• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Driving potential and fission-fragment charge distributions

    2022-10-22 08:15:00YuanSuMinLiuandNingWang
    Communications in Theoretical Physics 2022年9期

    Yuan Su,Min Liu,2 and Ning Wang,2

    1 Department of Physics,Guangxi Normal University,Guilin 541004,China

    2 Guangxi Key Laboratory of Nuclear Physics and Technology,Guilin 541004,China

    Abstract We propose an efficient approach to describe the fission-fragment charge yields for actinides based on the driving potential of the fissioning system.Considering the properties of primary fission fragments at their ground states,the driving potential,which represents the potential energies of the system around scission configuration and closely relates to the yields of fragments,can be unambiguously and quickly obtained from the Skyrme energy-density functional together with the Weizs?cker–Skyrme mass model.The fission-fragment charge distributions for thermal-neutron-induced fission and spontaneous fission of a series of actinides,especially the odd–even staggering in the charge distributions,can be well reproduced.Nuclear dynamical deformations and pairing corrections of fragments play an important role in the

    Keywords: nuclear fission,fragment charge distribution,driving potential,nuclear deformation,energy density functional

    1.Introduction

    Nuclear fission is a field of very intense studies for more than half a century[1–7].One of the most interesting characteristics of neutron or heavy-ion induced fission is the huge difference in the mass and charge distribution of the fission fragments for different nuclei.The investigation of the fission fragment yields is of great importance not only for nuclear engineering but also for understanding the fission process,testing nuclear models and exploring the role of fission recycling as well as the structure of extremely neutron-rich nuclei for the study of r-process in nuclear astrophysics[8–10].It is yet not very clear,until now,how the original compound nucleus is transformed into a variety of different fragments.It is qualitatively thought that the shell effect plays a role in the double-humped distribution for the fission of some actinides.Accurate predictions for the fission fragment distribution especially the charge distribution of actinides including the odd–even staggering [11]are still urgently required.

    To describe fission dynamics and fission barrier,some microscopic or semi-empirical approaches,such as the Skyrme Hartree–Fock models[12,13],the covariant density functional theory [14,15]and the macroscopic–mircoscopic models[1,5,16,17],were established for calculating the potential energy surface(PES) of a fissioning system from ground state deformation to scission configurations.With the aid of modern computers,the fission barriers of nuclei can be successfully reproduced with a deviation of about one MeV[1,14,15],and the fission fragment distributions can be roughly reproduced based on the five-dimensional PES from the macroscopic–microscopic model [5].The calculations of multi-dimensional PES are time-consuming since millions of wave equations for strongly (triaxial) deformed nuclear potentials need to be solved for obtaining the single-particle levels of the system at different deformation configurations.Furthermore,the determination of the model parameters especially the strength of the spin–orbit interaction and that of the pairing force from the saddle to scission is difficult in the traditional PES calculations,which could reduce the predictive power of the models for describing the yields of fission fragments.It is therefore necessary to develop an alternative more efficient method for studying fission around scission and post-scission movements.

    To describe the competition between quasi-fission and complete fusion of super-heavy systems,the di-nuclear system(DNS)concept was successfully proposed[18–22].In fact,the microscopic shell structure and even–odd effect can be involved in the potential energy surface of DNS.According to the DNS concept,each fission fragment around the scission point retains its individuality in the evolution of the DNS.In [23],it was found that the valley of the driving potential for the mass number of heavy fragments locates at 140 for neutron-induced fission of235U,which is in good agreement with the peak of measured mass distribution.It is therefore interesting to investigate the charge yields for the fission of actinides based on the corresponding driving potentials.

    In this work,we attempt to study the yields of fission fragments based on the DNS concept.Different from the traditional studies based on the whole potential energy surface of a fissioning system from the ground state to the scission point,we focus on the potential energy surface around scission configuration.We would like to study the influence of nuclear structure effect on the yields of primary fission fragments especially the odd–even staggering in the charge distribution for binary fission of actinides at low excitation energies.

    2.Driving potential of a fissioning system

    The total potential energy of a fissioning system around scission is written as

    where E1and E2denote the potential energies of the light and heavy fission fragments respectively,which are functions of nuclear deformations.V(β→,R) denotes the interaction potential between two fragments with the center-to-center distance R,which is obtained with the Skyrme energy-density functional plus the extended Thomas–Fermi (ETF) approximation [24].In the Skyrme energy-density functional approach,the total binding energy of a nucleus can be expressed as the integral of the energy density functional which is a function of nuclear densities of protons and neutrons under the ETF2 approximation[25].In our calculations,the nuclear central densities and surface diffuseness for a certain nucleus (or fragment) are firstly determined by using the restricted density variational method and taking the neutron and proton density distributions as spherical symmetric Fermi functions [24].Then,we introduce nuclear deformationsβ→in the radius parameter,remaining the central densities and surface diffuseness of the nucleus (or fragment)unchanged,to consider the influence of nuclear deformations on the interaction potential between two fragments.

    Assuming that a compound nucleus separates into a certain pair of fission fragments,(ACN,ZCN)→(A1,Z1)+(A2,Z2),with a mass numberACN=A1+A2and charge numberZCN=Z1+Z2in the fission process,we define the driving potential of the fissioning system as,

    with mass number Afand charge number Zffor one fragment.The driving potential describes the potential energy of the fissioning system around scission configuration.ECNand Qg.s.denote the energy of the compound nucleus at its ground stat e and the Q value of the reaction system,respectively.denotes the deformations of fission fragments around scission configuration.In this work,the static deformations for each fission fragment,i.e.,the deformations for nuclei at their ground states,are determined by Weizs?cker–Skyrme(WS) mass model [26].Simultaneously,the dynamical deformations βDof fragments are also considered.ΔQ=[E1(βD)-E1g.s.]+[E2(βD)-E2g.s.]denotes the change of the potential energies for the fission fragments with respect to the individual energies at their ground states due to the dynamical deformations.

    For a description of the elongated tip–tip structure of a fissioning system around the scission point,nuclear prolate shapes and the octupole deformations should play a dominant role.In this work,we take the absolute value |β2| for nuclei with oblate deformations and set the values of dynamical octupole deformationβD3for a pair of fission fragments to be the same but in reverse for simplicity.By varying the value ofβD3for a certain pair of fission fragments at the position of the potential barrier where the two fragments are slightly separated and searching for the minimal value of the driving potential U,one can obtain the optimal value forβD3which is about 0.1–0.2(one can find the similar result from figure 10 in[27]).For fragments with spherical shapes at their ground states,the dynamical quadrupole deformationsβD2are also considered,and the values ofβD2are obtained like those forβD3.

    From equation (2),one can see that in addition to the interaction potential,both the properties of fragments at their ground state and the dynamic deformations around scission configuration influence the potential energy surface of a fissioning system.The microscopic shell effect and pairing effect are effectively involved in the calculations of Qg.s.and the residual part ΔQ.The values of Qg.s.are mainly taken from the measured masses with high accuracy in AME2016[28,29].For the masses of unmeasured nuclei and the value of ΔQ,we use the predictions of the WS mass models[26,30].We would like to emphasize that the driving potential U for a certain fissioning system can be unambiguously obtained from the Skyrme energy-density functional and the WS mass models,without introducing any new model parameters.

    3.Results and discussions

    Considering that the mass and charge number of fission fragments are distributed at a wide range,the driving potential U(Af,Zf) of a certain compound nucleus separating into different pairs of fission fragments is investigated.For example,the driving potential for fission of236U with about five hundred different pairs of fission fragments is calculated and the results are shown in figure 1(a).Figure 1(b)shows the data for the charge distribution of primary fission fragments in thermal-neutron-induced fission of235U(nth,f)[31].One sees from the driving potential that there exists two deep valleys located around (Af=140,Zf=54) and (Af=96,Zf=38)which exactly respond to the peaks of the mass and charge distributions of fission fragments.It indicates that the yields of fission fragments of236U at low excitation energies are closely related to the corresponding driving potential.

    Figure 1.(a) Calculated driving potential (in MeV) for fission of 236U.(b) Charge yields of fission fragments for 235U(nth,f) [31].

    Figure 2.Calculated and measured charge yields for fission of 234U and 236U.The squares denote the experimental data for thermalneutron-induced fission of 233U(nth,f) and 235U(nth,f)[31].The red curves denote the calculated results with equation (3).

    Based on the calculated driving potential,the corresponding fragment charge distributions for a fissioning system are further predicted.In this work,the yields of fission fragments for a fissioning system is expressed as,

    K is a model parameter,which relates to the temperature of the system around the scission point.Here,we empirically setK=0.38ACN-83.35(in MeV) for describing the fragment yields in the fsision of actinides at low excitation energies.The corresponding coeffciients in K are determined by the measured fsision-fragment charge distributions for a series of actinides.The normalization factorC(Af)=P(Af)/∑Zfexp[-U/K]can be uniquely determined by a given fragment mass distribution P(Af).In the present calculations,we use the measured fragment mass distribution for the determination of the normalization factor C.If P(Af) is not available,one could use the empirical fission potential[32]for calculating the mass distributions.With the driving potential and mass distribution,the charge distributions of the primary fsision fragmentsP(Zf)=∑AfY(Af,Zf)can be directly calculated with equation(3).Here,we wouldlike to emphasize that equation (3) is only applicable for describing the thermal-induced and spontaneous fission of actinides.If one would like to extend this model to describe the distributions of fission fragments and yields at high excitation energies,the temperature dependence for the driving potential U,the normalization factor C and the model parameter K should be considered.

    Figure 2 shows the calculated charge distribution of primary fragments for fission of234U and236U.The experimental data for thermal-neutron-induced fission of233U(nth,f)and235U(nth,f),especially the odd–even staggering can be well reproduced.From equation (2),one can see that nuclear deformations influence the value of ΔQ and the interaction potential V in the calculations of the driving potential.To see the influence of nuclear deformations on the charge distributions,we compare the calculated results with nuclear ground state deformations from the WS model[26]and those from the finite range droplet model(FRDM)[33].In figure 3,we show the calculated charge distribution of primary fragments for thermal-neutron-induced fission of234U,236U,240Pu and spontaneous fission of252Cf.The red curves and the green circles denote the calculated results from the WS model and the FRDM model,respectively.Here,the data for the mass distributions of233U(nth,f) [34],235U(nth,f) [35],239Pu(nth,f) [36]and spontaneous fission of252Cf [37]are adopted for the determination of the normalization factors C,respectively.One sees that with nuclear deformations from both mass models,the fragment charge distributions for fission of234U,236U,240Pu and252Cf can be reasonably well reproduced.The difference due to the predicted nuclear deformations from the two models can also be obviously observed for light fragments with Z=42.The yields for fragments with Z=42 and the corresponding partners based on the deformations from the FRDM model is much higher than those from the WS model,especially for the fission of U and Pu.According to the driving potential shown in figure 1,the most probable neutron number is around N=60 for fragments with Z=42.We note that the predicted quadrupole deformation (β2=0.329)from the FRDM model is much larger than that from the WS model (β2=0.210) for102Mo.The quadrupole deformation of nuclei can significantly affect the interaction potentialV(β→,R)between fragments.With larger quadrupole deformation,one obtains a lower potential barrier and thus lower driving potential which results in higher yields in the charge distributions.

    Figure 3.Calculated and measured charge yields for thermal-neutron-induced fission of 234U,236U,240Pu and spontaneous fission of 252Cf.The squares denote the experimental data taken from[31,38].The red curves and the green circles denote the calculated results with nuclear ground state deformations from the WS model and the FRDM model,respectively.The open squares in (d) denote the charge distributions obtained from the mirror of the measured heavy fragments.

    In [5],Randrup and M?ller calculated the charge yields for fission of234,236U and240Pu based on Brownian motion on the five-dimensional potential-energy surfaces (5D-PES).We note that the odd–even staggering in the experimental data is not reproduced at all with their approach.To understand the physics behind the odd–even staggering in charge distribution,we explore the influence of the pairing effect on the charge distribution.In the calculations of Qg.s.in equation (2),we remove the contribution of the pairing term which is expressed as apairA-1/3δnpin the WS model [26],with

    The corresponding calculation results for the fission of236U are shown in figure 4.One sees that the odd–even staggering disappears,which clearly indicates that the pairing effect in fragments at their ground state plays a key role in the odd–even staggering in the charge distribution.

    Figure 4.The same as figure 2(b) but removing the pairing term in the calculations of Qg.s..

    Figure 5.Comparison of the model parameter K and the change of Q value from asymmetric fission to the symmetric one.

    To understand the physics behind the model parameter K in equation(3),we investigate the change of the Q values for eight actinides,230Th,234,236U,240,242Pu,246Cm and250,252Cf,from asymmetric fission to the corresponding symmetric ones.Considering that one peak of the fission-fragment mass distribution is usually located at about Af=140 and the corresponding peak of charge distribution is about Zf=54 for these actinides at low excitation energies,we calculate the corresponding ground-state Q value,defined as,with one fragment being140Xe.In figure 5,we show the difference between the Q value for the asymmetric fission and that for the symmetric oneQgs.ys.m.One can see that the increasing trend of-with mass number is very close to that of K.-in figure 5,which relates to the degree-of-One could note that there exists a shift of 4.4 MeV to freedoms,e.g.the diffuseness and deformations of fission fragments,adopted in the calculations of the driving potential.We also note that if takingK=-+4.4in the calculations,the obtained fragment charge distributions are comparable to those withK=0.38ACN-83.35.It seems that the value of K may have a relationship with the difference in the Q value.

    4.Summary

    In summary,the description of the fission-fragment charge distribution of actinides can be significantly improved with the driving potential of the fissioning system which creates a bridge between the mass distribution and the charge distribution.Since a number of fission-fragment charge yields have not yet been measured while the corresponding mass distributions are available,the predictions for charge distributions based on the driving potential are quite useful and interesting.Considering the properties of primary fission fragments at their ground states,the potential energies of systems around scission configuration can be unambiguously and quickly obtained from the Skyrme energy-density functional and the WS mass models.The odd–even effect in the charge distributions which links nucleon transfer through the neck in the regime of strong pairing correlations is much better reproduced,compared with the traditional potential energy-surface approach in which the determination of the model parameters,especially the strength of pairing force,becomes difficult for the extremely deformed shapes.There are two advantages to the proposed approach: (1) The CPU time is significantly shortened because only thousands(in the calculations of ΔQ) rather than millions of wave equations need to be solved to obtain the potential energies of the system in the calculation of the fission-fragment yields.(2)The microscopic shell and pairing effects are more accurately taken into account via the measured Q value and the residual term ΔQ,which are calculated by using the WS mass models with high accuracy for describing the known masses[39].We find that the structure effect of fragments at their ground state,such as the deformations and the odd–even staggering,play a crucial role in the fission of actinides around scission at low excitation energies.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos U1867212,11 875 323,12 147 211) and Guangxi Natural Science Foundation (No.2017GXNSFGA198001).

    黄色视频不卡| 中文字幕最新亚洲高清| 亚洲成a人片在线一区二区| 99香蕉大伊视频| 国产av又大| 国产成人av教育| 久久香蕉激情| 欧美日韩一级在线毛片| 欧美日韩福利视频一区二区| 国产精品偷伦视频观看了| 国产精品偷伦视频观看了| 亚洲精品成人av观看孕妇| 好男人电影高清在线观看| 久久人人精品亚洲av| 午夜福利欧美成人| 亚洲激情在线av| 亚洲精品国产精品久久久不卡| 狠狠狠狠99中文字幕| 国产蜜桃级精品一区二区三区| 成年女人毛片免费观看观看9| 精品国产一区二区久久| 两人在一起打扑克的视频| 精品久久久久久成人av| 9色porny在线观看| 成人永久免费在线观看视频| 国产精品99久久99久久久不卡| 亚洲一区二区三区色噜噜 | 久久人人97超碰香蕉20202| 99re在线观看精品视频| 免费av毛片视频| 国产一区二区三区在线臀色熟女 | 9热在线视频观看99| 黄色 视频免费看| 久久人人精品亚洲av| 深夜精品福利| 亚洲av电影在线进入| 亚洲人成电影免费在线| 女人爽到高潮嗷嗷叫在线视频| 亚洲av成人不卡在线观看播放网| 日本黄色日本黄色录像| 国产成人av教育| 一级毛片精品| 亚洲伊人色综图| 午夜福利免费观看在线| 操出白浆在线播放| 丁香六月欧美| 波多野结衣高清无吗| av有码第一页| 人人妻人人澡人人看| 精品国内亚洲2022精品成人| 99国产极品粉嫩在线观看| 成人免费观看视频高清| 日韩一卡2卡3卡4卡2021年| 在线观看免费高清a一片| 久久久久久人人人人人| 久久久精品欧美日韩精品| 久久久精品国产亚洲av高清涩受| 咕卡用的链子| 亚洲国产精品sss在线观看 | 美女福利国产在线| 亚洲伊人色综图| 黄色视频,在线免费观看| 精品一区二区三区四区五区乱码| 一级毛片高清免费大全| 久久国产乱子伦精品免费另类| av在线天堂中文字幕 | 国产亚洲av高清不卡| av视频免费观看在线观看| 在线看a的网站| 久久久久国产一级毛片高清牌| 超碰成人久久| 国产蜜桃级精品一区二区三区| 这个男人来自地球电影免费观看| www.熟女人妻精品国产| 老汉色∧v一级毛片| 久久精品影院6| 欧美人与性动交α欧美精品济南到| 免费在线观看日本一区| 新久久久久国产一级毛片| 亚洲性夜色夜夜综合| 97超级碰碰碰精品色视频在线观看| 韩国av一区二区三区四区| 99久久人妻综合| 久久久精品欧美日韩精品| 日本vs欧美在线观看视频| 香蕉久久夜色| av在线播放免费不卡| 一个人观看的视频www高清免费观看 | 国产一区二区三区综合在线观看| 无人区码免费观看不卡| 精品国产国语对白av| 成人国产一区最新在线观看| 日韩欧美免费精品| 精品久久久久久成人av| 老汉色∧v一级毛片| 国产午夜精品久久久久久| bbb黄色大片| 精品高清国产在线一区| 美女大奶头视频| 国产成人精品久久二区二区91| 久久久国产一区二区| 9热在线视频观看99| 他把我摸到了高潮在线观看| 久久九九热精品免费| 我的亚洲天堂| 婷婷精品国产亚洲av在线| 欧美日韩亚洲综合一区二区三区_| 国产区一区二久久| 九色亚洲精品在线播放| 长腿黑丝高跟| 国产区一区二久久| 水蜜桃什么品种好| 国产蜜桃级精品一区二区三区| 国产精华一区二区三区| 看免费av毛片| av天堂在线播放| 丝袜美腿诱惑在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲中文字幕日韩| 国产一区二区三区在线臀色熟女 | 国产免费av片在线观看野外av| 视频在线观看一区二区三区| 高潮久久久久久久久久久不卡| 在线观看www视频免费| 亚洲av成人av| 亚洲成a人片在线一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 久久亚洲真实| 制服人妻中文乱码| 日韩免费av在线播放| 亚洲av日韩精品久久久久久密| 精品无人区乱码1区二区| 亚洲午夜理论影院| 在线观看免费视频网站a站| 久久亚洲真实| 99精品在免费线老司机午夜| 国产野战对白在线观看| 日韩av在线大香蕉| xxxhd国产人妻xxx| 国产xxxxx性猛交| av超薄肉色丝袜交足视频| 欧美久久黑人一区二区| 精品人妻1区二区| 91av网站免费观看| 久久国产精品人妻蜜桃| 国产野战对白在线观看| 男人的好看免费观看在线视频 | 国产一区二区三区在线臀色熟女 | 午夜福利,免费看| 女警被强在线播放| 老熟妇乱子伦视频在线观看| 国产av一区二区精品久久| 男人操女人黄网站| 亚洲va日本ⅴa欧美va伊人久久| 两个人免费观看高清视频| 嫁个100分男人电影在线观看| 亚洲色图综合在线观看| 新久久久久国产一级毛片| 精品福利永久在线观看| 一级毛片女人18水好多| 亚洲国产精品sss在线观看 | 国产亚洲av高清不卡| 成年人免费黄色播放视频| aaaaa片日本免费| 女性被躁到高潮视频| 欧美午夜高清在线| 性少妇av在线| 夜夜看夜夜爽夜夜摸 | 91老司机精品| 一级a爱片免费观看的视频| 色精品久久人妻99蜜桃| 欧美乱码精品一区二区三区| 99热只有精品国产| 成人三级做爰电影| 国产99白浆流出| 亚洲狠狠婷婷综合久久图片| 国产片内射在线| 精品电影一区二区在线| 69av精品久久久久久| 黄色a级毛片大全视频| 久久久久亚洲av毛片大全| 亚洲一码二码三码区别大吗| 窝窝影院91人妻| 天天躁狠狠躁夜夜躁狠狠躁| 母亲3免费完整高清在线观看| 最近最新中文字幕大全电影3 | 制服人妻中文乱码| 亚洲精品一区av在线观看| av网站免费在线观看视频| 免费在线观看日本一区| 国产蜜桃级精品一区二区三区| 久99久视频精品免费| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久国产一级毛片高清牌| 亚洲三区欧美一区| 亚洲精品中文字幕一二三四区| 最新美女视频免费是黄的| 日本五十路高清| av网站免费在线观看视频| 亚洲色图综合在线观看| 一区二区日韩欧美中文字幕| 18禁黄网站禁片午夜丰满| 老司机亚洲免费影院| 岛国视频午夜一区免费看| 亚洲人成伊人成综合网2020| 天堂俺去俺来也www色官网| 嫩草影院精品99| 伦理电影免费视频| 精品久久久久久,| 青草久久国产| 热99国产精品久久久久久7| 91精品三级在线观看| 性欧美人与动物交配| 成人特级黄色片久久久久久久| 大陆偷拍与自拍| 黄色丝袜av网址大全| 亚洲 国产 在线| 精品福利永久在线观看| 韩国av一区二区三区四区| 亚洲成人国产一区在线观看| 日本wwww免费看| 免费在线观看视频国产中文字幕亚洲| 天堂√8在线中文| 国产精品秋霞免费鲁丝片| 欧美不卡视频在线免费观看 | 欧美 亚洲 国产 日韩一| 91麻豆精品激情在线观看国产 | 日韩成人在线观看一区二区三区| 国产色视频综合| 色婷婷久久久亚洲欧美| 91成年电影在线观看| 中文字幕最新亚洲高清| 男人舔女人下体高潮全视频| 欧美日韩福利视频一区二区| 天堂俺去俺来也www色官网| 国产伦人伦偷精品视频| 中文字幕av电影在线播放| 亚洲美女黄片视频| 大香蕉久久成人网| 在线观看66精品国产| 国产一区二区三区在线臀色熟女 | 黄色a级毛片大全视频| 亚洲成人免费av在线播放| 国产精品成人在线| 亚洲一区中文字幕在线| 亚洲精品一二三| 97超级碰碰碰精品色视频在线观看| 夜夜看夜夜爽夜夜摸 | 在线国产一区二区在线| 一二三四社区在线视频社区8| 可以免费在线观看a视频的电影网站| 99久久久亚洲精品蜜臀av| 大型av网站在线播放| 中文字幕高清在线视频| 亚洲精品美女久久久久99蜜臀| 狂野欧美激情性xxxx| 国产无遮挡羞羞视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 1024视频免费在线观看| 欧美性长视频在线观看| 久久中文字幕人妻熟女| 在线观看免费高清a一片| 亚洲精品一二三| 少妇的丰满在线观看| 精品国产超薄肉色丝袜足j| 大型av网站在线播放| 热re99久久国产66热| 丰满的人妻完整版| av网站在线播放免费| 身体一侧抽搐| 啪啪无遮挡十八禁网站| 午夜福利影视在线免费观看| 久久精品影院6| 丰满人妻熟妇乱又伦精品不卡| 国产野战对白在线观看| 性少妇av在线| ponron亚洲| 国产成人影院久久av| 亚洲自偷自拍图片 自拍| 亚洲精品美女久久av网站| 国产激情久久老熟女| av中文乱码字幕在线| 久久性视频一级片| 夜夜看夜夜爽夜夜摸 | 好看av亚洲va欧美ⅴa在| 亚洲精品美女久久久久99蜜臀| 国内久久婷婷六月综合欲色啪| 欧美日本亚洲视频在线播放| 日本撒尿小便嘘嘘汇集6| 999久久久精品免费观看国产| 欧美在线一区亚洲| 中文字幕精品免费在线观看视频| 国产免费现黄频在线看| 日日爽夜夜爽网站| 久久久水蜜桃国产精品网| 黄色丝袜av网址大全| 国产一区在线观看成人免费| 久久久久久亚洲精品国产蜜桃av| 日韩精品青青久久久久久| 一区二区三区精品91| 亚洲av片天天在线观看| 琪琪午夜伦伦电影理论片6080| 成人影院久久| 男女做爰动态图高潮gif福利片 | 国产精品 欧美亚洲| 久久久国产欧美日韩av| 国产成人一区二区三区免费视频网站| 午夜精品国产一区二区电影| 欧美日韩福利视频一区二区| ponron亚洲| 欧美乱妇无乱码| 国产乱人伦免费视频| 一夜夜www| 热re99久久国产66热| 久久精品aⅴ一区二区三区四区| 成年人黄色毛片网站| 在线观看免费高清a一片| 亚洲片人在线观看| 免费搜索国产男女视频| 国产成人免费无遮挡视频| 精品久久久久久,| 亚洲国产精品一区二区三区在线| 级片在线观看| 男人舔女人的私密视频| 免费女性裸体啪啪无遮挡网站| 正在播放国产对白刺激| 嫩草影视91久久| 18禁美女被吸乳视频| 中文字幕最新亚洲高清| 12—13女人毛片做爰片一| 一夜夜www| 成人影院久久| 18禁观看日本| 男女之事视频高清在线观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲欧美激情在线| 欧美激情 高清一区二区三区| 叶爱在线成人免费视频播放| 午夜久久久在线观看| 好看av亚洲va欧美ⅴa在| 国产成人系列免费观看| 国产成人影院久久av| 91在线观看av| 国产蜜桃级精品一区二区三区| 人人妻人人澡人人看| 亚洲欧美精品综合一区二区三区| 国产黄a三级三级三级人| 亚洲第一欧美日韩一区二区三区| 在线观看66精品国产| 国产一区二区在线av高清观看| 日本撒尿小便嘘嘘汇集6| 日韩精品中文字幕看吧| 亚洲av美国av| 精品国产一区二区久久| 九色亚洲精品在线播放| 男女床上黄色一级片免费看| 少妇的丰满在线观看| 妹子高潮喷水视频| 欧美日本中文国产一区发布| 操美女的视频在线观看| 久久国产精品影院| 亚洲熟妇中文字幕五十中出 | 黄色成人免费大全| 亚洲狠狠婷婷综合久久图片| 国产高清videossex| 老汉色∧v一级毛片| 黄色视频,在线免费观看| av天堂久久9| 男女午夜视频在线观看| 国产成人影院久久av| 欧美乱码精品一区二区三区| 精品乱码久久久久久99久播| 可以免费在线观看a视频的电影网站| 国产99白浆流出| 久久人妻福利社区极品人妻图片| 黄色丝袜av网址大全| 人人妻,人人澡人人爽秒播| 亚洲精华国产精华精| 怎么达到女性高潮| 国产av在哪里看| 在线看a的网站| xxxhd国产人妻xxx| 国产又色又爽无遮挡免费看| 欧美黑人欧美精品刺激| 亚洲人成伊人成综合网2020| av免费在线观看网站| 欧美黑人欧美精品刺激| 久久草成人影院| 麻豆久久精品国产亚洲av | 国产精品久久久久成人av| 在线永久观看黄色视频| bbb黄色大片| 9热在线视频观看99| 国产亚洲欧美在线一区二区| 精品日产1卡2卡| 亚洲精品国产区一区二| 亚洲av熟女| xxx96com| 日本欧美视频一区| 欧美成狂野欧美在线观看| 欧美 亚洲 国产 日韩一| 美女高潮喷水抽搐中文字幕| 日本wwww免费看| 亚洲专区国产一区二区| 久久中文字幕人妻熟女| 男女高潮啪啪啪动态图| 波多野结衣高清无吗| 大香蕉久久成人网| 国产伦一二天堂av在线观看| 宅男免费午夜| 国产精品秋霞免费鲁丝片| 少妇 在线观看| 极品教师在线免费播放| 两个人看的免费小视频| 人人妻,人人澡人人爽秒播| 国产精华一区二区三区| 国产精品国产高清国产av| 国产一区二区在线av高清观看| 午夜成年电影在线免费观看| 999久久久精品免费观看国产| 天堂中文最新版在线下载| 亚洲精品久久午夜乱码| 国产又色又爽无遮挡免费看| 三级毛片av免费| 午夜激情av网站| 露出奶头的视频| 夜夜躁狠狠躁天天躁| 啦啦啦免费观看视频1| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲午夜精品一区,二区,三区| 久久久久久大精品| 久久久久精品国产欧美久久久| 最好的美女福利视频网| 欧美成狂野欧美在线观看| 水蜜桃什么品种好| 亚洲七黄色美女视频| 午夜日韩欧美国产| 另类亚洲欧美激情| 欧美成人免费av一区二区三区| 神马国产精品三级电影在线观看 | 99香蕉大伊视频| 亚洲欧美日韩另类电影网站| 黄频高清免费视频| 亚洲中文日韩欧美视频| 久久天堂一区二区三区四区| 日本撒尿小便嘘嘘汇集6| 999久久久精品免费观看国产| 亚洲aⅴ乱码一区二区在线播放 | 曰老女人黄片| 看免费av毛片| 国产高清激情床上av| 性欧美人与动物交配| 国产三级在线视频| 国产成人av教育| 久久久久久免费高清国产稀缺| 午夜亚洲福利在线播放| 可以在线观看毛片的网站| 一区福利在线观看| 国产区一区二久久| 三上悠亚av全集在线观看| 97人妻天天添夜夜摸| 亚洲欧美日韩无卡精品| 两性夫妻黄色片| 欧美不卡视频在线免费观看 | 国产亚洲精品久久久久5区| 亚洲 欧美一区二区三区| 午夜免费观看网址| 久久伊人香网站| 天天躁狠狠躁夜夜躁狠狠躁| 视频区图区小说| 亚洲一区二区三区色噜噜 | 制服人妻中文乱码| 在线观看一区二区三区| 桃色一区二区三区在线观看| 国产精品影院久久| 久久久久久亚洲精品国产蜜桃av| 亚洲av成人不卡在线观看播放网| 国产精品美女特级片免费视频播放器 | 色精品久久人妻99蜜桃| 成人永久免费在线观看视频| 国产精品日韩av在线免费观看 | 欧美乱码精品一区二区三区| 欧美激情极品国产一区二区三区| 国产日韩一区二区三区精品不卡| 精品人妻在线不人妻| 人妻久久中文字幕网| 在线视频色国产色| 欧美黄色淫秽网站| 亚洲美女黄片视频| 操美女的视频在线观看| a级片在线免费高清观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 中文亚洲av片在线观看爽| 久久久久久久精品吃奶| 亚洲午夜理论影院| 亚洲中文av在线| 夜夜躁狠狠躁天天躁| 日韩欧美一区二区三区在线观看| 黑人欧美特级aaaaaa片| 亚洲av电影在线进入| 欧美精品啪啪一区二区三区| 香蕉国产在线看| 婷婷精品国产亚洲av在线| 成人亚洲精品av一区二区 | 美女福利国产在线| 免费观看人在逋| 热99国产精品久久久久久7| 精品国产乱码久久久久久男人| 亚洲专区字幕在线| 99riav亚洲国产免费| 中文字幕精品免费在线观看视频| 91成年电影在线观看| 中文字幕av电影在线播放| 免费高清视频大片| 国产激情久久老熟女| 亚洲国产精品999在线| 黄色片一级片一级黄色片| 一级黄色大片毛片| 午夜福利在线观看吧| 757午夜福利合集在线观看| 欧美日韩亚洲综合一区二区三区_| 看片在线看免费视频| 久久精品人人爽人人爽视色| 女性被躁到高潮视频| 国产精品成人在线| 国产欧美日韩一区二区三区在线| 精品日产1卡2卡| 午夜免费观看网址| 黄色丝袜av网址大全| 国产精品免费一区二区三区在线| 正在播放国产对白刺激| 日韩欧美一区二区三区在线观看| 亚洲精品国产一区二区精华液| 99re在线观看精品视频| 国产亚洲欧美精品永久| 亚洲欧美日韩无卡精品| 熟女少妇亚洲综合色aaa.| 亚洲成av片中文字幕在线观看| 咕卡用的链子| 丝袜人妻中文字幕| 乱人伦中国视频| 日韩欧美在线二视频| 十八禁网站免费在线| 欧美性长视频在线观看| 中文欧美无线码| 天天躁狠狠躁夜夜躁狠狠躁| 91老司机精品| 亚洲七黄色美女视频| 女人被躁到高潮嗷嗷叫费观| 18禁黄网站禁片午夜丰满| 波多野结衣高清无吗| 女人精品久久久久毛片| 99久久人妻综合| 成人三级做爰电影| 国产午夜精品久久久久久| 国产乱人伦免费视频| 国产国语露脸激情在线看| 久久精品国产亚洲av香蕉五月| 热re99久久国产66热| 1024视频免费在线观看| 婷婷精品国产亚洲av在线| 男女高潮啪啪啪动态图| 成年人免费黄色播放视频| 免费一级毛片在线播放高清视频 | 啦啦啦 在线观看视频| 成人精品一区二区免费| 国产三级黄色录像| 久久精品国产综合久久久| 大型av网站在线播放| 亚洲欧美激情在线| 99热国产这里只有精品6| 久久人人97超碰香蕉20202| 国产亚洲欧美98| 亚洲美女黄片视频| 一级片'在线观看视频| 一进一出好大好爽视频| 女人爽到高潮嗷嗷叫在线视频| 91国产中文字幕| 精品国产一区二区三区四区第35| 国产99久久九九免费精品| 夜夜爽天天搞| 亚洲精品一区av在线观看| 久久久久久久久免费视频了| 国产成人精品久久二区二区91| 欧美日韩亚洲高清精品| 男女高潮啪啪啪动态图| 极品教师在线免费播放| 久久婷婷成人综合色麻豆| 免费久久久久久久精品成人欧美视频| 亚洲av电影在线进入| 天堂俺去俺来也www色官网| 中出人妻视频一区二区| 黄色视频不卡| 777久久人妻少妇嫩草av网站| 性少妇av在线| 日本黄色日本黄色录像| 国产精品1区2区在线观看.| 久久久久久亚洲精品国产蜜桃av| 黄片小视频在线播放| 国产精品野战在线观看 | 欧美日韩瑟瑟在线播放| 这个男人来自地球电影免费观看| 国产无遮挡羞羞视频在线观看| 亚洲人成电影免费在线| 91成人精品电影| 色婷婷av一区二区三区视频| 男女下面进入的视频免费午夜 | 亚洲五月婷婷丁香| 亚洲自拍偷在线| 一级毛片女人18水好多| 1024视频免费在线观看| 成人三级黄色视频| 丁香六月欧美| 久久性视频一级片| 精品一品国产午夜福利视频|