• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Driving potential and fission-fragment charge distributions

    2022-10-22 08:15:00YuanSuMinLiuandNingWang
    Communications in Theoretical Physics 2022年9期

    Yuan Su,Min Liu,2 and Ning Wang,2

    1 Department of Physics,Guangxi Normal University,Guilin 541004,China

    2 Guangxi Key Laboratory of Nuclear Physics and Technology,Guilin 541004,China

    Abstract We propose an efficient approach to describe the fission-fragment charge yields for actinides based on the driving potential of the fissioning system.Considering the properties of primary fission fragments at their ground states,the driving potential,which represents the potential energies of the system around scission configuration and closely relates to the yields of fragments,can be unambiguously and quickly obtained from the Skyrme energy-density functional together with the Weizs?cker–Skyrme mass model.The fission-fragment charge distributions for thermal-neutron-induced fission and spontaneous fission of a series of actinides,especially the odd–even staggering in the charge distributions,can be well reproduced.Nuclear dynamical deformations and pairing corrections of fragments play an important role in the

    Keywords: nuclear fission,fragment charge distribution,driving potential,nuclear deformation,energy density functional

    1.Introduction

    Nuclear fission is a field of very intense studies for more than half a century[1–7].One of the most interesting characteristics of neutron or heavy-ion induced fission is the huge difference in the mass and charge distribution of the fission fragments for different nuclei.The investigation of the fission fragment yields is of great importance not only for nuclear engineering but also for understanding the fission process,testing nuclear models and exploring the role of fission recycling as well as the structure of extremely neutron-rich nuclei for the study of r-process in nuclear astrophysics[8–10].It is yet not very clear,until now,how the original compound nucleus is transformed into a variety of different fragments.It is qualitatively thought that the shell effect plays a role in the double-humped distribution for the fission of some actinides.Accurate predictions for the fission fragment distribution especially the charge distribution of actinides including the odd–even staggering [11]are still urgently required.

    To describe fission dynamics and fission barrier,some microscopic or semi-empirical approaches,such as the Skyrme Hartree–Fock models[12,13],the covariant density functional theory [14,15]and the macroscopic–mircoscopic models[1,5,16,17],were established for calculating the potential energy surface(PES) of a fissioning system from ground state deformation to scission configurations.With the aid of modern computers,the fission barriers of nuclei can be successfully reproduced with a deviation of about one MeV[1,14,15],and the fission fragment distributions can be roughly reproduced based on the five-dimensional PES from the macroscopic–microscopic model [5].The calculations of multi-dimensional PES are time-consuming since millions of wave equations for strongly (triaxial) deformed nuclear potentials need to be solved for obtaining the single-particle levels of the system at different deformation configurations.Furthermore,the determination of the model parameters especially the strength of the spin–orbit interaction and that of the pairing force from the saddle to scission is difficult in the traditional PES calculations,which could reduce the predictive power of the models for describing the yields of fission fragments.It is therefore necessary to develop an alternative more efficient method for studying fission around scission and post-scission movements.

    To describe the competition between quasi-fission and complete fusion of super-heavy systems,the di-nuclear system(DNS)concept was successfully proposed[18–22].In fact,the microscopic shell structure and even–odd effect can be involved in the potential energy surface of DNS.According to the DNS concept,each fission fragment around the scission point retains its individuality in the evolution of the DNS.In [23],it was found that the valley of the driving potential for the mass number of heavy fragments locates at 140 for neutron-induced fission of235U,which is in good agreement with the peak of measured mass distribution.It is therefore interesting to investigate the charge yields for the fission of actinides based on the corresponding driving potentials.

    In this work,we attempt to study the yields of fission fragments based on the DNS concept.Different from the traditional studies based on the whole potential energy surface of a fissioning system from the ground state to the scission point,we focus on the potential energy surface around scission configuration.We would like to study the influence of nuclear structure effect on the yields of primary fission fragments especially the odd–even staggering in the charge distribution for binary fission of actinides at low excitation energies.

    2.Driving potential of a fissioning system

    The total potential energy of a fissioning system around scission is written as

    where E1and E2denote the potential energies of the light and heavy fission fragments respectively,which are functions of nuclear deformations.V(β→,R) denotes the interaction potential between two fragments with the center-to-center distance R,which is obtained with the Skyrme energy-density functional plus the extended Thomas–Fermi (ETF) approximation [24].In the Skyrme energy-density functional approach,the total binding energy of a nucleus can be expressed as the integral of the energy density functional which is a function of nuclear densities of protons and neutrons under the ETF2 approximation[25].In our calculations,the nuclear central densities and surface diffuseness for a certain nucleus (or fragment) are firstly determined by using the restricted density variational method and taking the neutron and proton density distributions as spherical symmetric Fermi functions [24].Then,we introduce nuclear deformationsβ→in the radius parameter,remaining the central densities and surface diffuseness of the nucleus (or fragment)unchanged,to consider the influence of nuclear deformations on the interaction potential between two fragments.

    Assuming that a compound nucleus separates into a certain pair of fission fragments,(ACN,ZCN)→(A1,Z1)+(A2,Z2),with a mass numberACN=A1+A2and charge numberZCN=Z1+Z2in the fission process,we define the driving potential of the fissioning system as,

    with mass number Afand charge number Zffor one fragment.The driving potential describes the potential energy of the fissioning system around scission configuration.ECNand Qg.s.denote the energy of the compound nucleus at its ground stat e and the Q value of the reaction system,respectively.denotes the deformations of fission fragments around scission configuration.In this work,the static deformations for each fission fragment,i.e.,the deformations for nuclei at their ground states,are determined by Weizs?cker–Skyrme(WS) mass model [26].Simultaneously,the dynamical deformations βDof fragments are also considered.ΔQ=[E1(βD)-E1g.s.]+[E2(βD)-E2g.s.]denotes the change of the potential energies for the fission fragments with respect to the individual energies at their ground states due to the dynamical deformations.

    For a description of the elongated tip–tip structure of a fissioning system around the scission point,nuclear prolate shapes and the octupole deformations should play a dominant role.In this work,we take the absolute value |β2| for nuclei with oblate deformations and set the values of dynamical octupole deformationβD3for a pair of fission fragments to be the same but in reverse for simplicity.By varying the value ofβD3for a certain pair of fission fragments at the position of the potential barrier where the two fragments are slightly separated and searching for the minimal value of the driving potential U,one can obtain the optimal value forβD3which is about 0.1–0.2(one can find the similar result from figure 10 in[27]).For fragments with spherical shapes at their ground states,the dynamical quadrupole deformationsβD2are also considered,and the values ofβD2are obtained like those forβD3.

    From equation (2),one can see that in addition to the interaction potential,both the properties of fragments at their ground state and the dynamic deformations around scission configuration influence the potential energy surface of a fissioning system.The microscopic shell effect and pairing effect are effectively involved in the calculations of Qg.s.and the residual part ΔQ.The values of Qg.s.are mainly taken from the measured masses with high accuracy in AME2016[28,29].For the masses of unmeasured nuclei and the value of ΔQ,we use the predictions of the WS mass models[26,30].We would like to emphasize that the driving potential U for a certain fissioning system can be unambiguously obtained from the Skyrme energy-density functional and the WS mass models,without introducing any new model parameters.

    3.Results and discussions

    Considering that the mass and charge number of fission fragments are distributed at a wide range,the driving potential U(Af,Zf) of a certain compound nucleus separating into different pairs of fission fragments is investigated.For example,the driving potential for fission of236U with about five hundred different pairs of fission fragments is calculated and the results are shown in figure 1(a).Figure 1(b)shows the data for the charge distribution of primary fission fragments in thermal-neutron-induced fission of235U(nth,f)[31].One sees from the driving potential that there exists two deep valleys located around (Af=140,Zf=54) and (Af=96,Zf=38)which exactly respond to the peaks of the mass and charge distributions of fission fragments.It indicates that the yields of fission fragments of236U at low excitation energies are closely related to the corresponding driving potential.

    Figure 1.(a) Calculated driving potential (in MeV) for fission of 236U.(b) Charge yields of fission fragments for 235U(nth,f) [31].

    Figure 2.Calculated and measured charge yields for fission of 234U and 236U.The squares denote the experimental data for thermalneutron-induced fission of 233U(nth,f) and 235U(nth,f)[31].The red curves denote the calculated results with equation (3).

    Based on the calculated driving potential,the corresponding fragment charge distributions for a fissioning system are further predicted.In this work,the yields of fission fragments for a fissioning system is expressed as,

    K is a model parameter,which relates to the temperature of the system around the scission point.Here,we empirically setK=0.38ACN-83.35(in MeV) for describing the fragment yields in the fsision of actinides at low excitation energies.The corresponding coeffciients in K are determined by the measured fsision-fragment charge distributions for a series of actinides.The normalization factorC(Af)=P(Af)/∑Zfexp[-U/K]can be uniquely determined by a given fragment mass distribution P(Af).In the present calculations,we use the measured fragment mass distribution for the determination of the normalization factor C.If P(Af) is not available,one could use the empirical fission potential[32]for calculating the mass distributions.With the driving potential and mass distribution,the charge distributions of the primary fsision fragmentsP(Zf)=∑AfY(Af,Zf)can be directly calculated with equation(3).Here,we wouldlike to emphasize that equation (3) is only applicable for describing the thermal-induced and spontaneous fission of actinides.If one would like to extend this model to describe the distributions of fission fragments and yields at high excitation energies,the temperature dependence for the driving potential U,the normalization factor C and the model parameter K should be considered.

    Figure 2 shows the calculated charge distribution of primary fragments for fission of234U and236U.The experimental data for thermal-neutron-induced fission of233U(nth,f)and235U(nth,f),especially the odd–even staggering can be well reproduced.From equation (2),one can see that nuclear deformations influence the value of ΔQ and the interaction potential V in the calculations of the driving potential.To see the influence of nuclear deformations on the charge distributions,we compare the calculated results with nuclear ground state deformations from the WS model[26]and those from the finite range droplet model(FRDM)[33].In figure 3,we show the calculated charge distribution of primary fragments for thermal-neutron-induced fission of234U,236U,240Pu and spontaneous fission of252Cf.The red curves and the green circles denote the calculated results from the WS model and the FRDM model,respectively.Here,the data for the mass distributions of233U(nth,f) [34],235U(nth,f) [35],239Pu(nth,f) [36]and spontaneous fission of252Cf [37]are adopted for the determination of the normalization factors C,respectively.One sees that with nuclear deformations from both mass models,the fragment charge distributions for fission of234U,236U,240Pu and252Cf can be reasonably well reproduced.The difference due to the predicted nuclear deformations from the two models can also be obviously observed for light fragments with Z=42.The yields for fragments with Z=42 and the corresponding partners based on the deformations from the FRDM model is much higher than those from the WS model,especially for the fission of U and Pu.According to the driving potential shown in figure 1,the most probable neutron number is around N=60 for fragments with Z=42.We note that the predicted quadrupole deformation (β2=0.329)from the FRDM model is much larger than that from the WS model (β2=0.210) for102Mo.The quadrupole deformation of nuclei can significantly affect the interaction potentialV(β→,R)between fragments.With larger quadrupole deformation,one obtains a lower potential barrier and thus lower driving potential which results in higher yields in the charge distributions.

    Figure 3.Calculated and measured charge yields for thermal-neutron-induced fission of 234U,236U,240Pu and spontaneous fission of 252Cf.The squares denote the experimental data taken from[31,38].The red curves and the green circles denote the calculated results with nuclear ground state deformations from the WS model and the FRDM model,respectively.The open squares in (d) denote the charge distributions obtained from the mirror of the measured heavy fragments.

    In [5],Randrup and M?ller calculated the charge yields for fission of234,236U and240Pu based on Brownian motion on the five-dimensional potential-energy surfaces (5D-PES).We note that the odd–even staggering in the experimental data is not reproduced at all with their approach.To understand the physics behind the odd–even staggering in charge distribution,we explore the influence of the pairing effect on the charge distribution.In the calculations of Qg.s.in equation (2),we remove the contribution of the pairing term which is expressed as apairA-1/3δnpin the WS model [26],with

    The corresponding calculation results for the fission of236U are shown in figure 4.One sees that the odd–even staggering disappears,which clearly indicates that the pairing effect in fragments at their ground state plays a key role in the odd–even staggering in the charge distribution.

    Figure 4.The same as figure 2(b) but removing the pairing term in the calculations of Qg.s..

    Figure 5.Comparison of the model parameter K and the change of Q value from asymmetric fission to the symmetric one.

    To understand the physics behind the model parameter K in equation(3),we investigate the change of the Q values for eight actinides,230Th,234,236U,240,242Pu,246Cm and250,252Cf,from asymmetric fission to the corresponding symmetric ones.Considering that one peak of the fission-fragment mass distribution is usually located at about Af=140 and the corresponding peak of charge distribution is about Zf=54 for these actinides at low excitation energies,we calculate the corresponding ground-state Q value,defined as,with one fragment being140Xe.In figure 5,we show the difference between the Q value for the asymmetric fission and that for the symmetric oneQgs.ys.m.One can see that the increasing trend of-with mass number is very close to that of K.-in figure 5,which relates to the degree-of-One could note that there exists a shift of 4.4 MeV to freedoms,e.g.the diffuseness and deformations of fission fragments,adopted in the calculations of the driving potential.We also note that if takingK=-+4.4in the calculations,the obtained fragment charge distributions are comparable to those withK=0.38ACN-83.35.It seems that the value of K may have a relationship with the difference in the Q value.

    4.Summary

    In summary,the description of the fission-fragment charge distribution of actinides can be significantly improved with the driving potential of the fissioning system which creates a bridge between the mass distribution and the charge distribution.Since a number of fission-fragment charge yields have not yet been measured while the corresponding mass distributions are available,the predictions for charge distributions based on the driving potential are quite useful and interesting.Considering the properties of primary fission fragments at their ground states,the potential energies of systems around scission configuration can be unambiguously and quickly obtained from the Skyrme energy-density functional and the WS mass models.The odd–even effect in the charge distributions which links nucleon transfer through the neck in the regime of strong pairing correlations is much better reproduced,compared with the traditional potential energy-surface approach in which the determination of the model parameters,especially the strength of pairing force,becomes difficult for the extremely deformed shapes.There are two advantages to the proposed approach: (1) The CPU time is significantly shortened because only thousands(in the calculations of ΔQ) rather than millions of wave equations need to be solved to obtain the potential energies of the system in the calculation of the fission-fragment yields.(2)The microscopic shell and pairing effects are more accurately taken into account via the measured Q value and the residual term ΔQ,which are calculated by using the WS mass models with high accuracy for describing the known masses[39].We find that the structure effect of fragments at their ground state,such as the deformations and the odd–even staggering,play a crucial role in the fission of actinides around scission at low excitation energies.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos U1867212,11 875 323,12 147 211) and Guangxi Natural Science Foundation (No.2017GXNSFGA198001).

    亚洲一卡2卡3卡4卡5卡精品中文| 国产成人a∨麻豆精品| 国产成人精品久久二区二区免费| 欧美成人午夜精品| 久久天堂一区二区三区四区| 丝袜人妻中文字幕| √禁漫天堂资源中文www| 亚洲欧美清纯卡通| 天天躁夜夜躁狠狠躁躁| 国产一区二区激情短视频 | 大片电影免费在线观看免费| a级毛片黄视频| 女人高潮潮喷娇喘18禁视频| 欧美激情高清一区二区三区| 狂野欧美激情性xxxx| 日日爽夜夜爽网站| 久久人人97超碰香蕉20202| www.999成人在线观看| 麻豆av在线久日| 久久久国产一区二区| 亚洲欧美清纯卡通| 美女午夜性视频免费| 女性生殖器流出的白浆| 久久久精品国产亚洲av高清涩受| 丰满少妇做爰视频| 亚洲欧美色中文字幕在线| 大陆偷拍与自拍| 日本wwww免费看| 丁香六月欧美| 999久久久国产精品视频| 国产一区二区三区综合在线观看| 日本av免费视频播放| 制服人妻中文乱码| 老司机靠b影院| 亚洲国产毛片av蜜桃av| 九草在线视频观看| 欧美成狂野欧美在线观看| 麻豆国产av国片精品| 欧美久久黑人一区二区| 99热全是精品| 十八禁网站网址无遮挡| 欧美日韩一级在线毛片| 99九九在线精品视频| 自线自在国产av| 黄色一级大片看看| 国产一区二区在线观看av| 在线观看免费高清a一片| 久久久久久久大尺度免费视频| 一二三四社区在线视频社区8| 亚洲五月婷婷丁香| 亚洲,一卡二卡三卡| 欧美 日韩 精品 国产| 欧美人与善性xxx| 一区二区三区精品91| 两个人看的免费小视频| 中文字幕制服av| 啦啦啦 在线观看视频| 亚洲天堂av无毛| 我的亚洲天堂| 欧美+亚洲+日韩+国产| 美女高潮到喷水免费观看| 欧美日韩一级在线毛片| av国产久精品久网站免费入址| 日韩制服丝袜自拍偷拍| 亚洲成色77777| 午夜老司机福利片| 最近手机中文字幕大全| 日韩电影二区| 超色免费av| 久久久久精品国产欧美久久久 | 欧美 日韩 精品 国产| 国产一区二区三区综合在线观看| 黄色片一级片一级黄色片| 99国产精品99久久久久| 少妇精品久久久久久久| 日韩av在线免费看完整版不卡| 欧美国产精品一级二级三级| 另类精品久久| 久久女婷五月综合色啪小说| 后天国语完整版免费观看| 视频在线观看一区二区三区| 亚洲伊人色综图| 在线观看www视频免费| 秋霞在线观看毛片| 亚洲精品国产区一区二| 香蕉丝袜av| 一区二区三区精品91| 亚洲欧洲国产日韩| 丰满人妻熟妇乱又伦精品不卡| 亚洲成人手机| 建设人人有责人人尽责人人享有的| 亚洲少妇的诱惑av| 尾随美女入室| 99精国产麻豆久久婷婷| 免费女性裸体啪啪无遮挡网站| 在线观看免费午夜福利视频| 我要看黄色一级片免费的| 天天影视国产精品| 国产精品成人在线| 日日摸夜夜添夜夜爱| 丝瓜视频免费看黄片| 国产男女超爽视频在线观看| 视频在线观看一区二区三区| a级毛片在线看网站| 久久精品久久久久久久性| 天堂俺去俺来也www色官网| 国产精品一二三区在线看| 欧美av亚洲av综合av国产av| 亚洲精品美女久久av网站| 亚洲精品自拍成人| 最新在线观看一区二区三区 | 欧美国产精品va在线观看不卡| 婷婷成人精品国产| 欧美黑人精品巨大| 99精国产麻豆久久婷婷| av福利片在线| av一本久久久久| 啦啦啦在线免费观看视频4| 欧美 日韩 精品 国产| 国产高清不卡午夜福利| √禁漫天堂资源中文www| 久久久精品区二区三区| 久久国产精品大桥未久av| 一级毛片 在线播放| 在现免费观看毛片| 男女床上黄色一级片免费看| 女人精品久久久久毛片| 亚洲欧美精品综合一区二区三区| www.av在线官网国产| 国产一区二区在线观看av| 五月天丁香电影| 国产一卡二卡三卡精品| 日韩制服骚丝袜av| 97精品久久久久久久久久精品| 十八禁网站网址无遮挡| av又黄又爽大尺度在线免费看| 国产精品免费视频内射| 亚洲av电影在线进入| 国产一区亚洲一区在线观看| 啦啦啦啦在线视频资源| 免费观看人在逋| 国产精品三级大全| 自线自在国产av| 51午夜福利影视在线观看| 欧美另类一区| www.自偷自拍.com| 亚洲激情五月婷婷啪啪| 亚洲中文日韩欧美视频| 欧美变态另类bdsm刘玥| 亚洲欧洲国产日韩| 久久人人爽人人片av| 亚洲精品美女久久av网站| 国产97色在线日韩免费| 一区二区三区激情视频| 国产有黄有色有爽视频| 国产日韩一区二区三区精品不卡| 国产亚洲精品第一综合不卡| 亚洲五月婷婷丁香| 欧美性长视频在线观看| 岛国毛片在线播放| 国产亚洲午夜精品一区二区久久| 亚洲国产精品国产精品| 91国产中文字幕| 精品少妇内射三级| 亚洲av在线观看美女高潮| 久久鲁丝午夜福利片| 亚洲av成人精品一二三区| 久久人人爽av亚洲精品天堂| av在线app专区| 美女大奶头黄色视频| 看免费av毛片| 精品一品国产午夜福利视频| 18禁黄网站禁片午夜丰满| 亚洲av片天天在线观看| 欧美黄色片欧美黄色片| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲三区欧美一区| 性色av乱码一区二区三区2| 亚洲欧洲精品一区二区精品久久久| 欧美 日韩 精品 国产| 亚洲欧美精品自产自拍| 脱女人内裤的视频| 巨乳人妻的诱惑在线观看| 久久99精品国语久久久| 在线 av 中文字幕| 十八禁网站网址无遮挡| 久久久精品94久久精品| 国产亚洲精品第一综合不卡| 观看av在线不卡| 色婷婷久久久亚洲欧美| 日韩熟女老妇一区二区性免费视频| av又黄又爽大尺度在线免费看| 啦啦啦啦在线视频资源| 交换朋友夫妻互换小说| av国产久精品久网站免费入址| 国产午夜精品一二区理论片| 国产一区二区在线观看av| 久热爱精品视频在线9| 性高湖久久久久久久久免费观看| 国产视频首页在线观看| 国产xxxxx性猛交| 久9热在线精品视频| 在线 av 中文字幕| 久久国产精品大桥未久av| 国产人伦9x9x在线观看| 青春草视频在线免费观看| 美女主播在线视频| 黄网站色视频无遮挡免费观看| 人体艺术视频欧美日本| 国产成人av激情在线播放| 国产一区有黄有色的免费视频| 欧美成狂野欧美在线观看| 欧美人与性动交α欧美软件| 成人亚洲精品一区在线观看| 日韩av免费高清视频| 亚洲精品国产av蜜桃| 亚洲av欧美aⅴ国产| 国精品久久久久久国模美| 精品一品国产午夜福利视频| 人人妻人人澡人人看| 欧美日韩精品网址| 天堂中文最新版在线下载| av天堂久久9| 亚洲精品第二区| 久久久精品94久久精品| 好男人视频免费观看在线| 精品人妻1区二区| 激情视频va一区二区三区| 在线观看免费视频网站a站| 国产精品九九99| 久久人妻福利社区极品人妻图片 | 啦啦啦在线免费观看视频4| 三上悠亚av全集在线观看| 成年人免费黄色播放视频| 女警被强在线播放| 国产成人精品久久二区二区免费| 乱人伦中国视频| 成在线人永久免费视频| 亚洲av男天堂| www日本在线高清视频| 美女午夜性视频免费| 久久久亚洲精品成人影院| av一本久久久久| 激情视频va一区二区三区| 日韩,欧美,国产一区二区三区| 少妇人妻 视频| 亚洲色图综合在线观看| 一本大道久久a久久精品| 久久精品亚洲av国产电影网| 首页视频小说图片口味搜索 | 另类亚洲欧美激情| 免费人妻精品一区二区三区视频| 脱女人内裤的视频| 人人妻,人人澡人人爽秒播 | 国产成人91sexporn| 午夜福利影视在线免费观看| 在线观看一区二区三区激情| 亚洲av欧美aⅴ国产| 激情五月婷婷亚洲| 国产无遮挡羞羞视频在线观看| 国产一区二区三区综合在线观看| 久久久久国产一级毛片高清牌| 女人被躁到高潮嗷嗷叫费观| 欧美成狂野欧美在线观看| 老司机在亚洲福利影院| 久久99一区二区三区| 少妇猛男粗大的猛烈进出视频| 久久毛片免费看一区二区三区| 首页视频小说图片口味搜索 | 色综合欧美亚洲国产小说| 亚洲 国产 在线| 成人手机av| 下体分泌物呈黄色| 国产女主播在线喷水免费视频网站| 色播在线永久视频| 美女高潮到喷水免费观看| 青春草亚洲视频在线观看| 美女午夜性视频免费| 国产精品秋霞免费鲁丝片| 国产无遮挡羞羞视频在线观看| a级毛片在线看网站| 欧美人与性动交α欧美软件| 国产熟女欧美一区二区| 精品久久久精品久久久| 人人妻人人澡人人爽人人夜夜| 两个人看的免费小视频| 熟女av电影| 啦啦啦在线观看免费高清www| 99久久人妻综合| 欧美精品一区二区免费开放| 麻豆乱淫一区二区| 日韩人妻精品一区2区三区| 亚洲自偷自拍图片 自拍| 国产在线免费精品| 国产99久久九九免费精品| a级片在线免费高清观看视频| 亚洲综合色网址| 97在线人人人人妻| e午夜精品久久久久久久| 亚洲国产成人一精品久久久| 婷婷色综合大香蕉| 国产成人欧美| 美女主播在线视频| 亚洲国产成人一精品久久久| 中文字幕人妻熟女乱码| 午夜精品国产一区二区电影| 最黄视频免费看| 国产亚洲一区二区精品| 汤姆久久久久久久影院中文字幕| 99热全是精品| 国产精品国产三级专区第一集| 老司机影院成人| 少妇裸体淫交视频免费看高清 | 国产精品一区二区精品视频观看| 黄片小视频在线播放| 国产又爽黄色视频| 熟女av电影| 视频在线观看一区二区三区| 青青草视频在线视频观看| 午夜福利视频在线观看免费| 亚洲熟女精品中文字幕| 久久精品亚洲熟妇少妇任你| 亚洲图色成人| 欧美日韩综合久久久久久| 日本wwww免费看| 老司机影院成人| 亚洲,欧美,日韩| 桃花免费在线播放| 侵犯人妻中文字幕一二三四区| 在线天堂中文资源库| 首页视频小说图片口味搜索 | 最近中文字幕2019免费版| 欧美少妇被猛烈插入视频| 999久久久国产精品视频| 纵有疾风起免费观看全集完整版| 久久久久久久久免费视频了| 新久久久久国产一级毛片| 免费看十八禁软件| 精品少妇内射三级| 久久毛片免费看一区二区三区| 精品一区二区三区四区五区乱码 | 男女床上黄色一级片免费看| 国产97色在线日韩免费| 国产亚洲av高清不卡| 亚洲国产精品999| 欧美成狂野欧美在线观看| 亚洲欧美中文字幕日韩二区| 欧美人与善性xxx| 一级毛片 在线播放| 亚洲三区欧美一区| 丝袜美腿诱惑在线| 欧美另类一区| 欧美亚洲日本最大视频资源| 久久人妻福利社区极品人妻图片 | 久久亚洲国产成人精品v| 亚洲国产av新网站| 国产精品免费视频内射| 波野结衣二区三区在线| 欧美精品av麻豆av| av在线app专区| 一区二区三区精品91| 国产精品久久久久成人av| 久久久久精品人妻al黑| 日韩一卡2卡3卡4卡2021年| 国产亚洲av高清不卡| 久久中文字幕一级| 50天的宝宝边吃奶边哭怎么回事| 搡老岳熟女国产| 热99国产精品久久久久久7| 国产日韩欧美在线精品| 又粗又硬又长又爽又黄的视频| 少妇精品久久久久久久| 啦啦啦在线观看免费高清www| 国产xxxxx性猛交| 自拍欧美九色日韩亚洲蝌蚪91| 国产xxxxx性猛交| 高清av免费在线| 国产精品香港三级国产av潘金莲 | 亚洲久久久国产精品| 亚洲情色 制服丝袜| 欧美人与善性xxx| 亚洲精品久久午夜乱码| 黄色一级大片看看| 亚洲欧美一区二区三区久久| 亚洲欧美精品自产自拍| 777久久人妻少妇嫩草av网站| 交换朋友夫妻互换小说| 国产精品一区二区精品视频观看| 嫁个100分男人电影在线观看 | 国产成人一区二区三区免费视频网站 | 日本五十路高清| 七月丁香在线播放| 久久狼人影院| www.熟女人妻精品国产| 久久av网站| 中文字幕最新亚洲高清| 亚洲成人免费av在线播放| 亚洲欧美精品自产自拍| 国产精品av久久久久免费| 亚洲av电影在线观看一区二区三区| 丝瓜视频免费看黄片| 大香蕉久久成人网| 老司机亚洲免费影院| 女人久久www免费人成看片| 久久久久精品国产欧美久久久 | 最近手机中文字幕大全| 19禁男女啪啪无遮挡网站| 国产精品三级大全| 精品人妻一区二区三区麻豆| 国产一区二区三区av在线| 欧美精品亚洲一区二区| 免费高清在线观看日韩| 黄色怎么调成土黄色| 精品一品国产午夜福利视频| 桃花免费在线播放| 天天躁夜夜躁狠狠躁躁| 制服诱惑二区| 侵犯人妻中文字幕一二三四区| 51午夜福利影视在线观看| 9191精品国产免费久久| 国产在线视频一区二区| av国产久精品久网站免费入址| 中文字幕另类日韩欧美亚洲嫩草| 国产精品一区二区精品视频观看| 香蕉国产在线看| 亚洲精品国产区一区二| 日韩一卡2卡3卡4卡2021年| 国产在线观看jvid| 国产高清videossex| 91精品三级在线观看| 真人做人爱边吃奶动态| 亚洲欧美一区二区三区黑人| 欧美成人午夜精品| bbb黄色大片| 无遮挡黄片免费观看| 日本猛色少妇xxxxx猛交久久| 宅男免费午夜| 中文字幕高清在线视频| 国产福利在线免费观看视频| 激情视频va一区二区三区| 操出白浆在线播放| 无遮挡黄片免费观看| 免费久久久久久久精品成人欧美视频| 人人妻人人爽人人添夜夜欢视频| 99国产精品99久久久久| 满18在线观看网站| 国产精品国产三级国产专区5o| 婷婷色综合大香蕉| 国产一区有黄有色的免费视频| 男女边吃奶边做爰视频| 日韩,欧美,国产一区二区三区| 啦啦啦在线免费观看视频4| 老汉色av国产亚洲站长工具| 国产一区二区激情短视频 | 高清av免费在线| 午夜影院在线不卡| 国产成人91sexporn| 91字幕亚洲| 免费人妻精品一区二区三区视频| 国产黄色视频一区二区在线观看| 满18在线观看网站| 我要看黄色一级片免费的| 天天添夜夜摸| 免费一级毛片在线播放高清视频 | 多毛熟女@视频| 国产成人一区二区在线| 亚洲欧美一区二区三区久久| 日韩av不卡免费在线播放| 999精品在线视频| 国产成人91sexporn| 久久精品熟女亚洲av麻豆精品| 久久热在线av| 人人妻人人澡人人爽人人夜夜| 色婷婷久久久亚洲欧美| 欧美成狂野欧美在线观看| 亚洲伊人色综图| 国产精品免费大片| 精品少妇黑人巨大在线播放| 国语对白做爰xxxⅹ性视频网站| 国产福利在线免费观看视频| 超碰97精品在线观看| 99久久精品国产亚洲精品| 午夜免费观看性视频| 久久99热这里只频精品6学生| 欧美日韩亚洲综合一区二区三区_| a 毛片基地| 日本av免费视频播放| videos熟女内射| 国产精品人妻久久久影院| 在线观看一区二区三区激情| 大型av网站在线播放| 亚洲av男天堂| 一级黄片播放器| 视频在线观看一区二区三区| 欧美日韩精品网址| 国产成人精品无人区| 美女国产高潮福利片在线看| 亚洲av日韩在线播放| 久久久久网色| 欧美精品一区二区大全| 亚洲欧美一区二区三区久久| 久久精品人人爽人人爽视色| 久久国产亚洲av麻豆专区| 成年人免费黄色播放视频| 校园人妻丝袜中文字幕| 亚洲男人天堂网一区| 高潮久久久久久久久久久不卡| 久久精品国产亚洲av涩爱| 高潮久久久久久久久久久不卡| 91精品三级在线观看| 高清不卡的av网站| 丝袜美腿诱惑在线| 老司机亚洲免费影院| 国产成人精品无人区| 欧美日韩精品网址| 麻豆av在线久日| 一边摸一边做爽爽视频免费| 大香蕉久久成人网| 婷婷成人精品国产| av福利片在线| 老熟女久久久| 国产97色在线日韩免费| 国产精品麻豆人妻色哟哟久久| 中文精品一卡2卡3卡4更新| 在线观看免费视频网站a站| 欧美少妇被猛烈插入视频| 国产不卡av网站在线观看| 亚洲av电影在线观看一区二区三区| 亚洲av美国av| 50天的宝宝边吃奶边哭怎么回事| 久久精品久久久久久久性| 国产有黄有色有爽视频| 精品久久久精品久久久| 欧美xxⅹ黑人| 一级a爱视频在线免费观看| 国产色视频综合| 18禁观看日本| 菩萨蛮人人尽说江南好唐韦庄| 天天躁狠狠躁夜夜躁狠狠躁| av一本久久久久| 久久亚洲国产成人精品v| 亚洲精品久久午夜乱码| av有码第一页| 9191精品国产免费久久| 亚洲欧美精品自产自拍| 一级a爱视频在线免费观看| 两性夫妻黄色片| 男男h啪啪无遮挡| 久久人妻熟女aⅴ| 又紧又爽又黄一区二区| 亚洲人成电影免费在线| 亚洲国产毛片av蜜桃av| 一级毛片电影观看| 久久鲁丝午夜福利片| 真人做人爱边吃奶动态| 亚洲七黄色美女视频| 97精品久久久久久久久久精品| 后天国语完整版免费观看| 极品少妇高潮喷水抽搐| 婷婷丁香在线五月| 亚洲av美国av| av国产久精品久网站免费入址| 满18在线观看网站| 国产精品国产三级国产专区5o| 又大又黄又爽视频免费| 日本欧美视频一区| 人人澡人人妻人| 亚洲成色77777| 五月天丁香电影| 欧美成狂野欧美在线观看| av线在线观看网站| 亚洲综合色网址| 欧美激情 高清一区二区三区| 91精品伊人久久大香线蕉| 欧美xxⅹ黑人| 国产精品一二三区在线看| 亚洲欧美成人综合另类久久久| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品国产一区二区精华液| 亚洲男人天堂网一区| 精品少妇久久久久久888优播| 大香蕉久久网| 咕卡用的链子| 欧美精品人与动牲交sv欧美| 国产无遮挡羞羞视频在线观看| 久久精品久久久久久噜噜老黄| 天天影视国产精品| 国产片内射在线| 国产在线视频一区二区| 少妇猛男粗大的猛烈进出视频| 性色av乱码一区二区三区2| 一级黄片播放器| 中文字幕人妻熟女乱码| 十八禁高潮呻吟视频| 母亲3免费完整高清在线观看| 在线观看国产h片| 精品少妇黑人巨大在线播放| 亚洲国产欧美网| 久久99一区二区三区| 韩国高清视频一区二区三区| 欧美日韩福利视频一区二区| 精品人妻1区二区| 美女扒开内裤让男人捅视频| 国产又色又爽无遮挡免| 亚洲情色 制服丝袜| 国产成人精品在线电影| 亚洲午夜精品一区,二区,三区| 国产色视频综合| 新久久久久国产一级毛片| 国产亚洲午夜精品一区二区久久| 99国产精品免费福利视频| 国产免费一区二区三区四区乱码| 美女大奶头黄色视频| 晚上一个人看的免费电影| 国产精品亚洲av一区麻豆|