• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of kernel ridge regression in predicting neutron-capture reaction crosssections

    2022-10-22 08:15:02HuangWuandZhao
    Communications in Theoretical Physics 2022年9期

    T X Huang,X H Wuand P W Zhao

    State Key Laboratory of Nuclear Physics and Technology,School of Physics,Peking University,Beijing 100871,China

    Abstract This article provides the first application of the machine-learning approach in the study of the crosssections for neutron-capture reactions with the kernel ridge regression(KRR)approach.It is found that the KRR approach can reduce the root-mean-square(rms)deviation of the relative errors between the experimental data of the Maxwellian-averaged(n,γ)cross-sections and the corresponding theoretical predictions from 69.8%to 35.4%.By including the data with different temperatures in the training set,the rms deviation can be further significantly reduced to 2.0%.Moreover,the extrapolation performance of the KRR approach along different temperatures is found to be effective and reliable.

    Keywords: kernel ridge regression,machine learning,neutron-capture reaction

    1.Introduction

    Nuclei are complicated many-body quantum systems consisting of nucleons,and the scope of nuclear physics study ranges in size from the lightest nuclei formed in the big bang to the nuclear matter in the interior of neutron stars.During the past decades,great efforts and achievements have been made in the measurements of various properties of nuclei,and currently about 3000 nuclei have been observed in the laboratory [1].However,there are still a large number of nuclei remaining unknown from experiments.What’s more,even for the experimentally known nuclei,many properties that are crucial in understanding both the nuclear structure and the origin of the elements,are still beyond the experimental capability.Therefore,reliable theoretical descriptions of nuclear properties are imperative at the present time.

    Precise theoretical description of nuclear properties has been a longstanding challenge of nuclear physics,due to the difficulties in understanding both the nuclear interactions and the quantum many-body systems.In principle,an exact theoretical description of nuclear properties should be obtained by solving the Schr?dinger equation for all constituent nucleons and the interactions between them,i.e.ab initiocalculations.This can be done exactly only for the lightest nuclei up toA=3,4[2–5]and become applicable to light and medium-mass nuclei up to aboutZ=50 [6,7]with some approximations.Currently,the density functional theory(DFT)is the only tool that can provide global descriptions for nuclei in the whole nuclear chart[8–13].In particular,in a recent work [11],the nuclear landscape has been investigated within the triaxial relativistic density functional theory with the PC-PK1 [14]functional,and the beyond-meanfield dynamical correlation energies are taken into account by a microscopically mapped five-dimensional collective Hamiltonian without additional free parameters.Nevertheless,the precisions of DFTs are still required to be improved,especially for the cases that the functional cannot be well constrained,e.g.properties of exotic nuclei far from the experimentally known region and the high-density nuclear matter in neutron stars.The uncertainties of nuclear properties would limit our understanding of exotic nuclear structure and astrophysical nucleosynthesis [15,16].Therefore,seeking effective ways to further improve nuclear theories for predicting various nuclear properties is one of the most important frontiers of nuclear physics.

    Over the past decades,increasingly powerful computers and continuously optimizing algorithms have driven explosive applications of machine learning(ML)in many fields of physics[17],including nuclear physics[18].Some of the ML applications in nuclear physics focus on rebuilding or refining the nuclear theory itself,e.g.applications in nuclear energy density functionals [19],variational calculations [20,21],extrapolations for many-body physics [22–25],etc.Other applications focus on improving the description accuracies of nuclear properties from existing nuclear theory,e.g.applications in nuclear masses[26–33],β-decays [34,35],charge radii [36–38],excited states[39–41],fission yields[42,43],spallation reactions [44,45]and projectile fragmentation reactions [46,47],etc.The applications of various ML approaches to various aspects of nuclear physics can be found in a recent review[18].Here,we would focus on the applications of kernel ridge regression(KRR)in nuclear physics.

    The KRR is a powerful machine-learning approach,which extends ridge regression to the nonlinear case by learning a function in a reproducing kernel Hilbert space [48–50].The KRR approach was firstly introduced to the field of nuclear physics to improve nuclear mass predictions [31]in 2020.It is found that the KRR approach can avoid the risk of worsening the mass predictions for nuclei at large extrapolation distances[31],and has obtained the most precise machine-learning mass model so far when the odd–even effects are taken into account[33].The successful applications of the KRR approach in nuclear masses have also triggered more applications including the ML energy density functionals [19]and charge radii [51].

    Neutron-capture reaction plays a significant role in the cosmic nucleosynthesis of elements heavier than iron,through thes-andr-processes [52–54].In thes-process,the neutroncapture rates,especially for thes-process branch-point nuclei,are crucial fors-abundances determination,by affecting thes-process path and the reaction flow along the path [53].In ther-process,the neutron-capture rates affect ther-abundances by controlling the speed of therprocess as well as the location of ther-process path [55].Experimentally,the data of neutroncapture reaction cross-sections are available only for about 300 nuclei [56].Theoretically,the neutron-capture reaction crosssections are mainly predicted by the Hauser–Feshbach statistical model [57],and the corresponding uncertainty is about a factor of three for stable nuclei [58],and becomes much larger for unstable ones [15].The difficulties in experiments and the uncertainties in theories limit the stellar nucleosynthesis simulations of thes-process andr-process.It is thus in demand to further improve the prediction accuracies of neutron-capture reaction cross-sections.The present work provides the first ML application in the neutron-capture reaction study,by applying the KRR approach to improve the Hauser–Feshbach predictions.

    The paper is organized as follows.In section 2,the theoretical framework of the KRR approach is presented.In section 3,the numerical details are given.Then,the results of the KRR application in neutron-capture reaction cross-sections are presented in section 4.Finally,a summary is given in section 5.

    2.Theoretical framework

    The typical neutron spectrum of the variouss-process andr-process sites is described by a Maxwell–Boltzmann distribution,because neutrons are quickly thermalized in the dense stellar plasma.The effective stellar reaction crosssections are thus obtained as the Maxwellian-averaged(n,γ)cross-sections (MACS)

    wherekTis the environment temperature andσ(E) is the ground state neutron-capture cross-section at a specific relative kinetic energyE.Experimentally,due to the difficulties in making targets with unstable nuclei,currently the MACSs are only available for about 300 nuclei around the stable line in the temperature range fromkT=5 keV to 100 keV [56,59].Theoretically,the MACSs adopted in the stellar nucleosynthesis simulations are mainly obtained by the Hauser–Feshbach statistical model(HFSM)[57].However,the predictions of the HFSM with different model inputs,e.g.nuclear level densities andE1 gamma-ray strength functions,can vary with a factor of three for nuclei around the stable line [58],and the model variations can be much larger for nuclei away from stability[15].The present work introduces the KRR approach to improve the Hauser–Feshbach predictions of MACS.

    The logarithmic residual of MACS for the nucleus(Zj,Nj)at temperatureTjin the KRR approach is expressed as

    where the kernel function is taken as

    The logarithmic deviation(Z,N,T)in the KRR approach is trained to reconstruct the logarithmic residual of MACS between experimental data 〈σ〉exp(Z,N,T)and theoretical predictions 〈σ〉th(Z,N,T),i.e.Δ(Z,N,T)=The weightsωiare determined by minimizing the loss function defined as

    whereω=(ω1,...,ωm).The frist term represents the variance between data and KRR prediction,and the second term is a regularizer that penalizes large weights to reduce the risk of overfitting.Minimizing loss functionL(ω)in equation(4)yields

    whereKis the kernel matrix with elementsKij=K(xi,xj),Iis the identity matrix,and Δ=(Δ1,...,Δm)are the data to be learned.

    Once the reconstructed KRR function(Z,N,T)is obtained,the KRR prediction of MACS can be given by

    There are two main differences between the present KRR scheme for MACS and the one for nuclear masses [31,33].One is that the temperature is also included as an input,so a new hyperparameterηshould be additionally introduced.The other one is that the KRR function is trained to reconstruct the logarithmic residual of MACS because the MACS values vary by several orders of magnitude for different nuclei.

    3.Numerical details

    In the present work,the experimental MACS data for 242 nuclei withZ> 20 are taken from Karlsruhe Astrophysical Database of Nucleosynthesis in Stars (KADoNiS) v1.0 [56].For each nucleus,MACS data at twelve temperatures(kT=5,8,10,15,20,25,30,40,50,60,80,100 keV)are available.

    Theoretical MACSs are calculated by the HFSM with the Talys program [60,61],which depends on the inputs including the level density models and theE1 gamma-ray strength functions.We employ 6 level density models and 8E1 gamma-ray strength functions,and thus have 48 combinations in total.The 6 level density models include constant temperature+Fermi gas model (CTM) [62],back-shifted Fermi gas model (BFM) [62],generalised superfluid model (GSM) [62],microscopic level densities (Skyrme force) from Goriely’s tables (HFBCS) [63],microscopic level densities (Skyrme force) from Hilaire’s combinatorial tables (HFB) [64],and microscopic level densities(temperature dependent HFB,Gogny force) from Hilaire’s combinatorial tables (T-HFB) [65].The 8E1 gamma-ray strength functions include Kopecky-Uhl generalized Lorentzian (KUGL)[66],Brink-Axel Lorentzian(BAL)[67,68],Hartree–Fock BCS tables (HFBCS) [69,70],Hartree–Fock–Bogolyubov tables(HFB) [69,71],Goriely’s hybrid model (GHM) [72],Goriely T-dependent HFB (T-HFB) [60],T-dependent RMF (T-RMF)[60],and Gogny D1M HFB + QRPA (D1MHFB) [60].Other inputs are taken as the default settings of the Talys1.9 [60,61].

    The involved hyperparameters in the KRR approach,i.e.penalty strengthλ,andσandηthat appear in the kernel function,are determined through the leave-one-out cross-validation(LOOCV).

    4.Results and discussions

    We first focus on the study of MACS at a specific temperaturekT=30 keV,which is a typical temperature in thes-process environment [73].As the HFSM calculations are carried out with 48 groups of level density models and strength functions,we introduce 48 KRR networks,which are trained with the logarithmic deviations between the experimental MACS data and the 48 sets of theoretical predictions respectively.For each network,the KRR hyperparameters are optimized with the lowestΔrmsthrough the leave-one-out cross-validation(LOOCV).

    Figure 1.The rms logarithmic deviations Δrms of the Talys and the KRR predictions with respect to the experimental MACS data.

    In figure 1,the rms logarithmic deviationsΔrmsof the Talys and the KRR predictions with respect to the experimental MACS data are depicted.The rms logarithmic deviations for the Talys results are generally around Δrms=0.25,which refers to a relative deviation of 78%.Specifically,theΔrmsobtained with the level density model GSM is relatively large,and theΔrmsobtained with the strength functions HFBCS and HFB are relatively small.Nevertheless,the KRR approach improves the Talys predictions in all cases.The rms logarithmic deviations are generally reduced to below0.20 by the KRR approach,and can even reach to below 0.13 for several cases.In particular,for the Talys calculations with the level density model CTM and strength function HFBCS,the KRR approach provides the smallest rms logarithmic deviation0.116,which refers to a relative deviation of 31%.So,the following analyses will be based on this case.

    In figure 2,a detailed comparison of the KRR predictions and the Talys calculations with the level density model CTM and the strength function HFBCS is illustrated,where the modified relative error (MRE)δis introduced as

    It refers to a deviation from 100% for the ratio between the prediction values and data.The MREsδbetween the Talys predictions and the experimental data are mainly in the range from 0 to 2,and the corresponding rms deviation ofδ(δrms) is 69.8%.For the KRR predictions,the corresponding MREsδare reduced mainly in the range from 0 to 1,and this corresponds to a rms deviation of35.4%.Moreover,the KRR approach improves the predictions of the MACS globally for nuclei in different mass regions.

    To illustrate the potential impacts of the present KRR predictions of the MACS on the s-process simulations,in figure 3,the KRR predictions of the MACSs for 21 s-process branch-point nuclei [53]scaled by the Talys predictions are depicted.Among these 21 nuclei,experimental data of MACSs are available for eight of them.In comparison with the Talys calculations,the KRR approach improves the predictions for 6 of the 8 nuclei,and worsens the predictions only for 2 ones,i.e.163Ho and171Tm.Note that the experimental data of171Tm have been updated by recent experiments[74],which are displayed with stars in figure 3 and match the KRR predictions better than the old data.These results suggest that the KRR predictions of the other 13 s-process branch-point nuclei,whose experimental values of the MACSs are unavailable,can be trusted.This would lead to positive influences on the s-process simulations.To see the effects of the KRR corrections of the MACS on the s-process simulations would be interesting in future work.

    Figure 2.The MREsδ (see text) of the Talys and the KRR predictions with respect to the experimental MACS data.

    Figure 3.The KRR predictions of the MACSs for 8 s-process branch-point nuclei with available experimental data(solid diamond)and 13 ones without experimental data (hollow diamond) scaled by the Talys predictions.The experimental values [56]are denoted by black dots when they are available.For 171Tm,two latest experimental data from[74]are also displayed with stars,which are measured with the activation method and the time-of-flight method,respectively.The grey line represents the Talys calculations.

    To include the temperature degree of freedom,it should be noted that the MACS dependence on temperature is quite different from that on the proton and neutron numbers.To carefully study the temperature effects,here we introduce two kinds of LOOCV to validate the KRR approach.The first one is called the leave-one-data-out-cross-validation(LODOCV),which means that when predicting the MACS labeled by(Z,N,T),only the MACS data of the nucleus(Z,N)at temperatureTis removed from the training set.The other one is called the leave-one-nucleus-out-cross-validation(LONOCV),which means that when predicting the MACS labeled by(Z,N,T),all the MACS data of the nucleus(Z,N)are removed from the training set.

    Figure 4(a) depicts the rms MREδrmsof the KRR predictions with respect to the experimental MACS data at different temperatures through the LODOCV and LONOCV respectively,in comparison with the Talys results.As can be seen,the KRR predictions with both LODOCV and LONOCV can improve the Talys predictions at all the temperatures,and the improvement of LODOCV is much more significant than that of LONOCV.This indicates that the MACS data of a nucleus at different temperatures can help to predict each other,as the MACS data with different temperatures for the target nucleus are involved in the training set in the LODOCV.

    A detailed comparison between the MREsδfor the KRR predictions atkT=30 keV is given in figure 4(b).The improvement achieved by the KRR predictions with LODOCV is significant in the whole mass region,and the correspondingδrmsis as small as2.0%.Nevertheless,the improvement achieved by the KRR predictions with LONOCV is just similar to the learning results without temperatures [see figure 2(a)],and the correspondingδrmsis 35.7%.Therefore,to predict the MACS for a nucleus(Z,N)at a specific temperatureTin the KRR approach,the MACS data for the same nucleus(Z,N)at different temperaturesTare most helpful.

    In order to examine the extrapolation power of the KRR approach along different temperatures,the KRR network is trained with the MACS data for all nuclei only at the temperatureskT=25 and30 keV,and the corresponding KRR predictions for the MACS at all temperatures are displayed in figure 4(c) in comparison with the Talys results.The KRR approach improves the predictions at all temperatures.The improvements are significant when the temperatures are close to the training temperatureskT=25 and30 keV,and are still quite considerable even when the temperatures are far from the training temperatures.This indicates the reliability in extrapolating the MACS predictions along different temperatures in the KRR approach.

    5.Summary

    Advances in machine-learning methods have driven explosive applications in nuclear physics.The kernel ridge regression(KRR) is a powerful machine-learning approach,which extends ridge regression to the nonlinear case by learning a function in a reproducing kernel Hilbert space.Recently,it has been introduced in the field of nuclear physics,and achieved many successes in building nuclear energy density functionals and predicting nuclear properties including nuclear masses,radii,etc.This article provides the first application of the machine-learning approach in the study of the cross-sections for neutron-capture reactions with the KRR approach.It is found that the KRR approach can reduce the root-mean-square deviation of the relative errors between the experimental MACS data and the theoretical predictions from 69.8% to 35.4%,and thus can help to improve the MACS predictions ofs-process branch-point nuclei.By including the MACS data with different temperatures in the training set,the rms deviation can be further reduced to 2.0%.Moreover,the extrapolation performance of the KRR approach along different temperatures is found to be effective and reliable.

    Figure 4.(a) The rms MREδrms of the Talys and the KRR predictions with respect to the experimental MACS data at different temperatures.(b) Theδ of the Talys and the KRR predictions with respect to the experimental MACS data atkT=30 keV.(c) The extrapolation of the KRR approach along different temperatures in comparison with the Talys results.The shadowed area denotes the training data (see text).

    Acknowledgments

    This work was partly supported by the National Key R&D Program of China (Contracts No.2018YFA0404400 and No.2017YFE0116700),the National Natural Science Foundation of China(Grants No.11875075,No.11935003,No.11975031,No.12141501 and No.12070131001),the China Postdoctoral Science Foundation under Grant No.2021M700256,and the Highperformance Computing Platform of Peking University.

    男人舔女人的私密视频| 欧美日韩中文字幕国产精品一区二区三区 | 久久精品国产综合久久久| 国产成人精品久久二区二区免费| 大型黄色视频在线免费观看| 十八禁网站免费在线| 国产一区二区激情短视频| 中文欧美无线码| 多毛熟女@视频| 老司机亚洲免费影院| 激情视频va一区二区三区| 国产蜜桃级精品一区二区三区| 日韩欧美三级三区| 久久精品成人免费网站| 久久热在线av| 日本黄色视频三级网站网址| 最好的美女福利视频网| 天堂动漫精品| 亚洲七黄色美女视频| 两人在一起打扑克的视频| 日日爽夜夜爽网站| 99国产极品粉嫩在线观看| 国产一区二区三区综合在线观看| 18禁黄网站禁片午夜丰满| 一级毛片女人18水好多| 一级毛片女人18水好多| 激情在线观看视频在线高清| 亚洲欧美激情在线| 欧美老熟妇乱子伦牲交| 国产欧美日韩一区二区精品| 真人做人爱边吃奶动态| 亚洲精品一区av在线观看| 成人亚洲精品一区在线观看| 免费人成视频x8x8入口观看| 丰满人妻熟妇乱又伦精品不卡| 激情在线观看视频在线高清| 精品一区二区三卡| 1024视频免费在线观看| 欧美久久黑人一区二区| 成人av一区二区三区在线看| 淫秽高清视频在线观看| www国产在线视频色| 精品久久久精品久久久| 午夜a级毛片| 亚洲国产精品一区二区三区在线| 亚洲国产中文字幕在线视频| 一边摸一边做爽爽视频免费| 99国产精品免费福利视频| 中文欧美无线码| 人人澡人人妻人| 欧美成人午夜精品| 老汉色av国产亚洲站长工具| 日本一区二区免费在线视频| av电影中文网址| 国产精品影院久久| 午夜免费观看网址| 精品人妻在线不人妻| 好男人电影高清在线观看| 精品国产美女av久久久久小说| 国内毛片毛片毛片毛片毛片| 91国产中文字幕| 国产成人欧美在线观看| 国产精品电影一区二区三区| 欧美色视频一区免费| 欧美一级毛片孕妇| 窝窝影院91人妻| 国产精品一区二区精品视频观看| 伊人久久大香线蕉亚洲五| 久久人人精品亚洲av| 久久狼人影院| 99热只有精品国产| 欧美黄色片欧美黄色片| 在线天堂中文资源库| 淫秽高清视频在线观看| 日日干狠狠操夜夜爽| 国产精品偷伦视频观看了| 无人区码免费观看不卡| 大码成人一级视频| 最新美女视频免费是黄的| 亚洲精品av麻豆狂野| 日韩精品中文字幕看吧| 男人舔女人下体高潮全视频| 成人手机av| 50天的宝宝边吃奶边哭怎么回事| 精品电影一区二区在线| 精品免费久久久久久久清纯| 国产高清videossex| 国产亚洲精品久久久久久毛片| 18禁国产床啪视频网站| 国产欧美日韩综合在线一区二区| 看黄色毛片网站| av天堂在线播放| 中文字幕另类日韩欧美亚洲嫩草| √禁漫天堂资源中文www| 一级a爱视频在线免费观看| 午夜免费观看网址| 欧美日韩乱码在线| 长腿黑丝高跟| 欧美日本亚洲视频在线播放| 丰满的人妻完整版| 嫩草影院精品99| 亚洲色图 男人天堂 中文字幕| 操出白浆在线播放| 精品无人区乱码1区二区| av网站在线播放免费| 两个人看的免费小视频| 看黄色毛片网站| 老司机在亚洲福利影院| 国产无遮挡羞羞视频在线观看| 村上凉子中文字幕在线| 精品一品国产午夜福利视频| 亚洲熟妇熟女久久| 精品免费久久久久久久清纯| 大香蕉久久成人网| 亚洲欧美精品综合久久99| 欧美日韩av久久| 久久精品国产清高在天天线| 国产欧美日韩一区二区精品| 欧美性长视频在线观看| 人人妻人人爽人人添夜夜欢视频| 三级毛片av免费| 精品久久久精品久久久| 日韩欧美一区二区三区在线观看| 久99久视频精品免费| 91九色精品人成在线观看| 免费少妇av软件| 老鸭窝网址在线观看| 久久影院123| 每晚都被弄得嗷嗷叫到高潮| 久久精品国产亚洲av高清一级| 成人18禁在线播放| 自线自在国产av| 精品国产乱码久久久久久男人| 亚洲avbb在线观看| 一边摸一边做爽爽视频免费| av在线天堂中文字幕 | 老司机在亚洲福利影院| 亚洲中文av在线| 久久这里只有精品19| 成人永久免费在线观看视频| 久久亚洲精品不卡| 国产精品成人在线| 亚洲一区二区三区不卡视频| 精品乱码久久久久久99久播| 免费不卡黄色视频| 又紧又爽又黄一区二区| 在线天堂中文资源库| 最新在线观看一区二区三区| 在线观看免费视频日本深夜| 亚洲性夜色夜夜综合| 欧美成人免费av一区二区三区| 在线观看66精品国产| 长腿黑丝高跟| 法律面前人人平等表现在哪些方面| 久久香蕉精品热| 欧美日韩中文字幕国产精品一区二区三区 | 高清毛片免费观看视频网站 | 宅男免费午夜| 久久久久久亚洲精品国产蜜桃av| 动漫黄色视频在线观看| 在线看a的网站| 最新美女视频免费是黄的| 伊人久久大香线蕉亚洲五| 日日干狠狠操夜夜爽| xxx96com| 亚洲欧美日韩无卡精品| 又大又爽又粗| 美国免费a级毛片| 国产蜜桃级精品一区二区三区| 欧美人与性动交α欧美精品济南到| 91在线观看av| 国产精品国产av在线观看| 99精品久久久久人妻精品| 国产伦一二天堂av在线观看| 99国产精品免费福利视频| 色婷婷av一区二区三区视频| 日韩中文字幕欧美一区二区| videosex国产| xxx96com| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一卡2卡3卡4卡5卡精品中文| 97人妻天天添夜夜摸| 亚洲精品国产精品久久久不卡| 国产单亲对白刺激| 一区二区三区激情视频| 久久久国产精品麻豆| 欧美另类亚洲清纯唯美| 精品人妻1区二区| 中国美女看黄片| 搡老乐熟女国产| 亚洲午夜精品一区,二区,三区| 国产精品二区激情视频| 一进一出抽搐动态| 亚洲一区二区三区不卡视频| 日韩三级视频一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 色综合婷婷激情| 一级a爱片免费观看的视频| 欧美精品一区二区免费开放| 亚洲午夜精品一区,二区,三区| 长腿黑丝高跟| 级片在线观看| 美女大奶头视频| 一区二区三区精品91| 精品国产国语对白av| 国产一卡二卡三卡精品| 久久草成人影院| 不卡一级毛片| 久久精品成人免费网站| 女性被躁到高潮视频| 91精品三级在线观看| 国产97色在线日韩免费| 久久精品91蜜桃| 久久中文字幕一级| 91精品国产国语对白视频| 午夜a级毛片| 日本一区二区免费在线视频| 亚洲精品在线美女| 亚洲人成77777在线视频| 级片在线观看| 国产真人三级小视频在线观看| 男人操女人黄网站| 激情在线观看视频在线高清| 成在线人永久免费视频| 黄色a级毛片大全视频| 村上凉子中文字幕在线| 99久久国产精品久久久| 国产成人欧美| 99riav亚洲国产免费| 精品久久久精品久久久| 久久精品人人爽人人爽视色| 日韩大尺度精品在线看网址 | 成人亚洲精品一区在线观看| 天堂影院成人在线观看| 国产三级在线视频| 国产精品九九99| 久久精品国产99精品国产亚洲性色 | 757午夜福利合集在线观看| 亚洲精品美女久久av网站| 欧美日韩亚洲国产一区二区在线观看| 欧美日本亚洲视频在线播放| 国产国语露脸激情在线看| 亚洲欧美精品综合一区二区三区| 亚洲七黄色美女视频| 中文字幕av电影在线播放| 在线永久观看黄色视频| 成熟少妇高潮喷水视频| 亚洲国产毛片av蜜桃av| 97超级碰碰碰精品色视频在线观看| 一二三四在线观看免费中文在| 国产精品爽爽va在线观看网站 | 欧美激情极品国产一区二区三区| 久久午夜综合久久蜜桃| 久久亚洲精品不卡| 成熟少妇高潮喷水视频| 亚洲美女黄片视频| 日本vs欧美在线观看视频| 亚洲欧美日韩另类电影网站| 香蕉丝袜av| 精品国产乱子伦一区二区三区| 亚洲国产精品999在线| 欧美色视频一区免费| 一级a爱视频在线免费观看| 丝袜美腿诱惑在线| 黑人操中国人逼视频| 中文字幕人妻丝袜一区二区| 国产日韩一区二区三区精品不卡| 两个人免费观看高清视频| 最新在线观看一区二区三区| 18禁观看日本| 男人操女人黄网站| 夜夜看夜夜爽夜夜摸 | 午夜日韩欧美国产| 黄色视频不卡| 50天的宝宝边吃奶边哭怎么回事| 国产精品免费一区二区三区在线| 国产成人啪精品午夜网站| 亚洲精品在线观看二区| 欧美人与性动交α欧美精品济南到| 一二三四在线观看免费中文在| 免费观看人在逋| 麻豆一二三区av精品| 在线免费观看的www视频| 午夜久久久在线观看| 亚洲少妇的诱惑av| 国产精品秋霞免费鲁丝片| 超碰97精品在线观看| 一个人观看的视频www高清免费观看 | 自拍欧美九色日韩亚洲蝌蚪91| 999久久久精品免费观看国产| 午夜福利在线免费观看网站| 一级毛片女人18水好多| 91麻豆精品激情在线观看国产 | 88av欧美| 9色porny在线观看| 一进一出好大好爽视频| 久久久久精品国产欧美久久久| 涩涩av久久男人的天堂| 午夜老司机福利片| 国产深夜福利视频在线观看| 中文字幕人妻熟女乱码| 侵犯人妻中文字幕一二三四区| 黄频高清免费视频| 欧美 亚洲 国产 日韩一| 久久久水蜜桃国产精品网| 美女扒开内裤让男人捅视频| 日本欧美视频一区| 日本vs欧美在线观看视频| 免费在线观看影片大全网站| 欧美人与性动交α欧美精品济南到| 一边摸一边做爽爽视频免费| 亚洲人成电影观看| 久久精品91蜜桃| 国产男靠女视频免费网站| 一区在线观看完整版| 亚洲精品成人av观看孕妇| 交换朋友夫妻互换小说| 国产免费男女视频| 欧美日韩亚洲综合一区二区三区_| 9色porny在线观看| 日韩欧美一区二区三区在线观看| 婷婷丁香在线五月| 久久狼人影院| 高清av免费在线| 亚洲成人精品中文字幕电影 | 欧美日韩精品网址| 一级片免费观看大全| 国产精品久久久久成人av| 午夜福利在线免费观看网站| 午夜91福利影院| videosex国产| 看黄色毛片网站| 美女高潮到喷水免费观看| 看免费av毛片| 国产精品九九99| 国产99久久九九免费精品| 美女高潮喷水抽搐中文字幕| 久久影院123| 国产欧美日韩一区二区三| 日本三级黄在线观看| 午夜a级毛片| 亚洲精品国产一区二区精华液| 国产又爽黄色视频| 欧美日韩亚洲国产一区二区在线观看| 日本 av在线| 亚洲avbb在线观看| 国产蜜桃级精品一区二区三区| 午夜久久久在线观看| 国产精品香港三级国产av潘金莲| 欧美中文综合在线视频| 少妇被粗大的猛进出69影院| 国产人伦9x9x在线观看| 搡老岳熟女国产| 女警被强在线播放| av免费在线观看网站| 亚洲成av片中文字幕在线观看| 国产欧美日韩综合在线一区二区| 亚洲午夜精品一区,二区,三区| 琪琪午夜伦伦电影理论片6080| 亚洲精品国产色婷婷电影| av欧美777| 日韩高清综合在线| 咕卡用的链子| 一二三四社区在线视频社区8| 婷婷丁香在线五月| 热re99久久精品国产66热6| 女性生殖器流出的白浆| 91麻豆av在线| 国产精品亚洲一级av第二区| 亚洲狠狠婷婷综合久久图片| 日韩欧美在线二视频| 国产成人欧美| 51午夜福利影视在线观看| 黄色a级毛片大全视频| 久久久久亚洲av毛片大全| 久久天躁狠狠躁夜夜2o2o| 中文字幕av电影在线播放| 国产一区在线观看成人免费| 成年人黄色毛片网站| 无限看片的www在线观看| 91麻豆精品激情在线观看国产 | 精品电影一区二区在线| 中国美女看黄片| av电影中文网址| 一二三四社区在线视频社区8| 久久久久国产一级毛片高清牌| 日本五十路高清| 久久久久久亚洲精品国产蜜桃av| 美女午夜性视频免费| 亚洲欧美精品综合久久99| av在线播放免费不卡| 免费久久久久久久精品成人欧美视频| 亚洲视频免费观看视频| 亚洲情色 制服丝袜| 十八禁网站免费在线| 啦啦啦在线免费观看视频4| av有码第一页| 香蕉久久夜色| 亚洲一码二码三码区别大吗| 在线观看66精品国产| 午夜免费激情av| 身体一侧抽搐| 免费在线观看亚洲国产| 一级a爱片免费观看的视频| 欧美日韩亚洲国产一区二区在线观看| 免费av毛片视频| 搡老乐熟女国产| 99精品欧美一区二区三区四区| 亚洲欧美日韩高清在线视频| videosex国产| 久久精品亚洲熟妇少妇任你| 亚洲一区二区三区欧美精品| 亚洲精品国产区一区二| 久久这里只有精品19| 亚洲成人免费av在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 久热这里只有精品99| 国产高清videossex| 88av欧美| 国产成人精品久久二区二区免费| 男女之事视频高清在线观看| 在线观看66精品国产| 两性夫妻黄色片| 12—13女人毛片做爰片一| 午夜老司机福利片| 啦啦啦免费观看视频1| 黑人猛操日本美女一级片| 1024香蕉在线观看| 精品一区二区三区av网在线观看| 淫秽高清视频在线观看| 欧美精品啪啪一区二区三区| 高清毛片免费观看视频网站 | 99riav亚洲国产免费| 不卡一级毛片| 免费不卡黄色视频| 在线观看免费视频网站a站| 正在播放国产对白刺激| 亚洲精品美女久久av网站| 亚洲av成人一区二区三| 亚洲aⅴ乱码一区二区在线播放 | 十分钟在线观看高清视频www| 亚洲第一av免费看| 欧美大码av| 啦啦啦 在线观看视频| 在线国产一区二区在线| 亚洲aⅴ乱码一区二区在线播放 | 中文字幕色久视频| 另类亚洲欧美激情| 一级毛片精品| 大香蕉久久成人网| 18禁观看日本| 欧美成人免费av一区二区三区| av视频免费观看在线观看| 亚洲在线自拍视频| 一个人免费在线观看的高清视频| 美女国产高潮福利片在线看| 久久性视频一级片| 久久欧美精品欧美久久欧美| 欧美成人免费av一区二区三区| 亚洲激情在线av| 日日爽夜夜爽网站| 亚洲七黄色美女视频| 国产亚洲av高清不卡| 欧美人与性动交α欧美精品济南到| 日本五十路高清| 国产精品久久电影中文字幕| 日本精品一区二区三区蜜桃| 欧美乱码精品一区二区三区| 午夜福利在线观看吧| 不卡一级毛片| 成人国语在线视频| 日韩欧美一区二区三区在线观看| 久久 成人 亚洲| 亚洲七黄色美女视频| 亚洲三区欧美一区| 日本vs欧美在线观看视频| avwww免费| 亚洲欧美日韩高清在线视频| 久久人妻福利社区极品人妻图片| 黄色成人免费大全| 免费在线观看黄色视频的| 在线视频色国产色| 中文字幕最新亚洲高清| 露出奶头的视频| 欧美激情久久久久久爽电影 | 夜夜躁狠狠躁天天躁| 免费高清在线观看日韩| 一级a爱视频在线免费观看| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久,| 国产高清国产精品国产三级| 久久精品人人爽人人爽视色| 国产乱人伦免费视频| 一级作爱视频免费观看| 一级a爱片免费观看的视频| 丰满迷人的少妇在线观看| 免费高清在线观看日韩| 在线观看66精品国产| 18禁黄网站禁片午夜丰满| 国产真人三级小视频在线观看| xxx96com| 91av网站免费观看| 亚洲 欧美 日韩 在线 免费| 国产97色在线日韩免费| 亚洲,欧美精品.| 91九色精品人成在线观看| 亚洲一区二区三区欧美精品| 波多野结衣高清无吗| 欧美另类亚洲清纯唯美| 亚洲精品粉嫩美女一区| 老司机亚洲免费影院| 欧美成狂野欧美在线观看| 国产亚洲精品第一综合不卡| 久久人妻av系列| 极品教师在线免费播放| 亚洲精品成人av观看孕妇| 亚洲人成伊人成综合网2020| 国产蜜桃级精品一区二区三区| 在线观看免费高清a一片| 啪啪无遮挡十八禁网站| ponron亚洲| 欧美另类亚洲清纯唯美| av有码第一页| 亚洲欧美精品综合一区二区三区| 热99re8久久精品国产| 亚洲精品久久成人aⅴ小说| 国产精品野战在线观看 | 老司机靠b影院| 精品欧美一区二区三区在线| 99精品欧美一区二区三区四区| 亚洲专区字幕在线| 国产精华一区二区三区| 亚洲欧美日韩无卡精品| 日韩大尺度精品在线看网址 | 欧美中文综合在线视频| 亚洲av日韩精品久久久久久密| 欧美日韩精品网址| 国产精品秋霞免费鲁丝片| 在线永久观看黄色视频| 韩国av一区二区三区四区| 1024视频免费在线观看| 亚洲少妇的诱惑av| 亚洲情色 制服丝袜| 男女之事视频高清在线观看| 黄色 视频免费看| 精品午夜福利视频在线观看一区| 日本精品一区二区三区蜜桃| 免费日韩欧美在线观看| 99在线视频只有这里精品首页| 99re在线观看精品视频| 国产1区2区3区精品| 交换朋友夫妻互换小说| 欧美+亚洲+日韩+国产| 久久久久精品国产欧美久久久| 亚洲性夜色夜夜综合| 天堂俺去俺来也www色官网| 国产成人欧美在线观看| 久久久水蜜桃国产精品网| 成年版毛片免费区| 一进一出抽搐动态| 久久天堂一区二区三区四区| 亚洲激情在线av| 欧美日韩国产mv在线观看视频| 这个男人来自地球电影免费观看| 色在线成人网| 黄色a级毛片大全视频| 在线看a的网站| 精品电影一区二区在线| 国产人伦9x9x在线观看| 免费观看人在逋| 免费在线观看影片大全网站| 法律面前人人平等表现在哪些方面| 久久久久久大精品| 午夜两性在线视频| 大码成人一级视频| 琪琪午夜伦伦电影理论片6080| 又紧又爽又黄一区二区| 欧美中文日本在线观看视频| 日韩三级视频一区二区三区| 一级a爱视频在线免费观看| e午夜精品久久久久久久| 国产成年人精品一区二区 | 男人操女人黄网站| 国产高清激情床上av| 好看av亚洲va欧美ⅴa在| 波多野结衣一区麻豆| 久热这里只有精品99| 欧美乱码精品一区二区三区| 成人黄色视频免费在线看| 久久精品aⅴ一区二区三区四区| 9191精品国产免费久久| 亚洲五月婷婷丁香| 国产不卡一卡二| 9191精品国产免费久久| 视频在线观看一区二区三区| 久久久国产欧美日韩av| xxxhd国产人妻xxx| 一级,二级,三级黄色视频| 亚洲少妇的诱惑av| 亚洲精品久久午夜乱码| 电影成人av| 久久国产乱子伦精品免费另类| 啦啦啦在线免费观看视频4| 这个男人来自地球电影免费观看| 国产精品久久久av美女十八| 真人做人爱边吃奶动态| www.www免费av| 精品一区二区三卡| 黑人操中国人逼视频| 久9热在线精品视频| 日韩欧美一区视频在线观看| netflix在线观看网站| 国产av又大| 另类亚洲欧美激情| 国产精品乱码一区二三区的特点 |