av国产免费在线观看| 老熟女久久久| 久久人人爽人人爽人人片va| 日日摸夜夜添夜夜添av毛片| 国产黄片视频在线免费观看| 久久女婷五月综合色啪小说| 女性被躁到高潮视频| 亚洲欧美精品自产自拍| av女优亚洲男人天堂| 亚洲一区二区三区欧美精品| 特大巨黑吊av在线直播| 最近最新中文字幕免费大全7| 男人添女人高潮全过程视频| 精品久久久噜噜| 麻豆国产97在线/欧美| 国产精品不卡视频一区二区| 91精品国产国语对白视频| 国产熟女欧美一区二区| 美女cb高潮喷水在线观看| 久久久久久九九精品二区国产| 99热这里只有是精品在线观看| 日韩欧美 国产精品| 青春草国产在线视频| 黄片wwwwww| 99久久人妻综合| 自拍欧美九色日韩亚洲蝌蚪91 | 在线观看av片永久免费下载| 蜜桃亚洲精品一区二区三区| 成人国产av品久久久| 超碰97精品在线观看| 一区在线观看完整版| 亚洲图色成人| 麻豆国产97在线/欧美| 高清视频免费观看一区二区| 国模一区二区三区四区视频| 在线观看av片永久免费下载| 欧美日韩亚洲高清精品| 高清日韩中文字幕在线| 另类亚洲欧美激情| 啦啦啦中文免费视频观看日本| 亚洲经典国产精华液单| 久久久久精品性色| 亚洲成人中文字幕在线播放| 精品亚洲成国产av| 男女国产视频网站| 亚洲中文av在线| 国产亚洲精品久久久com| 1000部很黄的大片| 蜜桃亚洲精品一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 亚洲av中文字字幕乱码综合| 欧美zozozo另类| 亚洲电影在线观看av| 一级黄片播放器| 最新中文字幕久久久久| 联通29元200g的流量卡| 嫩草影院新地址| 久久久久久久久久人人人人人人| 亚洲人与动物交配视频| 精品国产三级普通话版| 成年女人在线观看亚洲视频| 黄色怎么调成土黄色| 熟女电影av网| 麻豆精品久久久久久蜜桃| 亚洲美女视频黄频| av专区在线播放| 啦啦啦中文免费视频观看日本| 欧美日韩一区二区视频在线观看视频在线| 韩国av在线不卡| 少妇丰满av| 青春草视频在线免费观看| 偷拍熟女少妇极品色| 欧美日韩综合久久久久久| 狂野欧美激情性bbbbbb| 亚洲av成人精品一二三区| 国产淫语在线视频| 亚洲,一卡二卡三卡| 午夜福利在线观看免费完整高清在| 三级国产精品片| 少妇人妻久久综合中文| 免费看不卡的av| 18禁在线无遮挡免费观看视频| 午夜福利高清视频| 蜜桃久久精品国产亚洲av| 国产国拍精品亚洲av在线观看| 人妻一区二区av| 一本久久精品| 日本与韩国留学比较| 老师上课跳d突然被开到最大视频| 国产亚洲最大av| 久久女婷五月综合色啪小说| 亚洲欧美一区二区三区国产| 亚洲av成人精品一二三区| 日韩一区二区视频免费看| 啦啦啦视频在线资源免费观看| 国产女主播在线喷水免费视频网站| 美女视频免费永久观看网站| 国产男人的电影天堂91| 色5月婷婷丁香| 最近手机中文字幕大全| 黄片无遮挡物在线观看| 亚洲人成网站高清观看| 成人漫画全彩无遮挡| 精品国产露脸久久av麻豆| 国产乱来视频区| 一级毛片 在线播放| 欧美老熟妇乱子伦牲交| 亚洲精品国产av成人精品| 一区二区三区精品91| 免费黄频网站在线观看国产| 成人漫画全彩无遮挡| 国产精品久久久久久久电影| 日韩一区二区三区影片| 亚洲一级一片aⅴ在线观看| 亚洲人成网站在线观看播放| 成人无遮挡网站| 日产精品乱码卡一卡2卡三| 精品亚洲成a人片在线观看 | 国产熟女欧美一区二区| 欧美3d第一页| 又粗又硬又长又爽又黄的视频| 99re6热这里在线精品视频| 国产精品嫩草影院av在线观看| 国产真实伦视频高清在线观看| 国产成人精品一,二区| 91在线精品国自产拍蜜月| 国产高潮美女av| 欧美高清性xxxxhd video| 精品一区在线观看国产| 精品国产露脸久久av麻豆| 热re99久久精品国产66热6| 亚洲国产欧美在线一区| 少妇高潮的动态图| 99热6这里只有精品| 成人国产av品久久久| 日本欧美视频一区| 欧美zozozo另类| 男女啪啪激烈高潮av片| 国产日韩欧美亚洲二区| 少妇裸体淫交视频免费看高清| 人妻夜夜爽99麻豆av| 熟妇人妻不卡中文字幕| 狂野欧美激情性xxxx在线观看| 大陆偷拍与自拍| 国产美女午夜福利| 久久国产乱子免费精品| 久久精品国产鲁丝片午夜精品| 中文精品一卡2卡3卡4更新| 在线观看免费视频网站a站| 18禁在线播放成人免费| 十八禁网站网址无遮挡 | 亚洲欧美清纯卡通| 国产成人精品久久久久久| 免费黄色在线免费观看| 欧美日韩视频精品一区| 97在线人人人人妻| 国产亚洲欧美精品永久| 人人妻人人看人人澡| av在线播放精品| 高清午夜精品一区二区三区| 简卡轻食公司| 国产一区二区三区av在线| 直男gayav资源| 爱豆传媒免费全集在线观看| 欧美变态另类bdsm刘玥| 久久人人爽av亚洲精品天堂 | 啦啦啦视频在线资源免费观看| 插逼视频在线观看| 狂野欧美白嫩少妇大欣赏| 一区在线观看完整版| 涩涩av久久男人的天堂| 男女边吃奶边做爰视频| 99国产精品免费福利视频| 亚洲国产最新在线播放| 国产爱豆传媒在线观看| 久热久热在线精品观看| 亚洲av.av天堂| a级一级毛片免费在线观看| 国产高清有码在线观看视频| 久久人妻熟女aⅴ| 麻豆精品久久久久久蜜桃| 国产伦精品一区二区三区视频9| 国产大屁股一区二区在线视频| 又大又黄又爽视频免费| 精品久久久噜噜|