• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of kernel ridge regression in predicting neutron-capture reaction crosssections

    2022-10-22 08:15:02HuangWuandZhao
    Communications in Theoretical Physics 2022年9期

    T X Huang,X H Wuand P W Zhao

    State Key Laboratory of Nuclear Physics and Technology,School of Physics,Peking University,Beijing 100871,China

    Abstract This article provides the first application of the machine-learning approach in the study of the crosssections for neutron-capture reactions with the kernel ridge regression(KRR)approach.It is found that the KRR approach can reduce the root-mean-square(rms)deviation of the relative errors between the experimental data of the Maxwellian-averaged(n,γ)cross-sections and the corresponding theoretical predictions from 69.8%to 35.4%.By including the data with different temperatures in the training set,the rms deviation can be further significantly reduced to 2.0%.Moreover,the extrapolation performance of the KRR approach along different temperatures is found to be effective and reliable.

    Keywords: kernel ridge regression,machine learning,neutron-capture reaction

    1.Introduction

    Nuclei are complicated many-body quantum systems consisting of nucleons,and the scope of nuclear physics study ranges in size from the lightest nuclei formed in the big bang to the nuclear matter in the interior of neutron stars.During the past decades,great efforts and achievements have been made in the measurements of various properties of nuclei,and currently about 3000 nuclei have been observed in the laboratory [1].However,there are still a large number of nuclei remaining unknown from experiments.What’s more,even for the experimentally known nuclei,many properties that are crucial in understanding both the nuclear structure and the origin of the elements,are still beyond the experimental capability.Therefore,reliable theoretical descriptions of nuclear properties are imperative at the present time.

    Precise theoretical description of nuclear properties has been a longstanding challenge of nuclear physics,due to the difficulties in understanding both the nuclear interactions and the quantum many-body systems.In principle,an exact theoretical description of nuclear properties should be obtained by solving the Schr?dinger equation for all constituent nucleons and the interactions between them,i.e.ab initiocalculations.This can be done exactly only for the lightest nuclei up toA=3,4[2–5]and become applicable to light and medium-mass nuclei up to aboutZ=50 [6,7]with some approximations.Currently,the density functional theory(DFT)is the only tool that can provide global descriptions for nuclei in the whole nuclear chart[8–13].In particular,in a recent work [11],the nuclear landscape has been investigated within the triaxial relativistic density functional theory with the PC-PK1 [14]functional,and the beyond-meanfield dynamical correlation energies are taken into account by a microscopically mapped five-dimensional collective Hamiltonian without additional free parameters.Nevertheless,the precisions of DFTs are still required to be improved,especially for the cases that the functional cannot be well constrained,e.g.properties of exotic nuclei far from the experimentally known region and the high-density nuclear matter in neutron stars.The uncertainties of nuclear properties would limit our understanding of exotic nuclear structure and astrophysical nucleosynthesis [15,16].Therefore,seeking effective ways to further improve nuclear theories for predicting various nuclear properties is one of the most important frontiers of nuclear physics.

    Over the past decades,increasingly powerful computers and continuously optimizing algorithms have driven explosive applications of machine learning(ML)in many fields of physics[17],including nuclear physics[18].Some of the ML applications in nuclear physics focus on rebuilding or refining the nuclear theory itself,e.g.applications in nuclear energy density functionals [19],variational calculations [20,21],extrapolations for many-body physics [22–25],etc.Other applications focus on improving the description accuracies of nuclear properties from existing nuclear theory,e.g.applications in nuclear masses[26–33],β-decays [34,35],charge radii [36–38],excited states[39–41],fission yields[42,43],spallation reactions [44,45]and projectile fragmentation reactions [46,47],etc.The applications of various ML approaches to various aspects of nuclear physics can be found in a recent review[18].Here,we would focus on the applications of kernel ridge regression(KRR)in nuclear physics.

    The KRR is a powerful machine-learning approach,which extends ridge regression to the nonlinear case by learning a function in a reproducing kernel Hilbert space [48–50].The KRR approach was firstly introduced to the field of nuclear physics to improve nuclear mass predictions [31]in 2020.It is found that the KRR approach can avoid the risk of worsening the mass predictions for nuclei at large extrapolation distances[31],and has obtained the most precise machine-learning mass model so far when the odd–even effects are taken into account[33].The successful applications of the KRR approach in nuclear masses have also triggered more applications including the ML energy density functionals [19]and charge radii [51].

    Neutron-capture reaction plays a significant role in the cosmic nucleosynthesis of elements heavier than iron,through thes-andr-processes [52–54].In thes-process,the neutroncapture rates,especially for thes-process branch-point nuclei,are crucial fors-abundances determination,by affecting thes-process path and the reaction flow along the path [53].In ther-process,the neutron-capture rates affect ther-abundances by controlling the speed of therprocess as well as the location of ther-process path [55].Experimentally,the data of neutroncapture reaction cross-sections are available only for about 300 nuclei [56].Theoretically,the neutron-capture reaction crosssections are mainly predicted by the Hauser–Feshbach statistical model [57],and the corresponding uncertainty is about a factor of three for stable nuclei [58],and becomes much larger for unstable ones [15].The difficulties in experiments and the uncertainties in theories limit the stellar nucleosynthesis simulations of thes-process andr-process.It is thus in demand to further improve the prediction accuracies of neutron-capture reaction cross-sections.The present work provides the first ML application in the neutron-capture reaction study,by applying the KRR approach to improve the Hauser–Feshbach predictions.

    The paper is organized as follows.In section 2,the theoretical framework of the KRR approach is presented.In section 3,the numerical details are given.Then,the results of the KRR application in neutron-capture reaction cross-sections are presented in section 4.Finally,a summary is given in section 5.

    2.Theoretical framework

    The typical neutron spectrum of the variouss-process andr-process sites is described by a Maxwell–Boltzmann distribution,because neutrons are quickly thermalized in the dense stellar plasma.The effective stellar reaction crosssections are thus obtained as the Maxwellian-averaged(n,γ)cross-sections (MACS)

    wherekTis the environment temperature andσ(E) is the ground state neutron-capture cross-section at a specific relative kinetic energyE.Experimentally,due to the difficulties in making targets with unstable nuclei,currently the MACSs are only available for about 300 nuclei around the stable line in the temperature range fromkT=5 keV to 100 keV [56,59].Theoretically,the MACSs adopted in the stellar nucleosynthesis simulations are mainly obtained by the Hauser–Feshbach statistical model(HFSM)[57].However,the predictions of the HFSM with different model inputs,e.g.nuclear level densities andE1 gamma-ray strength functions,can vary with a factor of three for nuclei around the stable line [58],and the model variations can be much larger for nuclei away from stability[15].The present work introduces the KRR approach to improve the Hauser–Feshbach predictions of MACS.

    The logarithmic residual of MACS for the nucleus(Zj,Nj)at temperatureTjin the KRR approach is expressed as

    where the kernel function is taken as

    The logarithmic deviation(Z,N,T)in the KRR approach is trained to reconstruct the logarithmic residual of MACS between experimental data 〈σ〉exp(Z,N,T)and theoretical predictions 〈σ〉th(Z,N,T),i.e.Δ(Z,N,T)=The weightsωiare determined by minimizing the loss function defined as

    whereω=(ω1,...,ωm).The frist term represents the variance between data and KRR prediction,and the second term is a regularizer that penalizes large weights to reduce the risk of overfitting.Minimizing loss functionL(ω)in equation(4)yields

    whereKis the kernel matrix with elementsKij=K(xi,xj),Iis the identity matrix,and Δ=(Δ1,...,Δm)are the data to be learned.

    Once the reconstructed KRR function(Z,N,T)is obtained,the KRR prediction of MACS can be given by

    There are two main differences between the present KRR scheme for MACS and the one for nuclear masses [31,33].One is that the temperature is also included as an input,so a new hyperparameterηshould be additionally introduced.The other one is that the KRR function is trained to reconstruct the logarithmic residual of MACS because the MACS values vary by several orders of magnitude for different nuclei.

    3.Numerical details

    In the present work,the experimental MACS data for 242 nuclei withZ> 20 are taken from Karlsruhe Astrophysical Database of Nucleosynthesis in Stars (KADoNiS) v1.0 [56].For each nucleus,MACS data at twelve temperatures(kT=5,8,10,15,20,25,30,40,50,60,80,100 keV)are available.

    Theoretical MACSs are calculated by the HFSM with the Talys program [60,61],which depends on the inputs including the level density models and theE1 gamma-ray strength functions.We employ 6 level density models and 8E1 gamma-ray strength functions,and thus have 48 combinations in total.The 6 level density models include constant temperature+Fermi gas model (CTM) [62],back-shifted Fermi gas model (BFM) [62],generalised superfluid model (GSM) [62],microscopic level densities (Skyrme force) from Goriely’s tables (HFBCS) [63],microscopic level densities (Skyrme force) from Hilaire’s combinatorial tables (HFB) [64],and microscopic level densities(temperature dependent HFB,Gogny force) from Hilaire’s combinatorial tables (T-HFB) [65].The 8E1 gamma-ray strength functions include Kopecky-Uhl generalized Lorentzian (KUGL)[66],Brink-Axel Lorentzian(BAL)[67,68],Hartree–Fock BCS tables (HFBCS) [69,70],Hartree–Fock–Bogolyubov tables(HFB) [69,71],Goriely’s hybrid model (GHM) [72],Goriely T-dependent HFB (T-HFB) [60],T-dependent RMF (T-RMF)[60],and Gogny D1M HFB + QRPA (D1MHFB) [60].Other inputs are taken as the default settings of the Talys1.9 [60,61].

    The involved hyperparameters in the KRR approach,i.e.penalty strengthλ,andσandηthat appear in the kernel function,are determined through the leave-one-out cross-validation(LOOCV).

    4.Results and discussions

    We first focus on the study of MACS at a specific temperaturekT=30 keV,which is a typical temperature in thes-process environment [73].As the HFSM calculations are carried out with 48 groups of level density models and strength functions,we introduce 48 KRR networks,which are trained with the logarithmic deviations between the experimental MACS data and the 48 sets of theoretical predictions respectively.For each network,the KRR hyperparameters are optimized with the lowestΔrmsthrough the leave-one-out cross-validation(LOOCV).

    Figure 1.The rms logarithmic deviations Δrms of the Talys and the KRR predictions with respect to the experimental MACS data.

    In figure 1,the rms logarithmic deviationsΔrmsof the Talys and the KRR predictions with respect to the experimental MACS data are depicted.The rms logarithmic deviations for the Talys results are generally around Δrms=0.25,which refers to a relative deviation of 78%.Specifically,theΔrmsobtained with the level density model GSM is relatively large,and theΔrmsobtained with the strength functions HFBCS and HFB are relatively small.Nevertheless,the KRR approach improves the Talys predictions in all cases.The rms logarithmic deviations are generally reduced to below0.20 by the KRR approach,and can even reach to below 0.13 for several cases.In particular,for the Talys calculations with the level density model CTM and strength function HFBCS,the KRR approach provides the smallest rms logarithmic deviation0.116,which refers to a relative deviation of 31%.So,the following analyses will be based on this case.

    In figure 2,a detailed comparison of the KRR predictions and the Talys calculations with the level density model CTM and the strength function HFBCS is illustrated,where the modified relative error (MRE)δis introduced as

    It refers to a deviation from 100% for the ratio between the prediction values and data.The MREsδbetween the Talys predictions and the experimental data are mainly in the range from 0 to 2,and the corresponding rms deviation ofδ(δrms) is 69.8%.For the KRR predictions,the corresponding MREsδare reduced mainly in the range from 0 to 1,and this corresponds to a rms deviation of35.4%.Moreover,the KRR approach improves the predictions of the MACS globally for nuclei in different mass regions.

    To illustrate the potential impacts of the present KRR predictions of the MACS on the s-process simulations,in figure 3,the KRR predictions of the MACSs for 21 s-process branch-point nuclei [53]scaled by the Talys predictions are depicted.Among these 21 nuclei,experimental data of MACSs are available for eight of them.In comparison with the Talys calculations,the KRR approach improves the predictions for 6 of the 8 nuclei,and worsens the predictions only for 2 ones,i.e.163Ho and171Tm.Note that the experimental data of171Tm have been updated by recent experiments[74],which are displayed with stars in figure 3 and match the KRR predictions better than the old data.These results suggest that the KRR predictions of the other 13 s-process branch-point nuclei,whose experimental values of the MACSs are unavailable,can be trusted.This would lead to positive influences on the s-process simulations.To see the effects of the KRR corrections of the MACS on the s-process simulations would be interesting in future work.

    Figure 2.The MREsδ (see text) of the Talys and the KRR predictions with respect to the experimental MACS data.

    Figure 3.The KRR predictions of the MACSs for 8 s-process branch-point nuclei with available experimental data(solid diamond)and 13 ones without experimental data (hollow diamond) scaled by the Talys predictions.The experimental values [56]are denoted by black dots when they are available.For 171Tm,two latest experimental data from[74]are also displayed with stars,which are measured with the activation method and the time-of-flight method,respectively.The grey line represents the Talys calculations.

    To include the temperature degree of freedom,it should be noted that the MACS dependence on temperature is quite different from that on the proton and neutron numbers.To carefully study the temperature effects,here we introduce two kinds of LOOCV to validate the KRR approach.The first one is called the leave-one-data-out-cross-validation(LODOCV),which means that when predicting the MACS labeled by(Z,N,T),only the MACS data of the nucleus(Z,N)at temperatureTis removed from the training set.The other one is called the leave-one-nucleus-out-cross-validation(LONOCV),which means that when predicting the MACS labeled by(Z,N,T),all the MACS data of the nucleus(Z,N)are removed from the training set.

    Figure 4(a) depicts the rms MREδrmsof the KRR predictions with respect to the experimental MACS data at different temperatures through the LODOCV and LONOCV respectively,in comparison with the Talys results.As can be seen,the KRR predictions with both LODOCV and LONOCV can improve the Talys predictions at all the temperatures,and the improvement of LODOCV is much more significant than that of LONOCV.This indicates that the MACS data of a nucleus at different temperatures can help to predict each other,as the MACS data with different temperatures for the target nucleus are involved in the training set in the LODOCV.

    A detailed comparison between the MREsδfor the KRR predictions atkT=30 keV is given in figure 4(b).The improvement achieved by the KRR predictions with LODOCV is significant in the whole mass region,and the correspondingδrmsis as small as2.0%.Nevertheless,the improvement achieved by the KRR predictions with LONOCV is just similar to the learning results without temperatures [see figure 2(a)],and the correspondingδrmsis 35.7%.Therefore,to predict the MACS for a nucleus(Z,N)at a specific temperatureTin the KRR approach,the MACS data for the same nucleus(Z,N)at different temperaturesTare most helpful.

    In order to examine the extrapolation power of the KRR approach along different temperatures,the KRR network is trained with the MACS data for all nuclei only at the temperatureskT=25 and30 keV,and the corresponding KRR predictions for the MACS at all temperatures are displayed in figure 4(c) in comparison with the Talys results.The KRR approach improves the predictions at all temperatures.The improvements are significant when the temperatures are close to the training temperatureskT=25 and30 keV,and are still quite considerable even when the temperatures are far from the training temperatures.This indicates the reliability in extrapolating the MACS predictions along different temperatures in the KRR approach.

    5.Summary

    Advances in machine-learning methods have driven explosive applications in nuclear physics.The kernel ridge regression(KRR) is a powerful machine-learning approach,which extends ridge regression to the nonlinear case by learning a function in a reproducing kernel Hilbert space.Recently,it has been introduced in the field of nuclear physics,and achieved many successes in building nuclear energy density functionals and predicting nuclear properties including nuclear masses,radii,etc.This article provides the first application of the machine-learning approach in the study of the cross-sections for neutron-capture reactions with the KRR approach.It is found that the KRR approach can reduce the root-mean-square deviation of the relative errors between the experimental MACS data and the theoretical predictions from 69.8% to 35.4%,and thus can help to improve the MACS predictions ofs-process branch-point nuclei.By including the MACS data with different temperatures in the training set,the rms deviation can be further reduced to 2.0%.Moreover,the extrapolation performance of the KRR approach along different temperatures is found to be effective and reliable.

    Figure 4.(a) The rms MREδrms of the Talys and the KRR predictions with respect to the experimental MACS data at different temperatures.(b) Theδ of the Talys and the KRR predictions with respect to the experimental MACS data atkT=30 keV.(c) The extrapolation of the KRR approach along different temperatures in comparison with the Talys results.The shadowed area denotes the training data (see text).

    Acknowledgments

    This work was partly supported by the National Key R&D Program of China (Contracts No.2018YFA0404400 and No.2017YFE0116700),the National Natural Science Foundation of China(Grants No.11875075,No.11935003,No.11975031,No.12141501 and No.12070131001),the China Postdoctoral Science Foundation under Grant No.2021M700256,and the Highperformance Computing Platform of Peking University.

    亚洲国产欧美在线一区| 在线 av 中文字幕| 亚洲国产精品国产精品| 性高湖久久久久久久久免费观看| 日本色播在线视频| 我要看日韩黄色一级片| 亚洲欧美一区二区三区国产| 国产爽快片一区二区三区| 久久av网站| 日韩一本色道免费dvd| 亚洲精品色激情综合| 日日摸夜夜添夜夜爱| 97精品久久久久久久久久精品| 涩涩av久久男人的天堂| 九九在线视频观看精品| 亚洲av成人精品一二三区| 91在线精品国自产拍蜜月| 国产视频内射| 亚洲,欧美,日韩| 三级国产精品欧美在线观看| 丰满人妻一区二区三区视频av| 黄色毛片三级朝国网站 | 国产精品成人在线| 观看美女的网站| 丝袜脚勾引网站| 99热这里只有是精品50| 三级国产精品欧美在线观看| 亚洲内射少妇av| 亚洲欧美清纯卡通| 久久久a久久爽久久v久久| 欧美日本中文国产一区发布| 26uuu在线亚洲综合色| 日本av手机在线免费观看| 亚洲精品成人av观看孕妇| 国产淫语在线视频| 三级国产精品欧美在线观看| 午夜久久久在线观看| 在现免费观看毛片| 精品一品国产午夜福利视频| 久久免费观看电影| 久久影院123| 老司机影院成人| 一个人免费看片子| 全区人妻精品视频| 久久久国产一区二区| 我要看黄色一级片免费的| 久久精品国产a三级三级三级| 伦精品一区二区三区| 一区二区三区精品91| 免费av中文字幕在线| 日韩亚洲欧美综合| 人妻 亚洲 视频| 在线看a的网站| 国产一区亚洲一区在线观看| 丝袜脚勾引网站| 久久这里有精品视频免费| 国内少妇人妻偷人精品xxx网站| xxx大片免费视频| 日韩欧美精品免费久久| 中文在线观看免费www的网站| 久久女婷五月综合色啪小说| 七月丁香在线播放| 下体分泌物呈黄色| 熟女av电影| 久久久午夜欧美精品| 黑人猛操日本美女一级片| 51国产日韩欧美| 国产欧美日韩精品一区二区| 国产永久视频网站| 夫妻午夜视频| 久久人人爽人人片av| 午夜视频国产福利| 日产精品乱码卡一卡2卡三| 少妇猛男粗大的猛烈进出视频| 嘟嘟电影网在线观看| 久久久久久久久久成人| 一区在线观看完整版| 天美传媒精品一区二区| 18禁动态无遮挡网站| 免费大片黄手机在线观看| 五月伊人婷婷丁香| 精品久久久精品久久久| 国产伦精品一区二区三区四那| 22中文网久久字幕| 人人澡人人妻人| a级毛色黄片| 一级毛片aaaaaa免费看小| 大香蕉久久网| 一区二区av电影网| 国内精品宾馆在线| 精品亚洲乱码少妇综合久久| 国产女主播在线喷水免费视频网站| 亚洲国产av新网站| 国产综合精华液| 免费黄色在线免费观看| 日本91视频免费播放| 成人亚洲欧美一区二区av| 人人妻人人澡人人看| 精品少妇内射三级| 中文字幕久久专区| 永久免费av网站大全| 一级毛片电影观看| 亚洲av不卡在线观看| 国产精品.久久久| 亚洲国产av新网站| 欧美精品亚洲一区二区| 精品人妻熟女毛片av久久网站| 久久久久精品久久久久真实原创| 老司机影院成人| av视频免费观看在线观看| 午夜日本视频在线| 男男h啪啪无遮挡| 97在线人人人人妻| 汤姆久久久久久久影院中文字幕| 久久 成人 亚洲| 在线观看人妻少妇| av在线观看视频网站免费| 偷拍熟女少妇极品色| 一级av片app| 女性生殖器流出的白浆| 精品久久久久久久久av| 丝袜在线中文字幕| 肉色欧美久久久久久久蜜桃| av天堂久久9| 性色av一级| 欧美激情极品国产一区二区三区 | 自拍偷自拍亚洲精品老妇| 少妇裸体淫交视频免费看高清| 亚洲精品国产av蜜桃| 美女脱内裤让男人舔精品视频| 爱豆传媒免费全集在线观看| 天堂俺去俺来也www色官网| 成年人免费黄色播放视频 | 另类精品久久| 国产av精品麻豆| 国产欧美另类精品又又久久亚洲欧美| 最近的中文字幕免费完整| 熟女av电影| 国产一区二区在线观看日韩| 老司机亚洲免费影院| 午夜视频国产福利| 国产 一区精品| videossex国产| 精品久久久噜噜| 亚洲av中文av极速乱| 最近中文字幕高清免费大全6| 亚洲av在线观看美女高潮| 国产精品一区二区性色av| 日韩强制内射视频| 精品亚洲乱码少妇综合久久| 国产精品国产三级专区第一集| 91在线精品国自产拍蜜月| 高清在线视频一区二区三区| 午夜福利网站1000一区二区三区| 国产黄片视频在线免费观看| 十八禁高潮呻吟视频 | 国产精品久久久久久精品电影小说| 在线观看免费视频网站a站| 国产在线免费精品| 成人国产av品久久久| 黄色毛片三级朝国网站 | 亚洲av电影在线观看一区二区三区| 丝袜在线中文字幕| 欧美精品人与动牲交sv欧美| 丰满迷人的少妇在线观看| 欧美日韩亚洲高清精品| 午夜福利网站1000一区二区三区| 久久精品久久精品一区二区三区| 久久狼人影院| 免费播放大片免费观看视频在线观看| a 毛片基地| 中国美白少妇内射xxxbb| 亚洲怡红院男人天堂| 夜夜骑夜夜射夜夜干| 午夜视频国产福利| 色婷婷av一区二区三区视频| 韩国高清视频一区二区三区| 永久免费av网站大全| 校园人妻丝袜中文字幕| 精品一品国产午夜福利视频| 搡女人真爽免费视频火全软件| 亚洲av免费高清在线观看| 日韩在线高清观看一区二区三区| 爱豆传媒免费全集在线观看| 中文字幕免费在线视频6| 欧美xxⅹ黑人| 久久青草综合色| 久久久久久久亚洲中文字幕| 五月伊人婷婷丁香| 少妇熟女欧美另类| 日本-黄色视频高清免费观看| 青春草亚洲视频在线观看| 久久精品国产亚洲av天美| 久久免费观看电影| 六月丁香七月| 不卡视频在线观看欧美| 精品久久久久久久久av| 国产日韩欧美亚洲二区| 欧美日韩视频精品一区| 狂野欧美白嫩少妇大欣赏| 久久久国产精品麻豆| 日韩av免费高清视频| 91精品国产九色| 中文字幕人妻丝袜制服| 黄色毛片三级朝国网站 | 日本av手机在线免费观看| 又黄又爽又刺激的免费视频.| 日日啪夜夜撸| 中文字幕精品免费在线观看视频 | 美女中出高潮动态图| 亚洲精品日韩av片在线观看| 欧美日韩精品成人综合77777| 偷拍熟女少妇极品色| 亚洲精品456在线播放app| 男女免费视频国产| 偷拍熟女少妇极品色| 国产乱来视频区| 91精品一卡2卡3卡4卡| 天天操日日干夜夜撸| 久久久久久伊人网av| 插阴视频在线观看视频| 欧美一级a爱片免费观看看| 日本黄大片高清| 日日撸夜夜添| 一级毛片我不卡| 九九爱精品视频在线观看| 十八禁网站网址无遮挡 | 日韩 亚洲 欧美在线| 在线观看免费视频网站a站| 国产女主播在线喷水免费视频网站| 久久久久久久久大av| 我要看日韩黄色一级片| 噜噜噜噜噜久久久久久91| 人人澡人人妻人| 国产黄色视频一区二区在线观看| 丝瓜视频免费看黄片| 一个人免费看片子| 在线看a的网站| av免费在线看不卡| 在线观看国产h片| 国产淫片久久久久久久久| a级一级毛片免费在线观看| 日韩精品有码人妻一区| 久久久久精品性色| 亚洲性久久影院| 日韩精品有码人妻一区| 男人和女人高潮做爰伦理| 久久久精品免费免费高清| 深夜a级毛片| 国产精品嫩草影院av在线观看| 伊人久久国产一区二区| 欧美激情国产日韩精品一区| 91成人精品电影| 国产一区二区三区综合在线观看 | av在线老鸭窝| 伊人久久精品亚洲午夜| 在线观看av片永久免费下载| 国产精品人妻久久久影院| 99久久综合免费| 婷婷色av中文字幕| 久久国产精品男人的天堂亚洲 | 18禁在线播放成人免费| 国产在视频线精品| 久久久久久久国产电影| 80岁老熟妇乱子伦牲交| 91久久精品电影网| 啦啦啦在线观看免费高清www| 丝袜脚勾引网站| 亚洲性久久影院| 日韩大片免费观看网站| 中文字幕免费在线视频6| 我的老师免费观看完整版| 在线观看美女被高潮喷水网站| 中文字幕久久专区| 精品久久久久久电影网| 亚洲av不卡在线观看| 亚洲av日韩在线播放| 中国国产av一级| 中文在线观看免费www的网站| a级毛片在线看网站| 亚洲,一卡二卡三卡| 亚洲精品乱码久久久v下载方式| 免费人妻精品一区二区三区视频| 亚洲综合精品二区| 黄色配什么色好看| 夫妻午夜视频| 内地一区二区视频在线| 久久久午夜欧美精品| 午夜福利视频精品| 成人免费观看视频高清| 久久久久人妻精品一区果冻| 精品一品国产午夜福利视频| 99热网站在线观看| 18禁动态无遮挡网站| 亚洲精品aⅴ在线观看| 久久久久人妻精品一区果冻| 国产又色又爽无遮挡免| 五月玫瑰六月丁香| 国产高清三级在线| 亚洲欧洲国产日韩| 特大巨黑吊av在线直播| 久久免费观看电影| 狂野欧美激情性bbbbbb| 久久精品国产亚洲av涩爱| 国产成人91sexporn| 国产精品99久久99久久久不卡 | 青春草亚洲视频在线观看| 亚洲精品日本国产第一区| 午夜影院在线不卡| 日本黄大片高清| 成人18禁高潮啪啪吃奶动态图 | 成年美女黄网站色视频大全免费 | 两个人免费观看高清视频 | 国产成人免费无遮挡视频| 亚洲精品一区蜜桃| 熟女电影av网| 日本wwww免费看| 狂野欧美白嫩少妇大欣赏| 人人妻人人澡人人爽人人夜夜| 精品久久国产蜜桃| 极品少妇高潮喷水抽搐| 美女主播在线视频| 亚洲精品456在线播放app| 久久99一区二区三区| videossex国产| 尾随美女入室| 中文精品一卡2卡3卡4更新| 欧美激情国产日韩精品一区| 建设人人有责人人尽责人人享有的| 国产一区有黄有色的免费视频| 国产成人freesex在线| 少妇人妻久久综合中文| 亚洲成人手机| 在线观看一区二区三区激情| 国内少妇人妻偷人精品xxx网站| 十分钟在线观看高清视频www | 一本一本综合久久| 亚洲国产欧美日韩在线播放 | xxx大片免费视频| 最近手机中文字幕大全| 一个人免费看片子| 91久久精品电影网| 夫妻午夜视频| 国产亚洲一区二区精品| 人体艺术视频欧美日本| 亚洲一级一片aⅴ在线观看| 亚洲av免费高清在线观看| 国产极品天堂在线| 成人18禁高潮啪啪吃奶动态图 | 国产成人精品婷婷| 最近的中文字幕免费完整| 精品少妇黑人巨大在线播放| 亚洲av欧美aⅴ国产| 美女国产视频在线观看| 99久久精品国产国产毛片| 久久久a久久爽久久v久久| 寂寞人妻少妇视频99o| 精品一区在线观看国产| 久久精品国产a三级三级三级| 插逼视频在线观看| 大片电影免费在线观看免费| 老司机影院成人| 黄色配什么色好看| 亚洲精品色激情综合| 狂野欧美激情性bbbbbb| 亚洲经典国产精华液单| 亚洲综合色惰| 男人和女人高潮做爰伦理| 97超碰精品成人国产| 极品人妻少妇av视频| 国产精品久久久久成人av| 国产欧美日韩精品一区二区| av在线观看视频网站免费| 日日爽夜夜爽网站| av黄色大香蕉| 国产成人精品无人区| 丰满乱子伦码专区| 日韩在线高清观看一区二区三区| 亚州av有码| 国产91av在线免费观看| 成人国产麻豆网| 99热这里只有是精品在线观看| 亚洲欧美一区二区三区黑人 | 国产伦在线观看视频一区| 久久影院123| 男人添女人高潮全过程视频| 日韩av免费高清视频| 在线观看人妻少妇| 国产欧美日韩综合在线一区二区 | 国产熟女欧美一区二区| 亚洲精品日本国产第一区| 成人亚洲欧美一区二区av| 日韩成人av中文字幕在线观看| 99re6热这里在线精品视频| 精品久久久久久久久av| av视频免费观看在线观看| 欧美精品国产亚洲| av在线app专区| 我的女老师完整版在线观看| 内地一区二区视频在线| 这个男人来自地球电影免费观看 | 男人添女人高潮全过程视频| 97超视频在线观看视频| 男女无遮挡免费网站观看| 一本—道久久a久久精品蜜桃钙片| 欧美 日韩 精品 国产| 免费播放大片免费观看视频在线观看| 特大巨黑吊av在线直播| 亚洲怡红院男人天堂| 18禁动态无遮挡网站| 搡女人真爽免费视频火全软件| 婷婷色av中文字幕| 久久久亚洲精品成人影院| 人妻系列 视频| 人体艺术视频欧美日本| xxx大片免费视频| 深夜a级毛片| 久久综合国产亚洲精品| 精品99又大又爽又粗少妇毛片| 国产精品久久久久久久电影| 一级a做视频免费观看| a级毛片免费高清观看在线播放| 亚洲av免费高清在线观看| 成年女人在线观看亚洲视频| 中文欧美无线码| 亚洲国产色片| 高清视频免费观看一区二区| 日本wwww免费看| 国产亚洲精品久久久com| 中国美白少妇内射xxxbb| 丰满乱子伦码专区| 欧美成人午夜免费资源| 精品亚洲成a人片在线观看| 久久精品熟女亚洲av麻豆精品| 免费高清在线观看视频在线观看| 久久午夜综合久久蜜桃| a 毛片基地| 亚洲,欧美,日韩| 美女国产视频在线观看| 欧美xxxx性猛交bbbb| 国产在线男女| 黑人高潮一二区| 亚洲精品中文字幕在线视频 | 熟女电影av网| 男女国产视频网站| 亚洲第一av免费看| 成人黄色视频免费在线看| 国内精品宾馆在线| 色网站视频免费| 国产日韩一区二区三区精品不卡 | 中文字幕精品免费在线观看视频 | 多毛熟女@视频| 色婷婷久久久亚洲欧美| 亚洲经典国产精华液单| 啦啦啦视频在线资源免费观看| 国产精品99久久久久久久久| 美女福利国产在线| 黑丝袜美女国产一区| 在线 av 中文字幕| 国产永久视频网站| 亚洲国产成人一精品久久久| 少妇被粗大猛烈的视频| 丝袜喷水一区| 日韩三级伦理在线观看| 如何舔出高潮| 十分钟在线观看高清视频www | 亚洲熟女精品中文字幕| a 毛片基地| 男女免费视频国产| 国产无遮挡羞羞视频在线观看| 国产精品无大码| 精品亚洲乱码少妇综合久久| 久久久久久久久久久丰满| 亚洲欧洲国产日韩| 大又大粗又爽又黄少妇毛片口| 国产男人的电影天堂91| 中国美白少妇内射xxxbb| 亚洲情色 制服丝袜| 久久鲁丝午夜福利片| 高清不卡的av网站| 免费av不卡在线播放| 简卡轻食公司| freevideosex欧美| 国产爽快片一区二区三区| 国产精品秋霞免费鲁丝片| 久久狼人影院| √禁漫天堂资源中文www| 国产成人freesex在线| 免费观看无遮挡的男女| 男女免费视频国产| 黄色视频在线播放观看不卡| 这个男人来自地球电影免费观看 | 99九九线精品视频在线观看视频| 欧美老熟妇乱子伦牲交| 天堂8中文在线网| 亚洲,欧美,日韩| 一区二区三区乱码不卡18| 天堂中文最新版在线下载| 亚洲欧美日韩另类电影网站| 91aial.com中文字幕在线观看| 亚洲图色成人| 我的女老师完整版在线观看| 18+在线观看网站| 我要看日韩黄色一级片| av天堂中文字幕网| 亚洲四区av| 亚洲欧美精品专区久久| 亚洲国产欧美日韩在线播放 | 国产乱人偷精品视频| 草草在线视频免费看| 国产色爽女视频免费观看| 日韩制服骚丝袜av| 久久久精品免费免费高清| 亚洲欧洲精品一区二区精品久久久 | 日韩不卡一区二区三区视频在线| 老女人水多毛片| 亚洲av福利一区| 国产欧美日韩精品一区二区| 亚洲精品国产成人久久av| 亚洲无线观看免费| 午夜老司机福利剧场| 欧美xxⅹ黑人| 乱系列少妇在线播放| 国产 一区精品| 国产日韩欧美视频二区| 亚洲伊人久久精品综合| 中文在线观看免费www的网站| 狂野欧美激情性xxxx在线观看| 亚洲精华国产精华液的使用体验| 能在线免费看毛片的网站| 一级毛片黄色毛片免费观看视频| 国产精品一二三区在线看| 3wmmmm亚洲av在线观看| 99热这里只有是精品50| a级毛片免费高清观看在线播放| 成人亚洲精品一区在线观看| 大香蕉97超碰在线| 国产午夜精品久久久久久一区二区三区| 国产一级毛片在线| 高清av免费在线| 熟女av电影| 亚洲欧美清纯卡通| 国内少妇人妻偷人精品xxx网站| 免费观看的影片在线观看| 制服丝袜香蕉在线| 欧美成人精品欧美一级黄| 国产精品秋霞免费鲁丝片| 久久久欧美国产精品| 日本av手机在线免费观看| 国产成人精品无人区| a级毛色黄片| 各种免费的搞黄视频| 秋霞伦理黄片| 久久午夜福利片| 国产成人精品无人区| 99热这里只有精品一区| 黑人高潮一二区| 久久鲁丝午夜福利片| 亚洲va在线va天堂va国产| 日本av免费视频播放| 亚洲国产欧美日韩在线播放 | 99久久人妻综合| 大码成人一级视频| 国产在线男女| 午夜福利影视在线免费观看| 91久久精品电影网| 国产精品一二三区在线看| 国内揄拍国产精品人妻在线| 成人午夜精彩视频在线观看| 在线观看美女被高潮喷水网站| 久久99一区二区三区| 国产亚洲一区二区精品| 国产成人精品婷婷| 国产成人一区二区在线| 精品一区二区三区视频在线| 一区二区三区精品91| 亚洲第一av免费看| 青春草亚洲视频在线观看| 美女脱内裤让男人舔精品视频| 国产无遮挡羞羞视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 欧美高清成人免费视频www| 久久 成人 亚洲| 婷婷色麻豆天堂久久| 中文字幕免费在线视频6| 成人影院久久| 国产白丝娇喘喷水9色精品| 五月天丁香电影| 这个男人来自地球电影免费观看 | 国产深夜福利视频在线观看| 久久影院123| 国产精品.久久久| 三级国产精品片| 中文天堂在线官网| 极品少妇高潮喷水抽搐| 精品少妇久久久久久888优播| 熟女电影av网| 久久久久久久大尺度免费视频| 各种免费的搞黄视频| 伦理电影大哥的女人| 国产片特级美女逼逼视频| 草草在线视频免费看| 欧美97在线视频| 男男h啪啪无遮挡| 亚洲电影在线观看av| 久久久久久久大尺度免费视频| 女人精品久久久久毛片| 午夜免费观看性视频| 一级毛片我不卡| 国产精品国产三级专区第一集| 国产免费又黄又爽又色| 久久综合国产亚洲精品| 22中文网久久字幕| 中文字幕制服av| 噜噜噜噜噜久久久久久91|