• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cosmic inflation from broken conformal symmetry

    2022-10-22 08:15:06RongGenCaiYuShiHaoandShaoJiangWang
    Communications in Theoretical Physics 2022年9期

    Rong-Gen Cai,Yu-Shi Hao and Shao-Jiang Wang

    1 CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China

    2 School of Fundamental Physics and Mathematical Sciences,Hangzhou Institute for Advanced Study(HIAS),University of Chinese Academy of Sciences (UCAS),Hangzhou 310024,China

    3 School of Physical Sciences,University of Chinese Academy of Sciences(UCAS),Beijing 100049,China

    Abstract A period of rapidly accelerating expansion is expected in the early Universe implemented by a scalar field slowly rolling down along an asymptotically flat potential preferred by the current data.In this paper,we point out that this picture of the cosmic inflation with an asymptotically flat potential could emerge from the Palatini quadratic gravity by adding the matter field in such a way to break the local gauged conformal symmetry in both kinetic and potential terms.

    Keywords: Palatini gravity,modified gravity,conformal symmetry,cosmic inflation

    1.Introduction

    A simultaneous resolution for the fine-tuned horizon problem,flatness problem,and monopole problem calls for a period of rapidly accelerating expansion of spacetime[1–8]in the early Universe at least prior to the big bang nucleosynthesis.This inflationary paradigm also provides the causal productions for the primordial cosmological perturbations with a nearly scale-invariant spectrum [9–16]responsible for the observed cosmic microwave background [17,18]and large-scale structures [19,20].The standard realization for such an inflationary period usually turns to a slow-roll scalar field along with some inflationary potential [8].The most recent constraint [21]on cosmic inflation still prefers a single-field slow-roll plateau-like potential.

    There are two popular implements for such a plateau-like potential:the simplest one is the Starobinsky inflation[2]with an additional quadratic term for the Ricci scalar curvature R;the most economic one is the Higgs inflation [22]with the only known fundamental scalar field (Higgs boson) so far as the inflaton non-minimally coupled to R.It was realized in recent years that they could be all constructed in general from the cosmological attractors [23]to consist of the α-attractors[24–28](including the Starobinsky inflation as a special case[29]) and ξ-attractors [30](including the Higgs inflation and induced inflation [31–35]as special cases).

    It is then intriguing to explore the theoretical origin of these asymptotically flat potentials.The current observational data merely reveals two clues: (i) a plateau-like potential is supposed to admit an approximate shift symmetry,which should be slightly broken to protect an asymptotically flat potential against quantum corrections.(ii) A nearly scaleinvariant spectrum of primordial perturbations suggests a slightly broken scale symmetry in the very early Universe from de Sitter (dS) to quasi-dS phases.An appealing understanding of cosmic inflation should explain the roles played by these two symmetries.

    Motivated by the superconformal approach [36–38]to the Higgs-like inflation and Starobinsky inflation[39,40],the α-attractor approach is able to really appreciate the role played by the conformal(scale)symmetry.The starting point of this approach is an old observation that a single real conformal compensator(a scalar field called conformon)with the Lagrangianis equivalent to the pure Einstein gravity with a positive cosmological constant 9λ(thus a dS solution)after gauge-fixing the conformon field to some constant thanks to the local conformal symmetry of the Lagrangian.

    Although the gauge-fixing for the conformon field eliminates the concern for the presence of ghost from the wrong-sign kinetic term,the conformon field cannot be gauge-fixed if one tries to construct any nontrivial structure(namely inflation with quasi-dS phase)by explicitly breaking the local conformal symmetry.Therefore,the α-attractor approach introduces an extra scalar field with a joint global symmetry [24,25,39,40]with the conformon field but still leaves the local conformal symmetry unbroken in order to fix the gauge of the would-be-ghost conformon field.After gauge-fixing,the local conformal symmetry is spontaneously broken,and the global-symmetry-breaking potential leads to an asymptotically flat potential.However,the global symmetry for a successful inflationary implementation is restricted due to the wrong-sign kinetic term required by the local conformal symmetry.

    The introduction of the conformon field with wrong-sign kinetic term could be avoided if one dives into the Palatini formalism of gravity [41,42]where the metric and affine connection are treated as independent degrees of freedom.In the Palatini formalism,the conformon field with wrong-sign kinetic term naturally emerges as a geometric gauge degree of freedom from the R2term (see equation (14) below),which has been already derived but overlooked in [43].The focus there is mainly on the dynamical recovering of the metric Einstein gravity in the absence of matter field in the Palatini formalism of a general quadratic gravity with the local conformal symmetry.The metric Einstein gravity therefore emerges at the decoupling limit of the Weyl gauge field after eating up the dilaton field?μlnφ2with a shift symmetry inherited from the local gauged conformal symmetry of φ.See [44–46]for a similar realization in the Weyl quadratic gravity and a comparison to the Palatini quadratic gravity[47]as well as its concrete realizations in the standard model of particle physics [48]and cosmology [49].See also [50–55]for other trials.

    However,to carry out an inflationary potential in the Palatini formalism in a conformally invariant manner,it seems that a global symmetry shared with an additional scalar field is still needed to be slightly broken[56,57]similar to the α-attractor approach.Nevertheless,we will point out in this paper that,in the Palatini quadratic gravity,the presence of an additional global symmetry is not necessary as also expected from the swampland conjecture [58–61]of no global symmetry in quantum gravity.Without introducing any global symmetry,a plateau-like inflationary potential is always implied when the matter field is included in such a way to appropriately break the local conformal symmetry.

    The outline of this paper is as follows: In section 2,we review previous results on the emergence of metric Einstein gravity from Palatini quadratic gravity.In section 3,we show the emergence of non-plateau-like and plateau-like inflation models when adding the matter field differently in terms of the local conformal symmetry.We summarize our results and discuss possible future perspectives in section 4.The convention for metric gμνis(-,+,+,+),the Planck mass isMPl≡and quantities with an overbar symbol (like the Ricci scalarand covariant derivative) are always subjected to the Levi-Civita connectionThe Riemann tensor and its variation under the connection variationrespectively,where the torsion tensorTμρν=Γρμν-Γνρμwill beTμρν=Γρμν-Γνρμin teleparallel equivalent of general relativity simply set to zero hereafter for convenience due to the geometric trinity of gravity[62].We remind here that the geometric trinity of gravity is an equivalence among three different ways to describe gravity: the traditional way of using Riemann tensorRαβμνin general relativity describes a rotation of vector after transported in parallel along a closed curve,while the torsion tensor describes the non-closure of parallelograms formed by two vectors transported along each other,and the non-metricity tensorQλμν=?λ gμνin symmetric teleparallel equivalent of general relativity describes the dilation of the length of a vector when transported along a curve.This geometric trinity of gravity might be jeopardized when the matter field is added.We,therefore,leave the case with the presence of the torsion field for future work.

    2.Palatini quadratic gravity

    In this section,we review the Palatini quadratic gravity with a local conformal symmetry,which reduces to the metric Einstein gravity with a positive cosmological constant when fixing the gauge of the local conformal symmetry.Although most of the derivations in this section have been presented before in [43],we re-derive these results to set up our notations and conventions to be used later on.

    2.1.Palatini R2 gravity

    We start with the Palatini R2gravity with an action of a form

    whose field equation for metric reads

    Despite the trivial solution R=0,the non-trivial part of the field equation for metric is (differ from the usual GR case with an extra factor of 1/2 in front of the Ricci scalar)

    whose trace is identically satisfied (unlike the usual GR case that the trace part of the Einstein field equation gives rise to the vacuum solution R=0).Therefore,despite the trivial solution R=0,the trace part of the field equation for metric puts no constraint on Ricci scalar R,and the only constraint on R comes from the equation of motion (EoM) for the symmetric connection,

    which,after substituted with its trace in λ=ν by=0,becomes

    Expanding the above equation as

    by the non-metricity te nsorQλμν=?λ gμνand non-metricity vector Qλ=gμν?λgμνfollowed by contracted with gμν,one has

    Note that the action(1)is actually a redundant description due to the local conformal symmetry,S[g,Γ]=under the local conformal transformations,

    since the Ricci scalar-squareR(g,Γ)2=(gμν Rμν(Γ))2=compensates the contribution fromTo fix this gauge symmetry,one should fix one of the scalar degree of freedom,for example,gaugefixing R to some constant C ≠0.Then,the equation (7)reduces to the vanishing non-metricity with the metric compatible Levi-Civita connection,and the equation (3) reduces to the usual GR case of the Einstein field equation with a nonvanishing cosmological constant Λ=C/4.Note that the vacuum solution R=0 automatically satisfies the connection EOM(7),therefore,only in this case,it does not reduce to the metric Einstein gravity with a cosmological constant.In what follows,we will not consider the case with R=0.

    We can also introduce an auxiliary fieldφ22=F′(φ)=αφin the expansion ofF(R)=F(φ)+F′ (φ)(R-φ)for F(R)=(α/2)R2,and then arrive at an equivalent Jordan frame action

    which reduces to(1)when putting φ-field on-shell by its EoM φ2/2=αR.This Jordan-frame action enjoys a local gauged conformal symmetry,S[g,Γ;φ]=under the local gauged conformal transformations

    where φ is actually a gauge degree of freedom of the shift symmetry ln=lnφ-ln Ωcompensating the local conformal transformation (8).However,unlike in the metric formalism,the auxiliary field φ is not a dynamical degree of freedom.This could be seen after conformally transforming(9) into the Einstein-frame action as

    with a specific conformal factor Ω(x)2=φ(x)2MP2l.Note that φ remains unchanged during the local conformal transformations (8) and it only transforms as=Ω-1φwhen testing for the local gauged conformal symmetry.It is easy to see that this Einstein-frame actionis equivalent to the Jordan-frame action S[g,Γ;φ]by directly gauge-fixing φ to MPlthanks to the local gauged conformal symmetry of φ.Now that the Einstein-frame action is minimally coupled,putting the connection on-shell reproduces the Levi-Civita connection,and the metric-affine geometry reduces to the Riemannian geometry.Hence the metric Einstein gravity is recovered in a gauge-fixing form but with an additional positive cosmological constant.

    Equivalently [43],provides alternative treatment on the action (9) by first putting the connections on-shell before making either local conformal transformations (8) or gaugefixing φ to MPl.Note that the torsionless version of Stokes’theorem in Palatini formalism renders ∫ d4x?μ=0,one obtains the EoM of the connection,

    which,after contracting ν=λ,gives rise to an equation=0that could be rewritten as=0 in terms of a metric-compatible auxiliary metric fμν≡φ2gμν.Therefore,the connection could be solved as the Levi-Civita connectionin terms of fμν,which,after expressed in terms of gμνexplicitly,becomes

    with abbreviatingGμ≡?μlnφ2=lnφ2=?μlnφ2.Note that with on-shell connection,the Weyl gauge feildAμ≡=Gμis fxied and determined by Gμfeild alone,which is in fact related to the fact that the action (9) is invariant under the projective transformation=Γρμν+δρμξν(x)for an arbitrary vector feild ξμ(x)used for gauge-fxiing Aμ.Putting the connectionΓμρνon-shell(OS)with solution(13),the Ricci scalar readsR(g,ΓOS)=and the action (9) becomes

    which is exactly the Lagrangian form with a wrong-sign kinetic term desired by the α-attractor approach in the first place.The on-shell action (14) also enjoys a local gauged conformal symmetry,S[g;φ]=under the local gauged conformal transformations

    thanks to the plus sign of+3 (φ)2(namely conformon)that is crucial for exact cancellations with respect to the Ω-dependent terms inNow that φ is a gauge degree of freedom,one can either directly gaugefxi φ to MPlor choose a specifci conformal factorΩ2=φ2MP2lto conformally transform(14) viaS[gμν=Ω-2;φ]as

    which is exactly the action (11) with on-shell connection.

    In a short summary,the R2term in the Palatini formalism contributes an extra non-dynamical gauge degree of freedom φ of shift symmetry ln=lnφ2-ln Ω2under the local gauged conformal transformations (10) or (15).Therefore,lnφ2andGμ=?μlnφ2behave like the dilaton field and the would-be Goldstone field,respectively.After gauge-fixing φ to MPl,the metric Einstein gravity with a positive cosmological constant is recovered.

    2.2.Palatini R2+ gravity

    which also enjoys a local gauged conformal symmetry,S[g,Γ;φ]=under the local gauged conformal transformations (10).Note that=Aμ-?μln Ω2does not transform independently from the local conformal transformations (8) but inherited from(g)=-2?μln Ω2under the local conformal transformations(8).It is easy to see that both(18)and(19)admit additional gauge shift symmetry under=Aμ-?μω2for an arbitrary gauge function ω(x),and hence Aμis actually a gauge degree of freedom.It is worth noting that this gauge shift symmetry of Aμis different from the gauge shift symmetry of φ since ω does not need to coincide with the local conformal transformation factor Ω.

    Alternatively [43],provides another intriguing view on the action (19) by first putting the connection on-shell before making either local conformal transformations (8) or gaugefixing φ to MPl.The EoM of the connection is obtained as

    Note that at this point Aμdoes not enjoy the arbitrary gauge shift symmetry underA?μ=Aμ-?μω2anymore.It seems that putting the connection on shell picks out a particular gauge choice ω=Ω for Aμwhen transformed coherently with the local gauged conformal transformations (15).Note also that,putting the connection on-shell does not fix all its components but leaves Aμundetermined since contracting ρ=ν in(21)simply reduces to a trivial identity.This is caused by the explicitly broken projective symmetry of (19) and (23) under the projective transformation=Γρμν+δρμξν(x)for an arbitrary vector field ξμ(x),which would otherwise fix the Weyl gauge field Aμ.This is different from the case in section 2.1 where Aμis fully determined byAμ=Gμ≡?μlnφ2since the projective symmetry is not broken there.

    Finally,the on-shell action(23)still enjoys the local gauged conformal symmetry,S[g,A;φ]=under the local Ω2=to conformally transform (23) into the Einsteingauged conformal transformations (15),one can either directly gauge-fix φ to MPlor choose a specific conformal factor frame action byS[gμν=as

    which is the Palatini Einstein gravity with a positive cosmological constant plus a Proca gauge field action.Fixing the gauge of φ breaks the local gauge conformal symmetry of (23),and the would-be Goldstone field Gμis therefore absorbed by Aμto render a massive gauge feild with a massmA2=6β2MP2l.When Aμis decoupled below mA,the metricity is deduced and the metric Einstein gravity with a positive cosmological constant is therefore recovered at this decoupling limit.

    One can also arrive at the same result as(24)from(19)by putting the connection on-shell after making either local conformal transformations(8)or gauge-fixing φ to MPl.In specific,since the action (19) is locally gauged conformal invariant,we can fix the gauge of φ to some constant scale MPl,

    which,after putting Γ on-shell,reduces to the same form as(24)(but without over-tilde symbols).We can also choose a specific conformal factorΩ2=φ2MP2lto conformally transform (19)into the Einstein-frame action byS[gμν=,Γρμν=;φ]as

    3.Inclusion of matter field

    Now that the Palatini quadratic gravity simply reproduces the metric Einstein gravity with a positive cosmological constant in a gauge-fixing form,we need to add matter field to the Palatini quadratic gravity in order to account for the inflaton field responsible for the cosmic inflation.There are two ways to add the matter field:either preserving or breaking the local gauged conformal symmetry.

    3.1.Preserving the local conformal symmetry

    3.1.1.Palatini R2gravity.We start with the Palatini R2gravity with the inclusion of a matter field h as

    Note that at this point Aμis not an independent degree of freedom from the connectionΓμρν,thus one cannot separately vary the actions (27) or (29) with respect to AμfromΓμρν.In fact,Aμonly becomes an independent residual degree of freedom after putting the connection on-shell due to the explicit presence of Aμin the Dμterm that breaks the projective symmetry,

    which would otherwise fix the Weyl gauge field Aμfrom gaugefixing the arbitrary vector field ξμ(x).To put the connection onshell,one first varies the action(29)with respect to theΓμρν,and then obtain the EoM for the connection as

    This gauge symmetry allows us to fix one of the scalar degrees of freedom,for example,gauge-fixing ρ to the Planck scale MPl,and then the action (32) reduces to

    Due to the absence of kinetic term for Aμ,it can be integrated out by putting it on-shell via its EoM(a constraint equation),

    and then the action further reduces to

    which,after normalizing the kinetic term by redefining

    becomes

    with the potential U(h(φ),MPl) abbreviated as W(φ) of form

    If all effective potential terms of the matter field are absent(namely ξ=0 and λ=0),the final reduced theory is the metric Einstein gravity with a cosmological constant.Otherwise,the potential W(φ) does not admit an asymptotically flat potential since W(φ)is divergent at φ→∞limit.In fact,W(φ)supports a small-field tachyonic inflation at small φ limit for hierarchical couplings αλ ?ξ2?1 with the approximated potential

    from which the slow-roll parameters can be expanded as

    Therefore,the consistency relation r=-8ntis unchanged but the scalar spectral index ns=1+2η*-6∈* and the tensor-toscalar ratio r=16∈*evaluated at the horizon crossing of some pivot scale k*=a(t*)H(t*) is related by

    3.1.2.Palatini R2+gravity.Parallel discussions also apply for PalatiniR2+R[2μν]gravity with an action of form

    which,after replacing α2R2=φ2R-φ4/(4α),becomes

    with ρ2≡φ2+ξh2and U(h,ρ)≡(λ/4)h4+(ρ2-ξh2)/(8α)as defined before.To put connection on-shell,solving the EoM of the connection from the action (45),

    admits the same solution as(21),and the action(45)with onshell connection becomes

    which still enjoys a local gauged conformal symmetry,S[g,A;h,ρ]=under the local gauged conformal transformation (33).Again,this allows us to gauge-fix ρ to MPl,and the reduced action reads

    This is the same action proposed in [43]for the Palatini R2inflation with the same small-field tachyonic inflationary feature as (38).In a short summary,when the matter field is added in a way to preserve the local conformal symmetry(usually also break the projective symmetry at the same time),the asymptotically flat inflationary potential is not implied.

    3.2.Breaking the local conformal symmetry

    3.2.1.Palatini R2gravity.To break the local gauged conformal symmetry,we propose to replace the gauge covariant derivative Dμin (44) with a normal covariant derivative ?μ,namely.

    As we will see shortly below that the cosmic inflation with an asymptotically flat potential is always obtained if one further breaks the local gauged conformal symmetry in the non-minimal coupling or matter potential by adding lower-than-quadratic terms beyond G(h)=ξh2or higher-than-quartic terms beyond V(h)=(λ/4)h4so that the ratioV(h) G(h)2is an increasing function of h at a large h limit.

    Similar to the previous sections,we first extract the scalar degree of freedom in the R2term by replacing α2R2=φ2R-φ4/(4α),then we obtain the Jordan-frame action

    If both the non-minimal coupling G=ξh2and the matter potential V=(λ/4)h4include no extra dimensional scales,then the effective potential W is merely a cosmological constant,

    However,if G(h) or V(h) is amended with additional dimensional scales to break the local gauged conformal symmetry in such a way that G contains lower-than-quadratic terms,or V contains higher-than-quartic terms,

    Note that the inflationary potential W is even more flattened when the potential V becomes very steep.Therefore,this k-inflation [63,68]but with an asymptotically flat potential largely emerges as a result of the broken local gauged conformal symmetry in both matter kinetic and potential terms(regarding the non-minimal coupling term as some kind of effective potential term induced by the background gravity).

    respectively,from which the scalar/tensor spectral indexes and tensor-to-scalar ratio evaluated at the horizon crossing moment of some pivot scale k*=a(t*)H(t*)/cs(t*) are obtained as

    It can be numerically checked that this approximation is sufficiently stable for model predictions,which are the functions of N* with input parameters λ,ξ,and α.In order to identify the parameter regions of observational interest,we can use the measured values of nsand Asto fix λ,ξ,

    and then the tensor-to-scalar ratio reads

    Requiring r to be smaller than the current upper bound r0.05<0.036 [70],α should satisfy

    Using the best-fit values ns=0.9649 and ln (1 010As)=3.045 from Planck 2018 TT,TE,EE+lowE constraints [18],we finally identify the parameter space of α as

    The remaining freedom on N* can be traced back to different reheating histories.In general,as long as the above condition on α is satisfied,one can always find the parameter regions for λ and ξ to simultaneously meet the observational constraints ns=0.9649,ln (1010As)=3.045and r0.05<0.036.

    3.2.2.Palatini R2+gravity.Parallel discussions also apply for PalatiniR2+R[2μν]gravity with an action of form

    which,after replacing α2R2=φ2R-φ4/(4α),becomes

    Putting the connection on-shell with the same solution (21)gives rise to an action of a form

    which,after conformally transformed into Einstein frame viawith a specific conformal factorΩ2=,is reduced into

    When Aμis decoupled below the scale 6βMPl,we return back to (52) that immediately leads to the K-essence theory(54) and hence an asymptotically flat inflationary potential is similarly obtained.In a short summary,the asymptotically flat potential emerges as a result of breaking the local conformal symmetry appropriately for both scalar kinetic and effective potential terms,and is independent of the presence or absence of the projective symmetry as shown for (49) or (91),respectively.

    4.Conclusions and discussions

    Cosmic inflation is the standard pillar for the standard model of modern cosmology,describing a period of nearly exponential expansion of spacetime in the very early Universe to solve several fine-tuning problems of the standard hot big bang scenario and generate nearly scale-invariant primordial perturbations observed in the cosmic microwave background and large scale structures.The current observational data prefers a single-field slow-roll plateau-like inflationary potential,which could be theoretically motivated from the cosmological attractor approach.A conformon field with a wrong-sign kinetic term is introduced to respect the local conformal symmetry and a second scalar field is added in such a way to impose an additional global symmetry jointed with the conformon field,which is broken by the potential term but with the local conformal symmetry intact.After fixing the gauge of conformon field,the potential term with broken global symmetry gives rise to the exponentially flattened inflationary potential.

    However,this approach introduces the wrong-sign conformon field at the price of introducing an additional global symmetry for inflationary model buildings.Nevertheless,the wrong-sign conformon field could naturally arise in the Palatini quadratic gravity,though an additional global symmetry is also adopted for inflationary model buildings.In this paper,we point out that,in Palatini quadratic gravity,such an encumbrance of an additional global symmetry is needless.Appropriately breaking the local conformal symmetry alone for both kinetic and potential terms of a matter field is sufficient to produce an asymptotically flat inflationary potential regardless of the high steepness of original matter potential.

    For future perspectives,it is still mysterious what position should we find for the Palatini quadratic gravity in approaching the underlying quantum gravity.A related question is that,for Palatini quadratic gravity without matter field or with conformally invariant matter field,since the local conformal symmetry is a gauge symmetry,then what causes this redundancy or what is the origin for this local conformal symmetry?This is a profound question[71,72]on how gauge symmetry emerges from more physical symmetry [73,74].

    The next question concerns the transition from the local conformally symmetric matter phase to the locally conformalsymmetry broken matter phase.Breaking the local conformal symmetry in matter potential is easy by quantum corrections or renormalization group flow.However,the reduction of a gauge covariant derivative term into a normal covariant derivative term is unclear.A dynamical mechanism for triggering such a broken conformal symmetry in the kinetic term is desirable.

    The last question runs into the initial conditions for the cosmic inflation,which is usually the realm of the quantum cosmology [75]for the no-boundary [76,77]and tunneling[78–82]proposals.As far as we know,there is currently no study on quantum cosmology starting from the Palatini quadratic gravity,which might be related to the recent new result [83]in presence of non-minimal coupling compared to the case of absence [84,85].

    Acknowledgments

    We thank Li Li,Run-Qiu Yang,Shan-Ming Ruan for helpful discussions.This work is supported by the National Key Research and Development Program of China Grant No.2020YFC2201501,the National Natural Science Foundation of China Grants No.12105344,No.11 647 601,No.11821505,No.11851302,No.12047503,No.11991052,No.12075297 and No.12 047 558,the Key Research Program of the CAS Grant No.XDPB15,the Key Research Program of Frontier Sciences of CAS,and the Science Research Grants from the China Manned Space Project with NO.CMS-CSST-2021-B01.

    亚洲国产欧美一区二区综合| 一二三四在线观看免费中文在| 国产精品乱码一区二三区的特点 | 国产精品欧美亚洲77777| 怎么达到女性高潮| 老司机深夜福利视频在线观看| 激情在线观看视频在线高清 | 黑人猛操日本美女一级片| av电影中文网址| 国产无遮挡羞羞视频在线观看| 日韩 欧美 亚洲 中文字幕| 亚洲精品国产精品久久久不卡| 亚洲av日韩在线播放| 国产精品秋霞免费鲁丝片| 亚洲第一欧美日韩一区二区三区| 国产成人精品久久二区二区免费| 中文亚洲av片在线观看爽 | 成人18禁在线播放| 国产精品乱码一区二三区的特点 | 亚洲av成人一区二区三| 精品国产超薄肉色丝袜足j| 亚洲国产看品久久| 性色av乱码一区二区三区2| 99热国产这里只有精品6| 久久午夜综合久久蜜桃| 欧美性长视频在线观看| 十八禁高潮呻吟视频| 欧美日本中文国产一区发布| 亚洲精品自拍成人| 多毛熟女@视频| 天天躁日日躁夜夜躁夜夜| 免费在线观看影片大全网站| 亚洲av美国av| 日韩大码丰满熟妇| av天堂久久9| 久久国产精品影院| 18禁国产床啪视频网站| 男人的好看免费观看在线视频 | 一区二区三区激情视频| 亚洲第一青青草原| 高清毛片免费观看视频网站 | 精品高清国产在线一区| 久久香蕉精品热| 高清欧美精品videossex| 国产午夜精品久久久久久| 国产日韩欧美亚洲二区| 久久精品aⅴ一区二区三区四区| 99精品欧美一区二区三区四区| 亚洲人成77777在线视频| 欧美在线一区亚洲| 亚洲熟女精品中文字幕| 欧美丝袜亚洲另类 | 日韩免费高清中文字幕av| 一进一出抽搐gif免费好疼 | 波多野结衣一区麻豆| 国产在线精品亚洲第一网站| 国产99白浆流出| 在线免费观看的www视频| 嫁个100分男人电影在线观看| 国产人伦9x9x在线观看| 国产亚洲一区二区精品| 天堂动漫精品| 国产国语露脸激情在线看| 人人妻人人添人人爽欧美一区卜| 亚洲国产欧美日韩在线播放| 国产精品九九99| 免费在线观看黄色视频的| 黄色毛片三级朝国网站| 日本五十路高清| 丝袜美腿诱惑在线| 精品欧美一区二区三区在线| 国产乱人伦免费视频| 一区二区日韩欧美中文字幕| 国产精华一区二区三区| 一级毛片精品| 女人高潮潮喷娇喘18禁视频| 男女之事视频高清在线观看| 极品人妻少妇av视频| 亚洲欧洲精品一区二区精品久久久| 久久性视频一级片| 午夜视频精品福利| 女人被躁到高潮嗷嗷叫费观| 国产亚洲精品第一综合不卡| 国产欧美日韩一区二区三| 国产一区二区三区在线臀色熟女 | 最近最新中文字幕大全免费视频| 午夜精品久久久久久毛片777| 亚洲avbb在线观看| 看片在线看免费视频| 精品福利观看| 国产野战对白在线观看| 露出奶头的视频| 日本一区二区免费在线视频| 9191精品国产免费久久| 在线观看一区二区三区激情| 中国美女看黄片| 久久久久精品国产欧美久久久| 中文亚洲av片在线观看爽 | 精品卡一卡二卡四卡免费| 午夜免费成人在线视频| 久久久久久久精品吃奶| 欧美大码av| 不卡一级毛片| 精品久久久久久久毛片微露脸| 久久久久久亚洲精品国产蜜桃av| 成年版毛片免费区| 99re6热这里在线精品视频| 99香蕉大伊视频| 午夜日韩欧美国产| 一a级毛片在线观看| 午夜福利在线观看吧| 国产aⅴ精品一区二区三区波| 一区二区三区激情视频| 成人亚洲精品一区在线观看| 欧美一级毛片孕妇| 变态另类成人亚洲欧美熟女 | 亚洲国产看品久久| 91国产中文字幕| 日日夜夜操网爽| 久久精品国产a三级三级三级| 国产精品av久久久久免费| 成年女人毛片免费观看观看9 | 香蕉丝袜av| 人妻久久中文字幕网| 黄色成人免费大全| 成年人免费黄色播放视频| 老司机午夜十八禁免费视频| 亚洲国产精品合色在线| 深夜精品福利| 女人精品久久久久毛片| 水蜜桃什么品种好| 19禁男女啪啪无遮挡网站| 亚洲欧美激情综合另类| 国产精品久久久久成人av| av在线播放免费不卡| 亚洲人成电影观看| 国产成人免费无遮挡视频| 涩涩av久久男人的天堂| 国产精品久久视频播放| 一进一出抽搐动态| 无限看片的www在线观看| 亚洲一区二区三区不卡视频| 精品一品国产午夜福利视频| 高清毛片免费观看视频网站 | 老司机亚洲免费影院| 国产av一区二区精品久久| 两性夫妻黄色片| 男男h啪啪无遮挡| tube8黄色片| 久久久久久久精品吃奶| 久久青草综合色| 十八禁高潮呻吟视频| 久久中文字幕人妻熟女| 一区二区三区精品91| 欧美人与性动交α欧美精品济南到| 91麻豆精品激情在线观看国产 | 少妇被粗大的猛进出69影院| 午夜亚洲福利在线播放| 视频区图区小说| 看免费av毛片| 亚洲成人免费电影在线观看| 国产一区在线观看成人免费| 精品久久久久久久毛片微露脸| 国产熟女午夜一区二区三区| 9色porny在线观看| 欧美精品亚洲一区二区| 国产成人系列免费观看| 极品教师在线免费播放| 丝袜美足系列| 夜夜夜夜夜久久久久| 国产精品欧美亚洲77777| 欧美乱色亚洲激情| 久久精品国产a三级三级三级| 黄色视频不卡| 亚洲色图 男人天堂 中文字幕| www.熟女人妻精品国产| 免费日韩欧美在线观看| 婷婷精品国产亚洲av在线 | 精品亚洲成国产av| 亚洲熟妇中文字幕五十中出 | 日韩免费高清中文字幕av| 另类亚洲欧美激情| 热99re8久久精品国产| 色老头精品视频在线观看| 男女床上黄色一级片免费看| 99久久综合精品五月天人人| 悠悠久久av| 国产亚洲精品久久久久5区| 高清在线国产一区| 亚洲少妇的诱惑av| 国产精华一区二区三区| 一本综合久久免费| 91精品三级在线观看| 十分钟在线观看高清视频www| 亚洲五月色婷婷综合| 五月开心婷婷网| 国产激情久久老熟女| 悠悠久久av| 在线看a的网站| 夜夜躁狠狠躁天天躁| 在线视频色国产色| 久久性视频一级片| 无限看片的www在线观看| 在线免费观看的www视频| 国产区一区二久久| 国产成人欧美| 夜夜爽天天搞| 9191精品国产免费久久| 美女高潮喷水抽搐中文字幕| 高清av免费在线| 欧美日韩黄片免| 黄频高清免费视频| 国产激情欧美一区二区| 人妻 亚洲 视频| 久久这里只有精品19| 在线观看66精品国产| 免费高清在线观看日韩| 国产在线精品亚洲第一网站| 国产又色又爽无遮挡免费看| 免费在线观看亚洲国产| 久久久精品区二区三区| 天天操日日干夜夜撸| 黄片播放在线免费| 久久精品熟女亚洲av麻豆精品| av福利片在线| 亚洲欧美激情在线| 狠狠婷婷综合久久久久久88av| 亚洲情色 制服丝袜| 色在线成人网| 欧美色视频一区免费| www日本在线高清视频| 一二三四社区在线视频社区8| 女人被狂操c到高潮| 亚洲精品中文字幕在线视频| 大型av网站在线播放| 一级毛片高清免费大全| 欧美激情 高清一区二区三区| 99热网站在线观看| 久久久久久人人人人人| 亚洲精华国产精华精| 亚洲午夜理论影院| 天堂动漫精品| av一本久久久久| 国产野战对白在线观看| 国产欧美日韩综合在线一区二区| 成人特级黄色片久久久久久久| 亚洲九九香蕉| 免费观看精品视频网站| 欧美黑人精品巨大| 久9热在线精品视频| 脱女人内裤的视频| 欧美黑人精品巨大| 99精品久久久久人妻精品| 一级毛片精品| 深夜精品福利| 欧美精品av麻豆av| 亚洲美女黄片视频| 电影成人av| 成人18禁在线播放| 亚洲国产中文字幕在线视频| 很黄的视频免费| netflix在线观看网站| av天堂在线播放| 精品国产一区二区三区久久久樱花| 18禁裸乳无遮挡动漫免费视频| 免费日韩欧美在线观看| 少妇被粗大的猛进出69影院| 在线观看免费日韩欧美大片| 亚洲 欧美一区二区三区| 日韩欧美国产一区二区入口| 黑丝袜美女国产一区| 久久久久视频综合| 亚洲欧美精品综合一区二区三区| 国产精品二区激情视频| 国产麻豆69| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲全国av大片| 久久久久国内视频| 色老头精品视频在线观看| 亚洲人成77777在线视频| 我的亚洲天堂| 1024香蕉在线观看| 黑人猛操日本美女一级片| 久久国产乱子伦精品免费另类| 欧美人与性动交α欧美精品济南到| 少妇 在线观看| 性色av乱码一区二区三区2| 成人精品一区二区免费| 亚洲精品粉嫩美女一区| 夜夜躁狠狠躁天天躁| 午夜福利一区二区在线看| 欧美黄色淫秽网站| 亚洲 国产 在线| 欧美精品一区二区免费开放| 一边摸一边做爽爽视频免费| 亚洲精华国产精华精| 热99国产精品久久久久久7| 91成年电影在线观看| 夜夜躁狠狠躁天天躁| 一进一出好大好爽视频| 午夜成年电影在线免费观看| 精品视频人人做人人爽| 国产亚洲欧美精品永久| 啦啦啦免费观看视频1| 操美女的视频在线观看| 久久精品国产a三级三级三级| 男人操女人黄网站| 精品国产亚洲在线| 男人的好看免费观看在线视频 | 动漫黄色视频在线观看| 欧美午夜高清在线| 精品熟女少妇八av免费久了| 动漫黄色视频在线观看| 国产精品成人在线| 动漫黄色视频在线观看| 两性夫妻黄色片| 麻豆成人av在线观看| 啪啪无遮挡十八禁网站| 手机成人av网站| 狠狠婷婷综合久久久久久88av| 精品卡一卡二卡四卡免费| 黄色视频不卡| 久久国产亚洲av麻豆专区| www.999成人在线观看| 成人影院久久| 久久中文看片网| 国产片内射在线| 在线观看免费视频网站a站| 久久久久国产一级毛片高清牌| 极品少妇高潮喷水抽搐| 两人在一起打扑克的视频| 成人国产一区最新在线观看| 亚洲人成伊人成综合网2020| 乱人伦中国视频| 99香蕉大伊视频| 亚洲熟妇熟女久久| 免费观看精品视频网站| 国产欧美亚洲国产| 一级毛片精品| 亚洲av日韩精品久久久久久密| 一级毛片女人18水好多| 美女高潮喷水抽搐中文字幕| 精品少妇久久久久久888优播| 久久中文看片网| 成人影院久久| 人人妻人人爽人人添夜夜欢视频| 黑人欧美特级aaaaaa片| av视频免费观看在线观看| 国产男女内射视频| 日韩欧美一区二区三区在线观看 | 亚洲成人免费av在线播放| 国产成人av教育| ponron亚洲| 国产熟女午夜一区二区三区| 天天躁夜夜躁狠狠躁躁| 免费不卡黄色视频| 波多野结衣av一区二区av| av片东京热男人的天堂| tube8黄色片| 少妇的丰满在线观看| 亚洲国产毛片av蜜桃av| 欧美日韩亚洲国产一区二区在线观看 | 国产精品九九99| 窝窝影院91人妻| 久久久水蜜桃国产精品网| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品粉嫩美女一区| 色综合婷婷激情| 欧美日韩中文字幕国产精品一区二区三区 | 国产有黄有色有爽视频| 免费日韩欧美在线观看| 国产精品 国内视频| 黄色成人免费大全| 久久性视频一级片| 中文字幕制服av| 久99久视频精品免费| 亚洲 国产 在线| 三级毛片av免费| 乱人伦中国视频| 99热网站在线观看| 巨乳人妻的诱惑在线观看| 欧美一级毛片孕妇| 午夜福利一区二区在线看| 亚洲精品国产色婷婷电影| 1024香蕉在线观看| 脱女人内裤的视频| 国产一区二区三区在线臀色熟女 | tube8黄色片| 久久精品国产99精品国产亚洲性色 | 欧美大码av| 欧美黄色片欧美黄色片| 国产精品电影一区二区三区 | 亚洲色图av天堂| 中亚洲国语对白在线视频| 国产亚洲av高清不卡| 男人的好看免费观看在线视频 | 19禁男女啪啪无遮挡网站| 久久 成人 亚洲| 国产成人精品在线电影| 中文字幕精品免费在线观看视频| 啪啪无遮挡十八禁网站| 国产亚洲一区二区精品| 女警被强在线播放| 精品久久久久久,| 久久久久国产一级毛片高清牌| 一a级毛片在线观看| 成人18禁在线播放| 天堂动漫精品| 亚洲国产欧美网| 天天添夜夜摸| 国产精品乱码一区二三区的特点 | 免费观看人在逋| av不卡在线播放| 满18在线观看网站| 午夜两性在线视频| 亚洲人成电影免费在线| 极品少妇高潮喷水抽搐| 熟女少妇亚洲综合色aaa.| 国产av一区二区精品久久| 久久热在线av| av有码第一页| 国产成人免费无遮挡视频| 美女高潮喷水抽搐中文字幕| 亚洲人成电影免费在线| 18禁黄网站禁片午夜丰满| 超碰成人久久| 久久香蕉国产精品| 正在播放国产对白刺激| 久久亚洲精品不卡| 亚洲情色 制服丝袜| 亚洲精品粉嫩美女一区| 亚洲专区字幕在线| 久久天躁狠狠躁夜夜2o2o| 久久久精品区二区三区| 操出白浆在线播放| 精品久久久久久,| 免费久久久久久久精品成人欧美视频| 免费在线观看完整版高清| 国精品久久久久久国模美| 天天添夜夜摸| 欧美日韩精品网址| 后天国语完整版免费观看| 国产深夜福利视频在线观看| 欧美成人免费av一区二区三区 | 黄片大片在线免费观看| 亚洲全国av大片| 十分钟在线观看高清视频www| 国产不卡一卡二| 成人18禁高潮啪啪吃奶动态图| 啦啦啦 在线观看视频| 欧美日韩国产mv在线观看视频| 在线看a的网站| 欧美成人午夜精品| 午夜老司机福利片| 国产不卡一卡二| 国产aⅴ精品一区二区三区波| 久久久水蜜桃国产精品网| 91九色精品人成在线观看| cao死你这个sao货| 一区二区三区激情视频| 老司机午夜十八禁免费视频| 国产高清激情床上av| 淫妇啪啪啪对白视频| videosex国产| 国产精品国产高清国产av | 丝瓜视频免费看黄片| 老司机午夜福利在线观看视频| 另类亚洲欧美激情| 热99re8久久精品国产| 乱人伦中国视频| 高清av免费在线| 一本一本久久a久久精品综合妖精| 真人做人爱边吃奶动态| 最近最新中文字幕大全免费视频| 动漫黄色视频在线观看| 亚洲成a人片在线一区二区| 久久狼人影院| 免费观看精品视频网站| 免费女性裸体啪啪无遮挡网站| 一二三四在线观看免费中文在| 久久久国产成人免费| 女人高潮潮喷娇喘18禁视频| 99热网站在线观看| 日本五十路高清| 日韩大码丰满熟妇| 很黄的视频免费| 在线观看www视频免费| 精品福利永久在线观看| 日韩免费高清中文字幕av| 久久久国产精品麻豆| 丁香六月欧美| 久久久水蜜桃国产精品网| 看免费av毛片| 欧美日本中文国产一区发布| 亚洲精品久久午夜乱码| 美女高潮喷水抽搐中文字幕| 欧美久久黑人一区二区| 午夜福利,免费看| 丰满迷人的少妇在线观看| 18禁国产床啪视频网站| 亚洲欧洲精品一区二区精品久久久| 久热这里只有精品99| 国产精品欧美亚洲77777| 欧美黑人精品巨大| 黑人猛操日本美女一级片| 久热这里只有精品99| 成人18禁在线播放| 亚洲精品久久成人aⅴ小说| 老司机福利观看| 免费少妇av软件| 久久ye,这里只有精品| 成人免费观看视频高清| 九色亚洲精品在线播放| 国产成人av教育| 久久久久久久午夜电影 | 国产欧美日韩一区二区三区在线| 亚洲综合色网址| 精品人妻熟女毛片av久久网站| 香蕉久久夜色| 国产精品偷伦视频观看了| 午夜影院日韩av| 最近最新中文字幕大全电影3 | 99精品在免费线老司机午夜| 久久精品国产亚洲av高清一级| 一区二区三区激情视频| 成人国语在线视频| 免费在线观看完整版高清| 欧美久久黑人一区二区| 老汉色av国产亚洲站长工具| 免费一级毛片在线播放高清视频 | 丁香欧美五月| svipshipincom国产片| 午夜福利,免费看| 真人做人爱边吃奶动态| 亚洲人成77777在线视频| 无限看片的www在线观看| 丝袜美腿诱惑在线| 热99国产精品久久久久久7| 夜夜爽天天搞| 韩国精品一区二区三区| 正在播放国产对白刺激| 亚洲九九香蕉| 亚洲精品国产区一区二| 国产亚洲欧美精品永久| 国产精品.久久久| 手机成人av网站| 18禁黄网站禁片午夜丰满| 久久久精品免费免费高清| 在线国产一区二区在线| 一边摸一边抽搐一进一小说 | 国产片内射在线| 成在线人永久免费视频| 精品久久久精品久久久| 亚洲精品自拍成人| 精品亚洲成a人片在线观看| 久久人妻av系列| 日韩欧美免费精品| 国产一区二区三区视频了| 大码成人一级视频| 在线天堂中文资源库| 97人妻天天添夜夜摸| 国产av又大| 涩涩av久久男人的天堂| 欧洲精品卡2卡3卡4卡5卡区| 亚洲视频免费观看视频| 91精品国产国语对白视频| 亚洲国产欧美一区二区综合| 婷婷精品国产亚洲av在线 | 19禁男女啪啪无遮挡网站| 无限看片的www在线观看| 日韩人妻精品一区2区三区| 在线观看www视频免费| 久9热在线精品视频| 日韩欧美国产一区二区入口| 久久草成人影院| 日韩欧美一区二区三区在线观看 | 亚洲av美国av| 欧美日韩瑟瑟在线播放| 人人妻人人澡人人看| 18禁国产床啪视频网站| 久久精品亚洲熟妇少妇任你| 欧美日韩一级在线毛片| 另类亚洲欧美激情| 中文字幕精品免费在线观看视频| 久久香蕉激情| 日韩欧美一区二区三区在线观看 | 久久久国产精品麻豆| 亚洲中文字幕日韩| 亚洲综合色网址| 午夜福利免费观看在线| 久久久精品区二区三区| 国产男女内射视频| 成在线人永久免费视频| 欧美亚洲日本最大视频资源| 法律面前人人平等表现在哪些方面| 老司机影院毛片| 国产精品久久久久久精品古装| 欧美中文综合在线视频| 叶爱在线成人免费视频播放| 免费在线观看影片大全网站| 国内久久婷婷六月综合欲色啪| 极品教师在线免费播放| 每晚都被弄得嗷嗷叫到高潮| www.熟女人妻精品国产| 国产伦人伦偷精品视频| 好男人电影高清在线观看| xxx96com| 久久亚洲真实| 12—13女人毛片做爰片一| 十分钟在线观看高清视频www| 日韩欧美一区二区三区在线观看 | 成年人免费黄色播放视频| 超碰成人久久| 欧美乱妇无乱码| 欧美精品高潮呻吟av久久|