• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vector semi-rational rogon-solitons and asymptotic analysis for any multicomponent Hirota equations with mixed backgrounds

    2022-10-22 08:14:30WeifangWengGuoqiangZhangShuyanChenZijianZhouandZhenyaYan
    Communications in Theoretical Physics 2022年9期

    Weifang Weng,Guoqiang Zhang,Shuyan Chen,Zijian Zhou and Zhenya Yan

    1 KLMM,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China

    2 School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3 Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    Abstract The Hirota equation can be used to describe the wave propagation of an ultrashort optical field.In this paper,the multi-component Hirota(alias n-Hirota,i.e.n-component third-order nonlinear Schr?dinger) equations with mixed non-zero and zero boundary conditions are explored.We employ the multiple roots of the characteristic polynomial related to the Lax pair and modified Darboux transform to find vector semi-rational rogon-soliton solutions (i.e.nonlinear combinations of rogon and soliton solutions).The semi-rational rogon-soliton features can be modulated by the polynomial degree.For the larger solution parameters,the first m(m<n)components with non-zero backgrounds can be decomposed into rational rogons and grey-like solitons,and the last n-m components with zero backgrounds can approach bright-like solitons.Moreover,we analyze the accelerations and curvatures of the quasi-characteristic curves,as well as the variations of accelerations with the distances to judge the interaction intensities between rogons and grey-like solitons.We also find the semi-rational rogon-soliton solutions with ultrahigh amplitudes.In particular,we can also deduce vector semi-rational solitons of the ncomponent complex mKdV equation.These results will be useful to further study the related nonlinear wave phenomena of multi-component physical models with mixed background,and even design the related physical experiments.

    Keywords: Multi-componentHirotaequations,mixedbackgrounds,modifiedDarbouxtransform,semi-rational RWs and W-shaped solitons,asymptotic analysis

    1.Introduction

    The study of solitons[1–5]and rogue waves(alias rogons[6])[7–21]is still a significant topic in the field of nonlinear sciences.They can be used to describe the wave propagations and fundamental features of some nonlinear physical phenomena appearing in nonlinear optics,Bose–Einstein condensates,plasmas physics,quantum optics,DNA,fluid mechanics,ocean,and even finance.As a fundamental and universal physical model,the focusing nonlinear Schr?dinger(NLS) equation is completely integrable [22],and admits the abundant nonlinear modes,such as the bright solitons,rogons,and breathers [7,10,14,19,20,22].As a type of higher-order extensions of the NLS equation,Hirota [23]further extended the NLS equation to first propose a thirdorder NLS equation (alias Hirota equation)

    which is used to demonstrate the propagating wave of an ultrashort optical field p=p(x,t) in an optical fibre [24–26],where the subscripts denote the partial derivatives with respect to the variables x,t.Equation (1) was shown to be completely integrable,and to possess the solitons and rogons in terms of the bilinear method [23],the modified Darboux transform [27–30]and robust inverse scattering method [31].Moreover,the inverse scattering and multi-pole solitons of equation (1) with non-zero boundary conditions were investigated [32,33].The multi-component nonlinear wave equations,as the extensions of the single NLS and Hirota equations,were also studied to analyze the interplays of many bodies.Recently,the vector rogons and semi-rational solutions were also found for the two-component coupled NLS equation [34–46]and three-component coupled NLS equations [47–49].Moreover,the vector rogons and semirational solutions were also shown to appear in the twocomponent Hirota equations [50,51],and three-component Hirota equation [52].

    As the number n of components increases,the key and difficult point is how to find the explicit multiple eigenvalues of the (n+1)-order matrix related to the Lax pairs of the ncomponent nonlinear wave equations.Recently,Zhang et al[53,54]presented a powerful approach to studying this problem such that any n-component NLS equations and their higher-order extensions with non-zero backgrounds have been found to possess the novel vector rogons [55].Moreover,we further extended this idea to obtain the semi-rational rogon-soliton solutions of 5-component Manakov equations[56],and even any n-component NLS equations [57].These solutions imply the interplays of rational rogons and grey-like solitons,as well as ones of the bright-like solitons and localized small modes.To the best of our knowledge,the any ncomponent Hirota (third-order NLS) equations with n >3 were not found to possess the semi-rational rogon-soliton solutions except for a few works on the 2-Hirota and 3-Hirota equations [50–52,58].

    The n-component Hirota (alias the n-Hirota) equations can be written as the dimensionless form [23,55]

    where p(x,t)=(p1(x,t),p2(x,t),…,pn(x,t))T(n∈N)stands for an envelope vector field describing the n components in the nonlinear optical fibre,the subscripts denote the partial derivatives with respect to the variables x,t,and ′? ′ denotes the Hermitian conjugate.The n-Hirota equation (2) can be rewritten as

    where the star denotes the complex conjugate.Equation (2)can be refereed to as the vector extension of equation(1),and reduces to the single Hirota equation (1) at n=1,while equation (2) becomes the coupled Hirota equation and 3-Hirota equation at n=2,3,respectively.As α ≠0,ε=0,equation (2) reduces to the n-component NLS (n-NLS)equation [59].When α=0,ε ≠0,equation (2) becomes the n-component complex mKdV (n-cmKdV) equation

    Similarly to the multi-component AKNS system[59],the Lax pair of the n-Hirota equation (2) is of the form

    where Φ=Φ(x,t;μ)=(φ1(x,t;μ),φ2(x,t;μ),…,φn+1(x,t;μ))Trepresents the vector eigenfunction,μ∈C denotes the iso-spectral parameter,V2=i(ασn+1+2ε P),V1=-(iεσn+1P2-iα P+ε Pxσn+1),and V0=V2P2+iε Pxx+α σn+1Px-ε [P,Px]with the (n+1)-order constant matrix σn+1and potential matrix function P(x,t) being σn+1=For the given initial solution p0(x,t)=(p10(x,t),p20(x,t),...,pn0(x,t))Tof equation (2),based on the loop group method [60]and the solutions of the Lax pair (4),one can obtain a usual DT for the n-Hirota equation (2) [55]:

    which can deduce the ‘new’ solutions of equation (2),where Φ(x,t;μ0)=(φ1(x,t;μ0),φ2(x,t;μ0),…,φn+1(x,t;μ0))Tis a vector-function solution of the Lax pair(4)with p(x,t)=p0(x,t) and μ=μ0.

    In this paper,we would like to study the semi-rational rogon-soliton solutions and asymptotic analysis of the n-Hirota equation (2) with the mixed non-zero and zero boundary conditions.The semi-rational rogon-soliton solutions can be decomposed into the interplays between the rogons and grey-like solitons.Moreover,the quasi-characteristic curves of the wave propagations of these grey-like solitons are almost the straight lines,which differ from ones of the n-NLS equation,which are the logarithmic function curves.

    The rest of this paper is arranged as follows:in section 2,starting from the (n+1)-order matrix Lax pair (4) with the initial plane-wave solutions (6),we find the explicit vector semi-rational rogon-soliton solutions of the n-Hirota equation by means of the modified Darboux transform,and the multiple eigenvalues of an (n+1)-order matrix U.In section 3,we analyze the obtained wave structures and their asymptotics.In particular,the semi-rational rogon-soliton solutions can be decomposed into the rogons and grey-like solitons when the absolute values of some parameters become bigger.Moreover,we discuss the velocities and accelerations of wave propagations of the decomposed grey-like solitons,the curvatures of the quasi-characteristic curves of the grey-like solitons and the relations between the curvatures of the quasicharacteristic curves and the distances defined by from the center points into the points on the quasi-characteristic curves.In section 4,we study the parameter constraints for the vector semi-rational rogon-soliton solutions with ultra-high amplitudes.In section 5,the above-mentioned results can reduce to ones of the n-cmKdV equation at α=0,ε ≠0.Particularly,we find the different vector semi-rational W-shaped soliton and grey-like solitons of the n-cmKdV equation.Finally,we present some conclusions and discussions in section 6.

    2.Vector semi-rational rogon-soliton solutions of(2)with mixed backgrounds

    Here to study the vector semi-rational rogon-soliton solutions of the n-Hirota equation (2) we start from its plane-wave solutions

    whereaj,bj∈ R,a=(a1,a2,…,an)Tand ‖a‖2=aTa.Without loss of generality,one can take aj≥0.Notice that as some as=0(s ∈{1,2,…,n}),the corresponding bs,νscan be chosen as any real constants.Of course,one can also take the νsgiven by equation (6).One can find the fundamental solutions of the Lax pair (4) with p=p0(x,t) given by equation (6) and μ=μ0

    by means of the gauge trans form Ψ (x,t;μ0)=diag (1,eiφ1,eiφ2,…,eiφ n)Φ(x,t;μ0),wherec=(c0,c1,…,cn)Tis a non-zero constant vector,and the matrix polynomial g (U(μ0))=ε U3(μ0)+(α+3εμ0) U2(μ0)+[3ε(μ20-‖a‖2)B=diag (b1,b2,…,bn).

    To explore the vector semi-rational rogon-soliton solutions of the n-Hirota system (2),we should find the explicit multiple eigenvalues of U(μ0).For the case aj≠0,ak=0(j=1,2,…,m;k=m+1,…,n;≤m<n),we show t hat if the non-zero amplitudes ajand wavenumbers bj(j=1,…,m,) and spectral parameter μ0are given by aj=csc (j π/(m+1)),bj=cot (jπ/(m+1)),μ0=i(m+1)/2,j=1,2,…,m,and each bk(k=m+1,…,n) is equal to one of bj(j=1,…,m)with Πns,k=m+1(bs-bk)2≠0,then the matrix U(μ0)possesses the (m+1)-multiple root i(1-m)/2 and(n-m) simple roots-(i(m+1)/2+bk)(k=m+1,…,n).

    Therefore,we,based on the above DT (5),equation (7),and the given aj,bj,μ0,have the following property:

    Proposition 1.The formula of vector semi-rational rogonsoliton solutions of the n-Hirota equation(2)is found in the form

    where Wj(x,t)is the jth row of the function matrix W(x,t)W(x,t)

    with=(a1,a2,…,am)T,and ζ1(x,t)=x+iαt-(‖a‖2+1)t,ζ2(t)=(α+3iε) t/2,ζ3(t)=ε t/2.

    3.Features of semi-rational rogon-soliton solutions and asymptotic analysis

    Here,to conveniently explore the wave features of the found vector semi-rational solutions(8)of the n-Hirota equation we introduce a non-singular matrix G=(G0,G1,…,Gn)

    and a constant vector Γ=(γ0,γ1,…,γn)Tsuch that c=GΓ,where δi,jis the Kronecker delta,ri,j's are constants.Since one of non-zero parameters γ?can be arbitrarily fixed,we set γ?≠0 as γ?+1=…=γn=0 such that in this case Wc=WGΓ is a vector function consisting of the polynomials on x,t of degree ? and exponential functions.

    In the following we analyze the semi-rational rogon-soliton solutions (i.e.nonlinear combinations of rogon and soliton solutions)of the n-Hirota equation(2)with αε ≠0.

    Remark 1.Notice that the curveξ1(x,t)=0in the solution(11),that is,

    Case 1.As ?=1,we choose γ1=i,rj,n=1(j=0,1)such that we deduce the vector rogon-soliton solutions with a free real parameter γ0of the n-Hirota equation (2):

    where

    and

    is called the quasi-characteristic curve of the soliton-like propagations in the n-Hirota equation,which is almost a straight line (see figures 1(a),(d) forγ0=7,1).Asε=0,α≠ 0,the corresponding solutions of the n-NLS equation admit the quasi-characteristic curve

    which is indeed a curve,not a straight line (see figures 1(g),(j)).Figure 1 implies that the the coefficient ε of the thirdorder dispersive term can change the quasi-characteristic curve for the n-NLS equation into the approximate characteristic straight line for the n-Hirota equation.

    In the following,we analyze the asymptotic behaviors of vector semi-rational rogon-soliton solutions (11) by studying the effect of the parameter γ0:

    Case 1a.—For the bigger |γ0|,the semi-rational rogonsoliton solutions with non-zero backgrounds pj(x,t)(j=1,2,…,m) given by equation (11) can be separated into the rational rogon partspjrw(x,t)(j=1,2,…,m):

    whose centers (near t=0) are localized the domain of x<0(see figures 2(a),(c),(d),(f),(g),(i),(j),(k)),and non-travelling-wave grey-like soliton parts with hyperbolic functionspjgs(x,t)(j=1,2,…,m):

    whose grey parts near t=0 are localized the domain of x >0(see figures 2(a),(c),(d),(f),(g),(i),(j),(k)).Moreover,the semi-rational solitons with zero backgrounds pk(x,t)(k=m+1,…,n) given by equation (11) tend to the brightlike solitons (see figures 2(b),(e),(h),(l)):

    For the bigger value of|γ0|(e.g.γ0=7),figure 2 displays the weak interplays of some types of rational rogons and greylike solitons,as well as the bright-like solitons and localized tiny waves:

    (1) As n=3,m=2 corresponding to the 3-Hirota equation with two non-zero backgrounds and one zero background,figure 2(a) displays the semi-rational rogonsoliton solution(|p1|/a1)composed of the bright rational rogon (∣p1rw∣a1) and the grey-like soliton (∣p1gs∣a1).Figure 2(b) illustrates the bright-like soliton (|p3|) made up of the bright soliton(∣pbs∣)3 and a localized tiny mode;

    (2) As n=4,m=3 corresponding to the 4-Hirota equation with three non-zero backgrounds and one zero background,figure 2(c) exhibits the semi-rational rogonsoliton (|p1|/a1) composed of the four-petaled-shaped rational rogon (∣prw∣a11) and a grey-like solitonFigure 2(d) illustrates the semi-rational rogon-soliton solution (|p2|/a2) consisting of the bright rational rogon (∣prw∣a22) and the grey-like solitonFigure 2(e) displays the bright-like soliton(|p4|) consisting of a bright-like solitonand a localized tiny mode;

    (3) As n=5,m=4 corresponding to the 5-Hirota equation with four non-zero backgrounds and one zero background,figures 2(f)–(h) exhibit the rogon-soliton(|p1|/a1) composed of the four-petaled-shaped rogonand the grey-like solitonthe semirational rogon-soliton solution (|p2|/a2) made up of the bright rogonand the grey-like solitonand the bright-like soliton (|p5|) consisting of the bright solitonand a localized tiny mode,respectively;

    (4) At n=6,m=5 corresponding to the 6-Hirota equation with five non-zero backgrounds and one zero background,figures 2(i)–(l) display the semi-rational rogonsoliton solution (|p1|/a1) composed of the dark rogonand the grey-like soliton (∣p1gs∣a1),the semirational rogon-soliton solution (|pj|/aj(j=2,3)) made up of the bright rogonand the greylike solitonand the bright-like soliton (|p6|) consisting of the bright-like soliton (∣p6bs∣)and a localized tiny mode,respectively.

    The quasi-characteristic curve and velocity.—We find that the non-travelling-wave grey-like solitonspjgs(x,t)and bright-like solitonspkbs(x,t)possess the same propagation direction,that is,they all propagate along the approximation curve derived from the quasi-characteristic line (12) in the(x,t)-space

    which differs from the propagation direction(the straight line)of usual travelling-wave solitons.Moreover,the same propagation velocity of solitons given by equations(14)and(15)isv1?(m+1)2+1t,which becomes slow as |t|increases,and approaches(m+1)2as |t|→∞.

    The time-dependent acceleration.—Now we consider the effect of the bright rogons(13)on the grey-like solitons(14) in these components pj(j=1,…,m) with non-zero backgrounds for the bigger |γ0|.We study the timedependent forceF1(t)=m1a1(t)on each mass point(e.g.its mass is assumed to be m1) along the quasi-characteristic line (12) arising from the rogons,where the time-dependent acceleration a1(t)of the wave propagations of the grey-like solitons given by equation (14) in the form (see figure 3(a))

    where f1(t)=-(α2+ε2)2t2+ε(α2+ε2) (2γ0+1) t+(α2-ε2) (+γ0)+α2/2.Figure 3(a) displays the acceleration a1(t)for t≥1.Moreover,|a1(t)| gradually decreases as t≥1 increases,and approaches zero at t→∞.The result implies that the absolute value of the time-dependent force,|F1(t)|,gradually decreases,and approaches zero as t→∞.

    Figure 1.The quasi-characteristic curves of grey-like solitons for n=5,m=4 and α=1.(a) ?=1,ε=0.1,γ0=7;(d) ?=1,ε=0.1,γ0=1;(b)?=2,ε=0.1,γ0=7;(e)?=2,ε=0.1,γ0=1;(c)?=3,ε=0.1,γ0=7;(f)?=3,ε=0.1,γ0=1;(g)?=1,ε=0,γ0=7;(j)?=1,ε=0,γ0=1;(h) ?=2,ε=0,γ0=7;(k) ?=2,ε=0,γ0=1;(i) ?=3,ε=0,γ0=7;(l) ?=3,ε=0,γ0=1.

    The curvature of the quasi-characteristic curve.—We consider the curvature change of the quasi-characteristic curve (12) or its approximation (16),where the curvature is defined asK(t)=∣x″ (t)∣(1+x′2(t))2,from which one has

    for the approximate characteristic curve (16).In fact,the corresponding curvature K(t) of the implicit quasi-characteristic curve (12) is so complicated,and not given here,but it can be displayed in figure 4(a) for γ0=9,n=5,m=4.

    Acceleration versus distance.—We introduce the distance between the point(x,t)on the quasi-characteristic curve and the center (x0,t0) of the separated rogon asd?d(x,t)=where the center positions of the separated rogons are selected as γ0=7(x0,t0)=(-7.5,0),γ0=9(x0,t0)=(-9.5,0).As a result,we give figure 5 to illustrate the relation of the acceleration and distance,which implies that when the distance increases the the absolute value of acceleration decreases,and approaches zero as the distance tends to infinity.

    Figure 2.Profiles of weak interactions of rogon-soliton components given by equation(11)with α=1,ε=0.1,γ0=7 for ?=1,n=3,4,5,6 with m=n-1.Rogon-soliton components with non-zero backgrounds(a)|p1|/a1(n=3),(c),(d)|pj|/aj(j=1,2;n=4),(f),(g)|pj|/aj(j=1,2;n=5),(i)–(k) |pj|/aj(j=1,2,3;n=6);Soliton-like component with zero backgrounds: (b) |p3|(n=3),(e) |p4|(n=4),(h) |p5|(n=5),(l) |p6|(n=6).

    Case 1b.—For the small value of|γ0|(e.g.γ0=1),figure 6 illustrates the strong interplays of different kinds of rational rogons and grey-like solitons,as well as the bright-like solitons and localized bigger waves given by equation (11).

    Case 2.At ?=2,we take γ1=0.5i,γ2=1,γj+1=0(?=2,3,4),and ri,j=1(j=0,1,2) to find the vector semi-rational rogon-soliton and soliton-like solutions with a free real parameter γ0of the n-Hirota equation

    where

    Figure 3.Time-dependent accelerations of separated grey-like solitons with γ0=7,n=5.(a)–(c) α=1,ε=0.1;(d)–(f) α=0,ε=2;(a),(d) ?=1;(b),(e) ?=2;(c),(f) ?=3.

    Figure 4.The curvatures of the quasi-characteristic curves with γ0=9,n=5,m=4.(a)α=1,ε=0.1,?=1;(b)α=1,ε=0.1,?=2;(c)α=0,ε=2,?=1;(d) α=0,ε=2,?=2.

    In the following,we analyze the asymptotic behaviors of vector semi-rational rogon-soliton solutions (19) by studying the effect of the parameter γ0:

    Remark 2.For the case?=2,the quasi-characteristic curve of the soliton-like propagations in the n-Hirota equation isξ2(x,t)=0,that is,

    which is almost a straight line(see figures 1(b),(e))except for the tiny bend near the point(0,0).However whenε=0,α=1,the corresponding quasi-characteristic curves of the n-NLS equation are displayed in figures 1(h),(k).

    Case 2a.—For the bigger value of |γ0|,we consider the asymptotic analysis to decompose the obtained vector semirational rogon-soliton solutions (19).The semi-rational rogon-soliton solutions pj(x,t)(j=1,2,…,m) given by equation(11)can be decomposed into the rational rogon partspjrw(x,t)

    whose centers (near t=0) are localized the domain of x<0(see figure 7),and grey-like soliton partspjgs(x,t)

    whose grey parts near t=0 are localized the domain of x >0(see figure 7).Moreover,the semi-rational soliton ps(x,t)(s=m+1,…,n) given by equation (19) approaches to a bright-like soliton

    Figure 5.Acceleration versus distance with α=1,ε=0.1,?=1.(a) γ0=7,n=3,(b) γ0=7,n=5,(c) γ0=9,n=3,(d) γ0=9,n=5.

    Figure 6.Features of strong interplays of semi-rational rogon-soliton components given by equation (11) with α=1,ε=0.1,γ0=1 for?=1,n=3,4,5,6 with m=n-1.Rogon-soliton components with non-zero backgrounds (a) |p1|/a1(n=3),(c),(d) |pj|/aj(j=1,2;n=4),(f),(g)|pj|/aj(j=1,2;n=5),(i)–(k)|pj|/aj(j=1,2,3;n=6);Soliton-like component with zero backgrounds: (b)|p3|(n=3),(e) |p4|(n=4),(h) |p5|(n=5),(l) |p6|(n=6).

    For the bigger value of|γ0|(e.g.γ0=8),figure 7 displays the structures of weak interplays of different kinds of rational rogons and grey-like solitons,as well as the bright-like solitons and localized tiny waves given by equation (19): (1) At n=3,m=2,figures 7(a),(b) illustrate the weak interplay(|p1|/a1) made up of the two-bright rational rogon (∣∣a1)and grey-like soliton (∣∣a1),and the bright-like soliton(|p3|) consisting of the bright-like soliton (∣∣) and a localized tiny mode with one hump and one dip,respectively;(2)As n=4,m=3,figures 7(c)–(e) exhibit the features of|p1|/a1composed of the two-four-petaled-shaped rogon(∣∣a1) and grey-like soliton (∣∣a1),the |p2|/a2consisting of two-bright rogon (∣∣a2) and grey-like soliton(∣∣a2),and bright-like soliton (|p4|) consisting of the bright-like soliton (∣∣) and a localized tiny mode with one hump and one dip,respectively.Equations (22) and (23)imply that the grey-like solitonsand bright-like solitonspkbs(x,t)have the same propagation direction along the approximation curve derived from the quasi-characteristic curve (20)

    Figure 7.Profiles of weak and strong interactions of rogon-soliton given by equation(19)with α=1,ε=0.1 and ?=2,n=3,4,m=n-1.Weak interactions with γ0=8:Non-zero backgrounds(a)|p1|/a1(n=3),(c),(d)|pj|/aj(j=1,2;n=4);Soliton-like components with zero background: (b) |p3|(n=3),(e) |p4|(n=4).Strong interactions with γ0=-0.5: Non-zero backgrounds (f) |p1|/a1(n=3),(h),(i) |pj|/aj(j=1,2;n=4),and soliton-like components with zero backgrounds: (g) |p3|(n=3),(j) |p4|(n=4).

    which differs from the propagation direction(the straight line)of usual travelling-wave solitons.Moreover,the same propagation velocity of solitons given by equations(22)and(23)isv2?(m+1)2+2t,which becomes slow as |t|increases,and approaches(m+1)2as|t|→∞.Similarly to?=1,we can also consider the time-dependent accelerations for ?=2(see figure 3(b)).The corresponding curvature of the quasi-characteristic line is exhibited in figure 4(b) for γ0=9,n=5,m=4.

    Case 2b.—For the smaller value of|γ0|(e.g.γ0=-0.5),figures 7(f)–(j) exhibit the features of strong interactions of different kinds of two-rogons and grey-like solitons,as well as bright-like solitons and localized tiny modes given by equation (19).

    Case 3.As ?=3,i.e.γ0γ1γ2γ3≠0,γj+1=0(j=3,4,…,n),and ri,j=1(j=0,1,2,3).We take γ1=0.5i,γ2=1,γ3=i to find the semi-rational vector rogon-soliton and soliton-like solutions (8) of the n-Hirota equation (2)

    where

    where Dm+1(Gj)denotes a column vector consisting of the first(m+1) rows of the column vector Gjgiven by equation(10).

    Remark 3.As?=3,the quasi-characteristic curve of the soliton-like propagations in the n-Hirota equation is

    which is almost a straight line(see figures 1(c),(f))except for the tiny bend near the point(0,0).However whenε=0,α=1,the corresponding quasi-characteristic curves of the n-NLS equation are displayed in figures 1(i),(l).

    In the following,we analyze the asymptotic behaviors of vector semi-rational rogon-soliton solutions (25) by studying the effect of the parameter γ0:

    Figure 8.Features of weak and strong interplays for the semi-rational rogon-soliton components with non-zero boundary conditions given by equation(25)with α=1,ε=0.1 and ?=3,n=4,m=n-1.Weak interactions with γ0=15:(a),(b)|pj|/aj(j=1,2;n=4),and solitonlike component with zero backgrounds: (c)|p3|(n=3).Weak interactions with γ0=-0.5: (d),(e) |pj|/aj(j=1,2;n=4),and soliton-like component with zero backgrounds: (f) |p4|(n=4).

    Case 3a.—For the bigger |γ0|,we consider the asymptotic analysis to decompose the obtained vector semi-rational rogon-soliton solutions (25).The semi-rational rogon-soliton solutions pj(x,t)(j=1,2,…,m)given by equation(25)can be decomposed into the rational rogon parts(x,t)

    whose centers (near t=0) are localized the domain of x<0 (see figure 8),and grey-like soliton partspjgs(x,t)

    whose grey-like parts near t=0 are localized the domain of x >0 (see figure 7).Moreover,the semi-rational soliton pk(x,t)(k=m+1,…,n) given by equation (25) approaches to a bright-like soliton

    It follows from equations(28)and(29)that the grey-like solitonspjgs(x,t)and bright-like solitonspkbs(x,t)have the same propagation direction along the approximation curve derived from the quasi-characteristic line (26)

    due to the relation

    where f is a polynomial of x,t.The direction given by equation (30) differs from the propagation direction (the straight line)of usual travelling-wave solitons.Moreover,the same propagation velocity of solitons given by equations(28)and(29)isv3?(m+1)2+which becomes slow as|t|increases,and approaches(m+1)2as|t|→∞.Similarly to ?=1,2,we can also consider the time-dependent accelerations for ?=3 (see figure 3(c)).

    Case 3b.—For the smaller value of|γ0|(e.g.γ0=-0.5),figures 8(d)–(f) exhibit the strong interactions of different kinds of two-rogons and grey-like solitons,as well as brightlike solitons and localized tiny waves given by equation(25).

    Figure 9.Profiles of the semi-rational rogon-soliton solutions given by equation (8) with α=1,∈=0.1.The case ofAall : (a)–(c)n=3,m=2,c0=,c1,2,3=i;(d)–(g) n=4,m=3,c0=2,c1,2,3,4=i;The case ofA e,j: (i) n=3,m=2: (h) |p1|/a1,c0=1,c1=i,cj=0(j=2,3),(i)|p2|/a2,c0=1,c2=i,cj=0(j=1,3);(ii)n=4,m=3:(j)|p1|/a1,c0=1,c1=i,cj=0(j=2,3,4),(k)|p2|/a2,c0=1,c2=i,cj=0(j=1,3,4),(l) |p3|/a3,c0=1,c3=i,cj=0(j=1,2,4).

    4.Semi-rational rogon-soliton solutions with ultrahigh amplitudes

    In this section,we will consider the maximal amplitudes of the vector semi-rational rogon-soliton solutions given by equation(8).We will consider two the average amplitudes as follows:

    wherep(x,t)=(p1,p2,…,pn)T,a=(a1,a2,…,an)Twith aj≠0(j=1,2,…,m).

    Proposition 2.For the given the vector semi-rational

    rogon-soliton solutions (8),Aall,Ae,jcan be attained at{c=(n,i,…,i)T,(x,t)=(0,0)} and{c=(1,0,…,0,i,0,…,0)T,(x,t)=(0,0) }(non-zero number i in thecis the(j+1)-th entry),respectively,in the forms

    Proof.Firstly,we should note that W(n+1)×(n+1)(0,0)given by equation (9) is

    Given the(n+1)-dimensional vectors W=(∣α0∣,∣α1∣i,…,∣αn∣i)T,Wc=(α0,α1,…,αn)T,andβj=∣αj∣,we have

    The last equality holds if and only ifβ0==βj,0<i,j≤n.According to (35),we have the expression ofAallin equation (33).Notice that since W(x,t)is a unit matrix at(0,0),so we can takec=(,i,…,i)T.In the same way,according to

    we have the expression ofAe,jin equation (33).Notice that W(0,0)=In+1,thus one can takec=(1,0,…,0,i,0,…,0)T.This completes the proof.□

    In particular,we display the profiles of the 3-Hirota and 4-Hirota equations when Talland Te,jare attained for at{c=(,i,…,i)T,(x,t)=(0,0)} and{c=(1,0,…,0,i,0,…,0)T,(x,t)=(0,0)},respectively (see figure 9).

    5.Vector semi-rational solitons of the n-cmKdV equation

    At α=0,ε ≠0,we can find the vector semi-rational solitons of the n-cmKdV equation (3) from the solutions (8),whereNotice that the separated rational solutions are solitons,not rogons,which mainly result fromζ1=x-(1+‖a‖2)is a real-valued linear function of x,t,andζ2=is a pure imaginary function of t,however,ζ1=x+iαt-(1+‖a‖2)tis a complex-valued linear function of x,t,andζ2=is also a complex-valued function of t for the n-Hirota equation with αε ≠0.

    Case 1.For the ?=1,we have the vector semi-rational solitons of the n-cmKdV equation (3) in the form (11) with α=0.Figures 10(a)–(h)display the weak interactions for the larger γ0=7 and n=3,4,5 with m=n-1,and the strong interactions are illustrated in figures 10(i)–(p) for the smaller γ0=1 and n=3,4,5 with m=n-1.

    Similarly to the n-Hirota equation,we can also consider the time-dependent accelerations in the n-cmKdV equation for ?=1(see figure 3(d)).The corresponding curvature of the quasi-characteristic line is exhibited in figure 4(c) for γ0=9,n=5,m=4.

    Figure 10.Profiles of the semi-rational solitons(11)with α=0,ε=2 for ?=1,n=3,4,5 with m=n-1.Weak interactions with γ0=7:grey-like and W-shaped solitons with non-zero backgrounds (a) |p1|/a1(n=3),(c),(d) |pj|/aj(j=1,2;n=4),(f),(g) |pj|/aj(j=1,2;n=5),and soliton-like components with zero backgrounds: (b) |p3|(n=3),(e) |p4|(n=4),(h) |p5|(n=5).Strong interactions with γ0=1 for n=3,4,5 with m=n-1:grey-like and W-shaped solitons with non-zero backgrounds(i)|p1|/a1(n=3),(k),(l)|pj|/aj(j=1,2;n=4),(o,p)|pj|/aj(j=1,2;n=5),and soliton-like component with zero backgrounds:(j)|p3|(n=3),(m)|p4|(n=4),(p)|p5|(n=5).

    Case 2.For ?=2,we find the vector semi-rational solitons of the n-cmKdV equation (3) in the form (19) with α=0.Figures 11(a)–(e)display the weak interactions for the larger γ0=8 and n=3,4 with m=n-1,and the strong interactions are illustrated in figures 11(f)–(j) for the smaller γ0=-0.5 and n=3,4 with m=n-1.

    Similarly to the n-Hirota equation,we can also consider the time-dependent accelerations in the n-cmKdV equation for ?=2(see figure 3(e)).The corresponding curvature of the quasi-characteristic line is exhibited in figure 4(d)for γ0=9,n=5,m=4.

    Case 3.As ?=3,we find the vector semi-rational solitons of the n-cmKdV equation (3) in the form (25) with α=0.Figures 12(a)–(c)display the weak interactions for the larger γ0=15 and n=4,m=3,and the strong interactions are illustrated in figures 12(d)–(f) for the smaller γ0=-0.5 and n=4,m=3.Similarly to the n-Hirota equation,we can also consider the time-dependent accelerations for ?=3 (see figure 3(f)).

    Similarly,the results in section 4 with α=0,ε ≠0 also hold for the n-cmKdV equation (3),which are displayed in figure 13 for some parameters.

    6.Conclusions and discussions

    In conclusion,we start with the mixed background seed solutions and obtain the semi-rational rogon-soliton solutions of the n-Hirota equation through the modified Darboux transformation.Firstly,we require the selection of parameters makes the characteristic polynomial admit the (m+1)-multiple root and(n-m)simple roots,and then it is brought into the modified Darboux transform to find the semirational solutions of the n-Hirota equation.Finally,the exact semi-rational solutions of the n-Hirota equation are analyzed in detail for the cases of ?=1,2,3 and n=3,4,5,6.The semi-rational rogon-soliton solutions of first m components with non-zero backgrounds can be decomposed into the rational rogon solutions and the grey-like solitons.The last(n-m) components with zero backgrounds are gradually decayed to the bright-like solitons.The interactions between rogons and soliton-like solutions are characterized by analyzing the accelerations and curvatures along the quasicharacteristic curves.We also study the semi-rational solitons of the n-cmKdV equation.The ideas and methods used in this paper can be extended to other nonlinear integrable physical models.Among them,the higher-order Darboux transformation of n-Hirota equation can also be studied in future.

    Figure 11.Profiles of weak interactions for the semi-rational rogon-soliton components with non-zero backgrounds given by equation (19)with α=0,ε=2,γ0=8 for ?=2,n=3,4 with m=n-1:(a)|p1|/a1(n=3),(c),(d)|pj|/aj(j=1,2;n=4),and soliton-like component with zero backgrounds:(b)|p3|(n=3),(e)|p4|(n=4).Strong interactions with α=0,ε=2,γ0=-0.5 for ?=2,n=3,4 with m=n-1:(f) |p1|/a1(n=3),(h),(i) |pj|/aj(j=1,2;n=4),and soliton-like component with zero backgrounds: (g) |p3|(n=3),(j) |p4|(n=4).

    Figure 12.Profiles of weak interactions for the semi-rational rogon-soliton components with non-zero backgrounds given by equation (25)with α=0,ε=2,γ0=15 for ?=3,n=4 with m=n-1: (a),(b) |pj|/aj(j=1,2;n=4),and soliton-like component with zero backgrounds: (c) |p3|(n=3).Strong interactions with α=0,ε=2,γ0=-0.5 for ?=3,n=4 with m=n-1: (d),(e) |pj|/aj(j=1,2;n=4),and soliton-like component with zero backgrounds: (f) |p4|(n=4).

    Figure 13.Profiles of the semi-rational soliton solutions given by equation(8)with α=0,∈=2.The case ofAe,j :(i)n=3,m=2(a)|p1|/a1,c0=1,c1=i,cj=0(j=2,3),(b)|p2|/a2,c0=1,c2=i,cj=0(j=1,3);(ii)n=4,m=3:(c)|p1|/a1,c0=1,c1=i,cj=0(j=2,3,4),(d) |p2|/a2,c0=1,c2=i,cj=0(j=1,3,4),(e) |p3|/a3,c0=1,c3=i,cj=0(j=1,2,4).The case ofAall : (f)–(h) n=3,m=2,c0=,c1,2,3=i.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.11 925 108 and 11 731 014).

    国产欧美另类精品又又久久亚洲欧美| 一级a做视频免费观看| 亚洲国产欧美在线一区| 精品午夜福利在线看| 亚洲国产欧美在线一区| 国产精品免费大片| 午夜久久久在线观看| 9色porny在线观看| 国产精品女同一区二区软件| 久久97久久精品| 好男人视频免费观看在线| 一本一本综合久久| 简卡轻食公司| 精品久久久噜噜| 人人妻人人澡人人爽人人夜夜| 亚洲色图 男人天堂 中文字幕 | 一本—道久久a久久精品蜜桃钙片| 久久综合国产亚洲精品| 青春草国产在线视频| 午夜免费观看性视频| 欧美三级亚洲精品| 五月玫瑰六月丁香| a级毛片黄视频| 亚洲欧美一区二区三区国产| 亚洲精品成人av观看孕妇| 亚洲精品国产av成人精品| 亚洲综合精品二区| videossex国产| 在线观看免费高清a一片| 丰满少妇做爰视频| 中文乱码字字幕精品一区二区三区| 蜜桃国产av成人99| 国产高清三级在线| 国产成人午夜福利电影在线观看| 伊人久久精品亚洲午夜| 人体艺术视频欧美日本| 日韩av不卡免费在线播放| 五月伊人婷婷丁香| 成人国语在线视频| 国产高清国产精品国产三级| 成人无遮挡网站| 简卡轻食公司| 日韩电影二区| 欧美亚洲 丝袜 人妻 在线| 男女国产视频网站| 天堂俺去俺来也www色官网| 国产成人午夜福利电影在线观看| freevideosex欧美| 人人澡人人妻人| 日韩一区二区三区影片| 少妇的逼水好多| 久久99一区二区三区| 国产精品秋霞免费鲁丝片| 欧美日韩视频高清一区二区三区二| 国产乱来视频区| 国产精品不卡视频一区二区| 五月伊人婷婷丁香| 一级毛片我不卡| 老熟女久久久| 你懂的网址亚洲精品在线观看| 极品人妻少妇av视频| 亚洲成人手机| 91成人精品电影| videosex国产| av又黄又爽大尺度在线免费看| 国产亚洲精品久久久com| 国产亚洲精品第一综合不卡 | 精品国产一区二区久久| 毛片一级片免费看久久久久| 国产一区有黄有色的免费视频| 午夜福利在线观看免费完整高清在| 18禁裸乳无遮挡动漫免费视频| 国产在视频线精品| av专区在线播放| 人成视频在线观看免费观看| 久久人人爽人人爽人人片va| 国产精品99久久99久久久不卡 | 欧美另类一区| 国产69精品久久久久777片| 人人妻人人爽人人添夜夜欢视频| 日本wwww免费看| 男男h啪啪无遮挡| 18禁观看日本| 精品熟女少妇av免费看| 看十八女毛片水多多多| 亚洲综合色惰| 人妻少妇偷人精品九色| 91精品三级在线观看| 欧美人与性动交α欧美精品济南到 | 久久久精品免费免费高清| 亚洲精品乱码久久久久久按摩| 狂野欧美激情性xxxx在线观看| 天堂俺去俺来也www色官网| 亚洲在久久综合| 国产熟女午夜一区二区三区 | 亚洲av日韩在线播放| 久久久国产一区二区| 简卡轻食公司| 亚洲精品一二三| 中文欧美无线码| 观看美女的网站| 国产欧美日韩一区二区三区在线 | 女性被躁到高潮视频| 成人综合一区亚洲| 只有这里有精品99| 精品国产国语对白av| 极品少妇高潮喷水抽搐| 亚洲av欧美aⅴ国产| 多毛熟女@视频| 麻豆乱淫一区二区| 五月开心婷婷网| 国产成人免费观看mmmm| 最近2019中文字幕mv第一页| 免费看光身美女| 亚洲美女视频黄频| 最后的刺客免费高清国语| 免费少妇av软件| 国产精品 国内视频| 国产精品女同一区二区软件| 中文字幕人妻熟人妻熟丝袜美| 永久网站在线| 国国产精品蜜臀av免费| 中文字幕亚洲精品专区| 最近中文字幕2019免费版| 亚州av有码| 亚洲人与动物交配视频| 女人久久www免费人成看片| 国产精品秋霞免费鲁丝片| 夜夜骑夜夜射夜夜干| 大又大粗又爽又黄少妇毛片口| 久久久久久久久久久久大奶| 黄片播放在线免费| 精品亚洲成国产av| 交换朋友夫妻互换小说| 久久精品久久精品一区二区三区| 97在线人人人人妻| 婷婷色麻豆天堂久久| 美女xxoo啪啪120秒动态图| 亚洲精品国产av蜜桃| 人体艺术视频欧美日本| 丰满迷人的少妇在线观看| 欧美 日韩 精品 国产| 夫妻性生交免费视频一级片| 国产高清国产精品国产三级| 国产亚洲精品第一综合不卡 | 男女边吃奶边做爰视频| 成年av动漫网址| 午夜福利在线观看免费完整高清在| 激情五月婷婷亚洲| 久久精品国产鲁丝片午夜精品| 寂寞人妻少妇视频99o| 国产片内射在线| 国产精品久久久久久久久免| 久久久久久久久久人人人人人人| 亚洲欧洲精品一区二区精品久久久 | 麻豆成人av视频| 国产精品秋霞免费鲁丝片| 五月天丁香电影| 亚洲精品一二三| 日韩精品有码人妻一区| 亚洲人与动物交配视频| 伦理电影大哥的女人| 各种免费的搞黄视频| 午夜激情av网站| 国产探花极品一区二区| 国产一区亚洲一区在线观看| 欧美 日韩 精品 国产| 国产av码专区亚洲av| 一本色道久久久久久精品综合| 亚洲欧美一区二区三区国产| 99国产综合亚洲精品| 国产精品免费大片| 伊人久久国产一区二区| 91国产中文字幕| 18禁在线无遮挡免费观看视频| 亚洲三级黄色毛片| 18在线观看网站| 精品少妇内射三级| 久久亚洲国产成人精品v| 成人漫画全彩无遮挡| 久久久精品区二区三区| 国产伦理片在线播放av一区| 永久免费av网站大全| 91国产中文字幕| 午夜激情久久久久久久| 天堂8中文在线网| 国产精品一区www在线观看| 欧美 日韩 精品 国产| 欧美老熟妇乱子伦牲交| 精品国产一区二区久久| 久久久精品区二区三区| 亚洲第一区二区三区不卡| 99九九线精品视频在线观看视频| 亚洲第一av免费看| 男人操女人黄网站| 最近的中文字幕免费完整| 性高湖久久久久久久久免费观看| 欧美国产精品一级二级三级| 国产色爽女视频免费观看| 亚洲精品视频女| 91精品伊人久久大香线蕉| 中文字幕久久专区| 制服诱惑二区| 亚洲欧美一区二区三区国产| 色94色欧美一区二区| 精品久久国产蜜桃| 久热久热在线精品观看| 亚洲激情五月婷婷啪啪| 国产亚洲精品久久久com| 国产精品99久久久久久久久| 亚洲欧洲日产国产| 高清毛片免费看| 男女啪啪激烈高潮av片| 一区二区三区乱码不卡18| kizo精华| 亚洲内射少妇av| 香蕉精品网在线| 高清黄色对白视频在线免费看| 午夜免费鲁丝| 国产又色又爽无遮挡免| 精品久久蜜臀av无| 久久精品国产鲁丝片午夜精品| 久久久国产精品麻豆| 777米奇影视久久| 特大巨黑吊av在线直播| 久久99精品国语久久久| 狂野欧美激情性xxxx在线观看| 亚洲国产最新在线播放| 久久精品久久久久久久性| 97超碰精品成人国产| 插逼视频在线观看| 男人操女人黄网站| 国产成人av激情在线播放 | 另类亚洲欧美激情| 男女边摸边吃奶| 狂野欧美激情性xxxx在线观看| 久久精品国产亚洲网站| a级片在线免费高清观看视频| 18在线观看网站| 天堂8中文在线网| 纯流量卡能插随身wifi吗| av有码第一页| 亚洲国产av影院在线观看| 一区二区三区免费毛片| 久久久a久久爽久久v久久| 亚洲av日韩在线播放| 一级毛片电影观看| 亚洲精品中文字幕在线视频| 大香蕉久久网| 九色成人免费人妻av| 国产欧美日韩一区二区三区在线 | 女的被弄到高潮叫床怎么办| 高清黄色对白视频在线免费看| 亚洲国产欧美在线一区| 亚洲欧美日韩卡通动漫| 精品一区二区三区视频在线| 久久久国产欧美日韩av| 一个人看视频在线观看www免费| 久久久久久久久久久久大奶| 91久久精品国产一区二区三区| 亚洲欧美一区二区三区国产| 色5月婷婷丁香| 国产熟女午夜一区二区三区 | 免费看光身美女| 精品国产一区二区久久| 最近手机中文字幕大全| 精品视频人人做人人爽| 免费高清在线观看视频在线观看| 观看美女的网站| 内地一区二区视频在线| 狠狠婷婷综合久久久久久88av| 高清av免费在线| 国产精品一二三区在线看| 大香蕉久久网| 最近最新中文字幕免费大全7| 欧美日韩av久久| 久久久久久久久久成人| 男人操女人黄网站| 亚洲欧美日韩卡通动漫| 久久精品国产a三级三级三级| av.在线天堂| 精品一区在线观看国产| 欧美成人精品欧美一级黄| 在线精品无人区一区二区三| 国产精品秋霞免费鲁丝片| 午夜91福利影院| 在线观看美女被高潮喷水网站| 久久综合国产亚洲精品| av黄色大香蕉| 免费高清在线观看视频在线观看| 午夜福利视频精品| 国产色爽女视频免费观看| 91午夜精品亚洲一区二区三区| 9色porny在线观看| 亚洲av.av天堂| 五月玫瑰六月丁香| 午夜老司机福利剧场| 亚洲图色成人| 精品国产一区二区三区久久久樱花| 国产伦精品一区二区三区视频9| 最近中文字幕高清免费大全6| 久久精品国产a三级三级三级| 午夜福利在线观看免费完整高清在| 制服人妻中文乱码| 中文字幕亚洲精品专区| 99视频精品全部免费 在线| 99久久中文字幕三级久久日本| av女优亚洲男人天堂| 日韩一区二区视频免费看| 大香蕉久久成人网| 王馨瑶露胸无遮挡在线观看| 久久狼人影院| 亚洲精品日韩av片在线观看| 亚洲高清免费不卡视频| 日韩电影二区| 国产精品一国产av| av国产久精品久网站免费入址| 午夜免费观看性视频| 亚洲精品日韩av片在线观看| 人妻人人澡人人爽人人| 精品人妻在线不人妻| 亚洲色图 男人天堂 中文字幕 | 日本vs欧美在线观看视频| 最近2019中文字幕mv第一页| 久久久久国产网址| 日本爱情动作片www.在线观看| 在线播放无遮挡| 一边亲一边摸免费视频| 中文字幕久久专区| 国产男女内射视频| 亚洲国产精品国产精品| 日韩av在线免费看完整版不卡| 青青草视频在线视频观看| 丝袜在线中文字幕| 波野结衣二区三区在线| 最近最新中文字幕免费大全7| 免费日韩欧美在线观看| 精品一品国产午夜福利视频| 街头女战士在线观看网站| 精品卡一卡二卡四卡免费| 秋霞伦理黄片| av福利片在线| 亚洲av免费高清在线观看| 日日摸夜夜添夜夜添av毛片| 亚洲伊人久久精品综合| 久久久久国产精品人妻一区二区| 女人久久www免费人成看片| 国产精品免费大片| 亚洲精品国产av蜜桃| 欧美精品一区二区大全| 日日爽夜夜爽网站| 久久精品熟女亚洲av麻豆精品| 少妇被粗大猛烈的视频| 国产精品99久久99久久久不卡 | 久久97久久精品| 精品人妻熟女毛片av久久网站| 国产高清国产精品国产三级| 亚洲性久久影院| 久久久久人妻精品一区果冻| 亚洲性久久影院| 国产精品女同一区二区软件| 免费看光身美女| xxxhd国产人妻xxx| 精品国产一区二区三区久久久樱花| 美女内射精品一级片tv| 黑丝袜美女国产一区| 18禁在线无遮挡免费观看视频| 成人免费观看视频高清| 午夜91福利影院| 精品国产一区二区三区久久久樱花| 精品国产国语对白av| 黑丝袜美女国产一区| 亚洲国产最新在线播放| 永久网站在线| 日韩 亚洲 欧美在线| 国产永久视频网站| 亚洲精品第二区| 汤姆久久久久久久影院中文字幕| 成人二区视频| 视频区图区小说| 黑人巨大精品欧美一区二区蜜桃 | 一区二区三区免费毛片| 免费观看av网站的网址| 下体分泌物呈黄色| 久久久午夜欧美精品| 麻豆精品久久久久久蜜桃| 国产极品天堂在线| 亚洲精品中文字幕在线视频| 如日韩欧美国产精品一区二区三区 | 国产免费又黄又爽又色| 九色成人免费人妻av| 日韩一区二区视频免费看| 欧美少妇被猛烈插入视频| 另类亚洲欧美激情| 视频中文字幕在线观看| videosex国产| 国语对白做爰xxxⅹ性视频网站| 日本免费在线观看一区| 黄色视频在线播放观看不卡| 日本与韩国留学比较| 超碰97精品在线观看| av福利片在线| av在线app专区| 亚州av有码| 大又大粗又爽又黄少妇毛片口| 国产精品免费大片| 尾随美女入室| 91精品国产国语对白视频| 免费高清在线观看日韩| av不卡在线播放| 天天操日日干夜夜撸| 久久久久国产精品人妻一区二区| 国产一区二区三区av在线| 纯流量卡能插随身wifi吗| 日本wwww免费看| 91成人精品电影| 亚洲综合色网址| 人妻 亚洲 视频| 国产日韩一区二区三区精品不卡 | 色哟哟·www| av视频免费观看在线观看| 国产精品一区二区在线不卡| 黄色配什么色好看| 亚洲国产最新在线播放| 91久久精品电影网| 热re99久久精品国产66热6| 亚洲天堂av无毛| 国产欧美日韩一区二区三区在线 | 欧美变态另类bdsm刘玥| 久久久久久久精品精品| 色网站视频免费| 日韩亚洲欧美综合| av在线观看视频网站免费| 香蕉精品网在线| 日韩制服骚丝袜av| 久久狼人影院| 人人澡人人妻人| 日韩熟女老妇一区二区性免费视频| 最后的刺客免费高清国语| 满18在线观看网站| 青春草国产在线视频| 3wmmmm亚洲av在线观看| tube8黄色片| 色哟哟·www| 国产成人一区二区在线| 亚洲成人手机| 欧美精品一区二区大全| 国产无遮挡羞羞视频在线观看| 国产极品粉嫩免费观看在线 | 少妇丰满av| 午夜福利视频在线观看免费| 色哟哟·www| 亚洲,欧美,日韩| 国产成人a∨麻豆精品| 精品国产露脸久久av麻豆| 国产精品久久久久久精品电影小说| 亚洲精品视频女| 香蕉精品网在线| 七月丁香在线播放| 少妇的逼水好多| 久久精品久久精品一区二区三区| 熟女电影av网| 少妇熟女欧美另类| 亚洲欧美成人综合另类久久久| 一级爰片在线观看| 99九九线精品视频在线观看视频| 国产成人精品在线电影| 曰老女人黄片| 中文欧美无线码| 国产在线一区二区三区精| 久久久国产一区二区| 午夜福利,免费看| 亚洲成人手机| 母亲3免费完整高清在线观看 | 亚洲精品日本国产第一区| 久久久久久久久久久久大奶| 啦啦啦啦在线视频资源| 99热网站在线观看| 国产午夜精品一二区理论片| 亚洲色图综合在线观看| 免费观看av网站的网址| 国产精品一二三区在线看| 亚洲欧美成人综合另类久久久| 日本欧美视频一区| 人人澡人人妻人| 国产高清不卡午夜福利| 水蜜桃什么品种好| 精品国产乱码久久久久久小说| 又黄又爽又刺激的免费视频.| 97在线视频观看| 九草在线视频观看| 五月天丁香电影| 黄片无遮挡物在线观看| 国产乱人偷精品视频| 国产亚洲午夜精品一区二区久久| 久久久久国产网址| 国产老妇伦熟女老妇高清| 中文欧美无线码| 中文字幕人妻熟人妻熟丝袜美| 黑人猛操日本美女一级片| 免费大片黄手机在线观看| 国产在视频线精品| 一区二区三区精品91| 亚洲av在线观看美女高潮| 国产精品三级大全| 伦理电影大哥的女人| 精品一区二区三区视频在线| 婷婷色综合大香蕉| 青春草视频在线免费观看| 在线观看美女被高潮喷水网站| 国产av码专区亚洲av| 韩国av在线不卡| 成人国产麻豆网| 男人添女人高潮全过程视频| 日本爱情动作片www.在线观看| 狠狠婷婷综合久久久久久88av| 人妻系列 视频| 国产成人91sexporn| 久久这里有精品视频免费| 免费观看无遮挡的男女| 亚洲av欧美aⅴ国产| 亚洲av不卡在线观看| 国产成人精品婷婷| 免费大片黄手机在线观看| 老司机影院成人| 亚洲美女黄色视频免费看| 丝袜喷水一区| 9色porny在线观看| 天堂中文最新版在线下载| 妹子高潮喷水视频| 爱豆传媒免费全集在线观看| 伦精品一区二区三区| 高清欧美精品videossex| 成人手机av| 免费黄频网站在线观看国产| 国产综合精华液| 欧美xxⅹ黑人| 晚上一个人看的免费电影| 777米奇影视久久| 亚洲精品美女久久av网站| 中文乱码字字幕精品一区二区三区| 国产熟女午夜一区二区三区 | xxxhd国产人妻xxx| 成人毛片60女人毛片免费| 亚洲av不卡在线观看| 少妇的逼好多水| 大香蕉久久网| 最近的中文字幕免费完整| 菩萨蛮人人尽说江南好唐韦庄| 97超碰精品成人国产| 亚洲综合精品二区| 亚洲色图 男人天堂 中文字幕 | 国产探花极品一区二区| 成年人午夜在线观看视频| 日韩伦理黄色片| 成人午夜精彩视频在线观看| 91精品伊人久久大香线蕉| 亚洲精品乱码久久久久久按摩| 伊人久久国产一区二区| 黑人欧美特级aaaaaa片| 大话2 男鬼变身卡| 18禁动态无遮挡网站| 色哟哟·www| 亚洲人成77777在线视频| 99热全是精品| 爱豆传媒免费全集在线观看| 亚洲国产日韩一区二区| 九色亚洲精品在线播放| 极品人妻少妇av视频| 国产伦理片在线播放av一区| 免费日韩欧美在线观看| 国产欧美日韩综合在线一区二区| 亚洲人成网站在线观看播放| 国语对白做爰xxxⅹ性视频网站| 日本av免费视频播放| 久久狼人影院| 亚洲高清免费不卡视频| 国产精品偷伦视频观看了| 午夜影院在线不卡| 啦啦啦视频在线资源免费观看| 亚洲熟女精品中文字幕| 中文字幕久久专区| 嫩草影院入口| 2022亚洲国产成人精品| 亚洲欧美色中文字幕在线| 高清不卡的av网站| 大话2 男鬼变身卡| 久久精品国产亚洲网站| 看非洲黑人一级黄片| 国产一区有黄有色的免费视频| 国产片内射在线| 女性生殖器流出的白浆| 老司机亚洲免费影院| 午夜日本视频在线| 特大巨黑吊av在线直播| 国产成人91sexporn| 成人综合一区亚洲| 国产亚洲午夜精品一区二区久久| 人妻一区二区av| 黄色毛片三级朝国网站| 久久国产精品大桥未久av| 美女国产高潮福利片在线看| 久久99蜜桃精品久久| 亚洲图色成人| 国产男女内射视频| 国产精品99久久久久久久久| videossex国产| 国产成人精品无人区| 欧美3d第一页| 国产成人91sexporn| av专区在线播放| 高清不卡的av网站| 大话2 男鬼变身卡| 啦啦啦啦在线视频资源| 日本vs欧美在线观看视频|