• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vector semi-rational rogon-solitons and asymptotic analysis for any multicomponent Hirota equations with mixed backgrounds

    2022-10-22 08:14:30WeifangWengGuoqiangZhangShuyanChenZijianZhouandZhenyaYan
    Communications in Theoretical Physics 2022年9期

    Weifang Weng,Guoqiang Zhang,Shuyan Chen,Zijian Zhou and Zhenya Yan

    1 KLMM,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China

    2 School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3 Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    Abstract The Hirota equation can be used to describe the wave propagation of an ultrashort optical field.In this paper,the multi-component Hirota(alias n-Hirota,i.e.n-component third-order nonlinear Schr?dinger) equations with mixed non-zero and zero boundary conditions are explored.We employ the multiple roots of the characteristic polynomial related to the Lax pair and modified Darboux transform to find vector semi-rational rogon-soliton solutions (i.e.nonlinear combinations of rogon and soliton solutions).The semi-rational rogon-soliton features can be modulated by the polynomial degree.For the larger solution parameters,the first m(m<n)components with non-zero backgrounds can be decomposed into rational rogons and grey-like solitons,and the last n-m components with zero backgrounds can approach bright-like solitons.Moreover,we analyze the accelerations and curvatures of the quasi-characteristic curves,as well as the variations of accelerations with the distances to judge the interaction intensities between rogons and grey-like solitons.We also find the semi-rational rogon-soliton solutions with ultrahigh amplitudes.In particular,we can also deduce vector semi-rational solitons of the ncomponent complex mKdV equation.These results will be useful to further study the related nonlinear wave phenomena of multi-component physical models with mixed background,and even design the related physical experiments.

    Keywords: Multi-componentHirotaequations,mixedbackgrounds,modifiedDarbouxtransform,semi-rational RWs and W-shaped solitons,asymptotic analysis

    1.Introduction

    The study of solitons[1–5]and rogue waves(alias rogons[6])[7–21]is still a significant topic in the field of nonlinear sciences.They can be used to describe the wave propagations and fundamental features of some nonlinear physical phenomena appearing in nonlinear optics,Bose–Einstein condensates,plasmas physics,quantum optics,DNA,fluid mechanics,ocean,and even finance.As a fundamental and universal physical model,the focusing nonlinear Schr?dinger(NLS) equation is completely integrable [22],and admits the abundant nonlinear modes,such as the bright solitons,rogons,and breathers [7,10,14,19,20,22].As a type of higher-order extensions of the NLS equation,Hirota [23]further extended the NLS equation to first propose a thirdorder NLS equation (alias Hirota equation)

    which is used to demonstrate the propagating wave of an ultrashort optical field p=p(x,t) in an optical fibre [24–26],where the subscripts denote the partial derivatives with respect to the variables x,t.Equation (1) was shown to be completely integrable,and to possess the solitons and rogons in terms of the bilinear method [23],the modified Darboux transform [27–30]and robust inverse scattering method [31].Moreover,the inverse scattering and multi-pole solitons of equation (1) with non-zero boundary conditions were investigated [32,33].The multi-component nonlinear wave equations,as the extensions of the single NLS and Hirota equations,were also studied to analyze the interplays of many bodies.Recently,the vector rogons and semi-rational solutions were also found for the two-component coupled NLS equation [34–46]and three-component coupled NLS equations [47–49].Moreover,the vector rogons and semirational solutions were also shown to appear in the twocomponent Hirota equations [50,51],and three-component Hirota equation [52].

    As the number n of components increases,the key and difficult point is how to find the explicit multiple eigenvalues of the (n+1)-order matrix related to the Lax pairs of the ncomponent nonlinear wave equations.Recently,Zhang et al[53,54]presented a powerful approach to studying this problem such that any n-component NLS equations and their higher-order extensions with non-zero backgrounds have been found to possess the novel vector rogons [55].Moreover,we further extended this idea to obtain the semi-rational rogon-soliton solutions of 5-component Manakov equations[56],and even any n-component NLS equations [57].These solutions imply the interplays of rational rogons and grey-like solitons,as well as ones of the bright-like solitons and localized small modes.To the best of our knowledge,the any ncomponent Hirota (third-order NLS) equations with n >3 were not found to possess the semi-rational rogon-soliton solutions except for a few works on the 2-Hirota and 3-Hirota equations [50–52,58].

    The n-component Hirota (alias the n-Hirota) equations can be written as the dimensionless form [23,55]

    where p(x,t)=(p1(x,t),p2(x,t),…,pn(x,t))T(n∈N)stands for an envelope vector field describing the n components in the nonlinear optical fibre,the subscripts denote the partial derivatives with respect to the variables x,t,and ′? ′ denotes the Hermitian conjugate.The n-Hirota equation (2) can be rewritten as

    where the star denotes the complex conjugate.Equation (2)can be refereed to as the vector extension of equation(1),and reduces to the single Hirota equation (1) at n=1,while equation (2) becomes the coupled Hirota equation and 3-Hirota equation at n=2,3,respectively.As α ≠0,ε=0,equation (2) reduces to the n-component NLS (n-NLS)equation [59].When α=0,ε ≠0,equation (2) becomes the n-component complex mKdV (n-cmKdV) equation

    Similarly to the multi-component AKNS system[59],the Lax pair of the n-Hirota equation (2) is of the form

    where Φ=Φ(x,t;μ)=(φ1(x,t;μ),φ2(x,t;μ),…,φn+1(x,t;μ))Trepresents the vector eigenfunction,μ∈C denotes the iso-spectral parameter,V2=i(ασn+1+2ε P),V1=-(iεσn+1P2-iα P+ε Pxσn+1),and V0=V2P2+iε Pxx+α σn+1Px-ε [P,Px]with the (n+1)-order constant matrix σn+1and potential matrix function P(x,t) being σn+1=For the given initial solution p0(x,t)=(p10(x,t),p20(x,t),...,pn0(x,t))Tof equation (2),based on the loop group method [60]and the solutions of the Lax pair (4),one can obtain a usual DT for the n-Hirota equation (2) [55]:

    which can deduce the ‘new’ solutions of equation (2),where Φ(x,t;μ0)=(φ1(x,t;μ0),φ2(x,t;μ0),…,φn+1(x,t;μ0))Tis a vector-function solution of the Lax pair(4)with p(x,t)=p0(x,t) and μ=μ0.

    In this paper,we would like to study the semi-rational rogon-soliton solutions and asymptotic analysis of the n-Hirota equation (2) with the mixed non-zero and zero boundary conditions.The semi-rational rogon-soliton solutions can be decomposed into the interplays between the rogons and grey-like solitons.Moreover,the quasi-characteristic curves of the wave propagations of these grey-like solitons are almost the straight lines,which differ from ones of the n-NLS equation,which are the logarithmic function curves.

    The rest of this paper is arranged as follows:in section 2,starting from the (n+1)-order matrix Lax pair (4) with the initial plane-wave solutions (6),we find the explicit vector semi-rational rogon-soliton solutions of the n-Hirota equation by means of the modified Darboux transform,and the multiple eigenvalues of an (n+1)-order matrix U.In section 3,we analyze the obtained wave structures and their asymptotics.In particular,the semi-rational rogon-soliton solutions can be decomposed into the rogons and grey-like solitons when the absolute values of some parameters become bigger.Moreover,we discuss the velocities and accelerations of wave propagations of the decomposed grey-like solitons,the curvatures of the quasi-characteristic curves of the grey-like solitons and the relations between the curvatures of the quasicharacteristic curves and the distances defined by from the center points into the points on the quasi-characteristic curves.In section 4,we study the parameter constraints for the vector semi-rational rogon-soliton solutions with ultra-high amplitudes.In section 5,the above-mentioned results can reduce to ones of the n-cmKdV equation at α=0,ε ≠0.Particularly,we find the different vector semi-rational W-shaped soliton and grey-like solitons of the n-cmKdV equation.Finally,we present some conclusions and discussions in section 6.

    2.Vector semi-rational rogon-soliton solutions of(2)with mixed backgrounds

    Here to study the vector semi-rational rogon-soliton solutions of the n-Hirota equation (2) we start from its plane-wave solutions

    whereaj,bj∈ R,a=(a1,a2,…,an)Tand ‖a‖2=aTa.Without loss of generality,one can take aj≥0.Notice that as some as=0(s ∈{1,2,…,n}),the corresponding bs,νscan be chosen as any real constants.Of course,one can also take the νsgiven by equation (6).One can find the fundamental solutions of the Lax pair (4) with p=p0(x,t) given by equation (6) and μ=μ0

    by means of the gauge trans form Ψ (x,t;μ0)=diag (1,eiφ1,eiφ2,…,eiφ n)Φ(x,t;μ0),wherec=(c0,c1,…,cn)Tis a non-zero constant vector,and the matrix polynomial g (U(μ0))=ε U3(μ0)+(α+3εμ0) U2(μ0)+[3ε(μ20-‖a‖2)B=diag (b1,b2,…,bn).

    To explore the vector semi-rational rogon-soliton solutions of the n-Hirota system (2),we should find the explicit multiple eigenvalues of U(μ0).For the case aj≠0,ak=0(j=1,2,…,m;k=m+1,…,n;≤m<n),we show t hat if the non-zero amplitudes ajand wavenumbers bj(j=1,…,m,) and spectral parameter μ0are given by aj=csc (j π/(m+1)),bj=cot (jπ/(m+1)),μ0=i(m+1)/2,j=1,2,…,m,and each bk(k=m+1,…,n) is equal to one of bj(j=1,…,m)with Πns,k=m+1(bs-bk)2≠0,then the matrix U(μ0)possesses the (m+1)-multiple root i(1-m)/2 and(n-m) simple roots-(i(m+1)/2+bk)(k=m+1,…,n).

    Therefore,we,based on the above DT (5),equation (7),and the given aj,bj,μ0,have the following property:

    Proposition 1.The formula of vector semi-rational rogonsoliton solutions of the n-Hirota equation(2)is found in the form

    where Wj(x,t)is the jth row of the function matrix W(x,t)W(x,t)

    with=(a1,a2,…,am)T,and ζ1(x,t)=x+iαt-(‖a‖2+1)t,ζ2(t)=(α+3iε) t/2,ζ3(t)=ε t/2.

    3.Features of semi-rational rogon-soliton solutions and asymptotic analysis

    Here,to conveniently explore the wave features of the found vector semi-rational solutions(8)of the n-Hirota equation we introduce a non-singular matrix G=(G0,G1,…,Gn)

    and a constant vector Γ=(γ0,γ1,…,γn)Tsuch that c=GΓ,where δi,jis the Kronecker delta,ri,j's are constants.Since one of non-zero parameters γ?can be arbitrarily fixed,we set γ?≠0 as γ?+1=…=γn=0 such that in this case Wc=WGΓ is a vector function consisting of the polynomials on x,t of degree ? and exponential functions.

    In the following we analyze the semi-rational rogon-soliton solutions (i.e.nonlinear combinations of rogon and soliton solutions)of the n-Hirota equation(2)with αε ≠0.

    Remark 1.Notice that the curveξ1(x,t)=0in the solution(11),that is,

    Case 1.As ?=1,we choose γ1=i,rj,n=1(j=0,1)such that we deduce the vector rogon-soliton solutions with a free real parameter γ0of the n-Hirota equation (2):

    where

    and

    is called the quasi-characteristic curve of the soliton-like propagations in the n-Hirota equation,which is almost a straight line (see figures 1(a),(d) forγ0=7,1).Asε=0,α≠ 0,the corresponding solutions of the n-NLS equation admit the quasi-characteristic curve

    which is indeed a curve,not a straight line (see figures 1(g),(j)).Figure 1 implies that the the coefficient ε of the thirdorder dispersive term can change the quasi-characteristic curve for the n-NLS equation into the approximate characteristic straight line for the n-Hirota equation.

    In the following,we analyze the asymptotic behaviors of vector semi-rational rogon-soliton solutions (11) by studying the effect of the parameter γ0:

    Case 1a.—For the bigger |γ0|,the semi-rational rogonsoliton solutions with non-zero backgrounds pj(x,t)(j=1,2,…,m) given by equation (11) can be separated into the rational rogon partspjrw(x,t)(j=1,2,…,m):

    whose centers (near t=0) are localized the domain of x<0(see figures 2(a),(c),(d),(f),(g),(i),(j),(k)),and non-travelling-wave grey-like soliton parts with hyperbolic functionspjgs(x,t)(j=1,2,…,m):

    whose grey parts near t=0 are localized the domain of x >0(see figures 2(a),(c),(d),(f),(g),(i),(j),(k)).Moreover,the semi-rational solitons with zero backgrounds pk(x,t)(k=m+1,…,n) given by equation (11) tend to the brightlike solitons (see figures 2(b),(e),(h),(l)):

    For the bigger value of|γ0|(e.g.γ0=7),figure 2 displays the weak interplays of some types of rational rogons and greylike solitons,as well as the bright-like solitons and localized tiny waves:

    (1) As n=3,m=2 corresponding to the 3-Hirota equation with two non-zero backgrounds and one zero background,figure 2(a) displays the semi-rational rogonsoliton solution(|p1|/a1)composed of the bright rational rogon (∣p1rw∣a1) and the grey-like soliton (∣p1gs∣a1).Figure 2(b) illustrates the bright-like soliton (|p3|) made up of the bright soliton(∣pbs∣)3 and a localized tiny mode;

    (2) As n=4,m=3 corresponding to the 4-Hirota equation with three non-zero backgrounds and one zero background,figure 2(c) exhibits the semi-rational rogonsoliton (|p1|/a1) composed of the four-petaled-shaped rational rogon (∣prw∣a11) and a grey-like solitonFigure 2(d) illustrates the semi-rational rogon-soliton solution (|p2|/a2) consisting of the bright rational rogon (∣prw∣a22) and the grey-like solitonFigure 2(e) displays the bright-like soliton(|p4|) consisting of a bright-like solitonand a localized tiny mode;

    (3) As n=5,m=4 corresponding to the 5-Hirota equation with four non-zero backgrounds and one zero background,figures 2(f)–(h) exhibit the rogon-soliton(|p1|/a1) composed of the four-petaled-shaped rogonand the grey-like solitonthe semirational rogon-soliton solution (|p2|/a2) made up of the bright rogonand the grey-like solitonand the bright-like soliton (|p5|) consisting of the bright solitonand a localized tiny mode,respectively;

    (4) At n=6,m=5 corresponding to the 6-Hirota equation with five non-zero backgrounds and one zero background,figures 2(i)–(l) display the semi-rational rogonsoliton solution (|p1|/a1) composed of the dark rogonand the grey-like soliton (∣p1gs∣a1),the semirational rogon-soliton solution (|pj|/aj(j=2,3)) made up of the bright rogonand the greylike solitonand the bright-like soliton (|p6|) consisting of the bright-like soliton (∣p6bs∣)and a localized tiny mode,respectively.

    The quasi-characteristic curve and velocity.—We find that the non-travelling-wave grey-like solitonspjgs(x,t)and bright-like solitonspkbs(x,t)possess the same propagation direction,that is,they all propagate along the approximation curve derived from the quasi-characteristic line (12) in the(x,t)-space

    which differs from the propagation direction(the straight line)of usual travelling-wave solitons.Moreover,the same propagation velocity of solitons given by equations(14)and(15)isv1?(m+1)2+1t,which becomes slow as |t|increases,and approaches(m+1)2as |t|→∞.

    The time-dependent acceleration.—Now we consider the effect of the bright rogons(13)on the grey-like solitons(14) in these components pj(j=1,…,m) with non-zero backgrounds for the bigger |γ0|.We study the timedependent forceF1(t)=m1a1(t)on each mass point(e.g.its mass is assumed to be m1) along the quasi-characteristic line (12) arising from the rogons,where the time-dependent acceleration a1(t)of the wave propagations of the grey-like solitons given by equation (14) in the form (see figure 3(a))

    where f1(t)=-(α2+ε2)2t2+ε(α2+ε2) (2γ0+1) t+(α2-ε2) (+γ0)+α2/2.Figure 3(a) displays the acceleration a1(t)for t≥1.Moreover,|a1(t)| gradually decreases as t≥1 increases,and approaches zero at t→∞.The result implies that the absolute value of the time-dependent force,|F1(t)|,gradually decreases,and approaches zero as t→∞.

    Figure 1.The quasi-characteristic curves of grey-like solitons for n=5,m=4 and α=1.(a) ?=1,ε=0.1,γ0=7;(d) ?=1,ε=0.1,γ0=1;(b)?=2,ε=0.1,γ0=7;(e)?=2,ε=0.1,γ0=1;(c)?=3,ε=0.1,γ0=7;(f)?=3,ε=0.1,γ0=1;(g)?=1,ε=0,γ0=7;(j)?=1,ε=0,γ0=1;(h) ?=2,ε=0,γ0=7;(k) ?=2,ε=0,γ0=1;(i) ?=3,ε=0,γ0=7;(l) ?=3,ε=0,γ0=1.

    The curvature of the quasi-characteristic curve.—We consider the curvature change of the quasi-characteristic curve (12) or its approximation (16),where the curvature is defined asK(t)=∣x″ (t)∣(1+x′2(t))2,from which one has

    for the approximate characteristic curve (16).In fact,the corresponding curvature K(t) of the implicit quasi-characteristic curve (12) is so complicated,and not given here,but it can be displayed in figure 4(a) for γ0=9,n=5,m=4.

    Acceleration versus distance.—We introduce the distance between the point(x,t)on the quasi-characteristic curve and the center (x0,t0) of the separated rogon asd?d(x,t)=where the center positions of the separated rogons are selected as γ0=7(x0,t0)=(-7.5,0),γ0=9(x0,t0)=(-9.5,0).As a result,we give figure 5 to illustrate the relation of the acceleration and distance,which implies that when the distance increases the the absolute value of acceleration decreases,and approaches zero as the distance tends to infinity.

    Figure 2.Profiles of weak interactions of rogon-soliton components given by equation(11)with α=1,ε=0.1,γ0=7 for ?=1,n=3,4,5,6 with m=n-1.Rogon-soliton components with non-zero backgrounds(a)|p1|/a1(n=3),(c),(d)|pj|/aj(j=1,2;n=4),(f),(g)|pj|/aj(j=1,2;n=5),(i)–(k) |pj|/aj(j=1,2,3;n=6);Soliton-like component with zero backgrounds: (b) |p3|(n=3),(e) |p4|(n=4),(h) |p5|(n=5),(l) |p6|(n=6).

    Case 1b.—For the small value of|γ0|(e.g.γ0=1),figure 6 illustrates the strong interplays of different kinds of rational rogons and grey-like solitons,as well as the bright-like solitons and localized bigger waves given by equation (11).

    Case 2.At ?=2,we take γ1=0.5i,γ2=1,γj+1=0(?=2,3,4),and ri,j=1(j=0,1,2) to find the vector semi-rational rogon-soliton and soliton-like solutions with a free real parameter γ0of the n-Hirota equation

    where

    Figure 3.Time-dependent accelerations of separated grey-like solitons with γ0=7,n=5.(a)–(c) α=1,ε=0.1;(d)–(f) α=0,ε=2;(a),(d) ?=1;(b),(e) ?=2;(c),(f) ?=3.

    Figure 4.The curvatures of the quasi-characteristic curves with γ0=9,n=5,m=4.(a)α=1,ε=0.1,?=1;(b)α=1,ε=0.1,?=2;(c)α=0,ε=2,?=1;(d) α=0,ε=2,?=2.

    In the following,we analyze the asymptotic behaviors of vector semi-rational rogon-soliton solutions (19) by studying the effect of the parameter γ0:

    Remark 2.For the case?=2,the quasi-characteristic curve of the soliton-like propagations in the n-Hirota equation isξ2(x,t)=0,that is,

    which is almost a straight line(see figures 1(b),(e))except for the tiny bend near the point(0,0).However whenε=0,α=1,the corresponding quasi-characteristic curves of the n-NLS equation are displayed in figures 1(h),(k).

    Case 2a.—For the bigger value of |γ0|,we consider the asymptotic analysis to decompose the obtained vector semirational rogon-soliton solutions (19).The semi-rational rogon-soliton solutions pj(x,t)(j=1,2,…,m) given by equation(11)can be decomposed into the rational rogon partspjrw(x,t)

    whose centers (near t=0) are localized the domain of x<0(see figure 7),and grey-like soliton partspjgs(x,t)

    whose grey parts near t=0 are localized the domain of x >0(see figure 7).Moreover,the semi-rational soliton ps(x,t)(s=m+1,…,n) given by equation (19) approaches to a bright-like soliton

    Figure 5.Acceleration versus distance with α=1,ε=0.1,?=1.(a) γ0=7,n=3,(b) γ0=7,n=5,(c) γ0=9,n=3,(d) γ0=9,n=5.

    Figure 6.Features of strong interplays of semi-rational rogon-soliton components given by equation (11) with α=1,ε=0.1,γ0=1 for?=1,n=3,4,5,6 with m=n-1.Rogon-soliton components with non-zero backgrounds (a) |p1|/a1(n=3),(c),(d) |pj|/aj(j=1,2;n=4),(f),(g)|pj|/aj(j=1,2;n=5),(i)–(k)|pj|/aj(j=1,2,3;n=6);Soliton-like component with zero backgrounds: (b)|p3|(n=3),(e) |p4|(n=4),(h) |p5|(n=5),(l) |p6|(n=6).

    For the bigger value of|γ0|(e.g.γ0=8),figure 7 displays the structures of weak interplays of different kinds of rational rogons and grey-like solitons,as well as the bright-like solitons and localized tiny waves given by equation (19): (1) At n=3,m=2,figures 7(a),(b) illustrate the weak interplay(|p1|/a1) made up of the two-bright rational rogon (∣∣a1)and grey-like soliton (∣∣a1),and the bright-like soliton(|p3|) consisting of the bright-like soliton (∣∣) and a localized tiny mode with one hump and one dip,respectively;(2)As n=4,m=3,figures 7(c)–(e) exhibit the features of|p1|/a1composed of the two-four-petaled-shaped rogon(∣∣a1) and grey-like soliton (∣∣a1),the |p2|/a2consisting of two-bright rogon (∣∣a2) and grey-like soliton(∣∣a2),and bright-like soliton (|p4|) consisting of the bright-like soliton (∣∣) and a localized tiny mode with one hump and one dip,respectively.Equations (22) and (23)imply that the grey-like solitonsand bright-like solitonspkbs(x,t)have the same propagation direction along the approximation curve derived from the quasi-characteristic curve (20)

    Figure 7.Profiles of weak and strong interactions of rogon-soliton given by equation(19)with α=1,ε=0.1 and ?=2,n=3,4,m=n-1.Weak interactions with γ0=8:Non-zero backgrounds(a)|p1|/a1(n=3),(c),(d)|pj|/aj(j=1,2;n=4);Soliton-like components with zero background: (b) |p3|(n=3),(e) |p4|(n=4).Strong interactions with γ0=-0.5: Non-zero backgrounds (f) |p1|/a1(n=3),(h),(i) |pj|/aj(j=1,2;n=4),and soliton-like components with zero backgrounds: (g) |p3|(n=3),(j) |p4|(n=4).

    which differs from the propagation direction(the straight line)of usual travelling-wave solitons.Moreover,the same propagation velocity of solitons given by equations(22)and(23)isv2?(m+1)2+2t,which becomes slow as |t|increases,and approaches(m+1)2as|t|→∞.Similarly to?=1,we can also consider the time-dependent accelerations for ?=2(see figure 3(b)).The corresponding curvature of the quasi-characteristic line is exhibited in figure 4(b) for γ0=9,n=5,m=4.

    Case 2b.—For the smaller value of|γ0|(e.g.γ0=-0.5),figures 7(f)–(j) exhibit the features of strong interactions of different kinds of two-rogons and grey-like solitons,as well as bright-like solitons and localized tiny modes given by equation (19).

    Case 3.As ?=3,i.e.γ0γ1γ2γ3≠0,γj+1=0(j=3,4,…,n),and ri,j=1(j=0,1,2,3).We take γ1=0.5i,γ2=1,γ3=i to find the semi-rational vector rogon-soliton and soliton-like solutions (8) of the n-Hirota equation (2)

    where

    where Dm+1(Gj)denotes a column vector consisting of the first(m+1) rows of the column vector Gjgiven by equation(10).

    Remark 3.As?=3,the quasi-characteristic curve of the soliton-like propagations in the n-Hirota equation is

    which is almost a straight line(see figures 1(c),(f))except for the tiny bend near the point(0,0).However whenε=0,α=1,the corresponding quasi-characteristic curves of the n-NLS equation are displayed in figures 1(i),(l).

    In the following,we analyze the asymptotic behaviors of vector semi-rational rogon-soliton solutions (25) by studying the effect of the parameter γ0:

    Figure 8.Features of weak and strong interplays for the semi-rational rogon-soliton components with non-zero boundary conditions given by equation(25)with α=1,ε=0.1 and ?=3,n=4,m=n-1.Weak interactions with γ0=15:(a),(b)|pj|/aj(j=1,2;n=4),and solitonlike component with zero backgrounds: (c)|p3|(n=3).Weak interactions with γ0=-0.5: (d),(e) |pj|/aj(j=1,2;n=4),and soliton-like component with zero backgrounds: (f) |p4|(n=4).

    Case 3a.—For the bigger |γ0|,we consider the asymptotic analysis to decompose the obtained vector semi-rational rogon-soliton solutions (25).The semi-rational rogon-soliton solutions pj(x,t)(j=1,2,…,m)given by equation(25)can be decomposed into the rational rogon parts(x,t)

    whose centers (near t=0) are localized the domain of x<0 (see figure 8),and grey-like soliton partspjgs(x,t)

    whose grey-like parts near t=0 are localized the domain of x >0 (see figure 7).Moreover,the semi-rational soliton pk(x,t)(k=m+1,…,n) given by equation (25) approaches to a bright-like soliton

    It follows from equations(28)and(29)that the grey-like solitonspjgs(x,t)and bright-like solitonspkbs(x,t)have the same propagation direction along the approximation curve derived from the quasi-characteristic line (26)

    due to the relation

    where f is a polynomial of x,t.The direction given by equation (30) differs from the propagation direction (the straight line)of usual travelling-wave solitons.Moreover,the same propagation velocity of solitons given by equations(28)and(29)isv3?(m+1)2+which becomes slow as|t|increases,and approaches(m+1)2as|t|→∞.Similarly to ?=1,2,we can also consider the time-dependent accelerations for ?=3 (see figure 3(c)).

    Case 3b.—For the smaller value of|γ0|(e.g.γ0=-0.5),figures 8(d)–(f) exhibit the strong interactions of different kinds of two-rogons and grey-like solitons,as well as brightlike solitons and localized tiny waves given by equation(25).

    Figure 9.Profiles of the semi-rational rogon-soliton solutions given by equation (8) with α=1,∈=0.1.The case ofAall : (a)–(c)n=3,m=2,c0=,c1,2,3=i;(d)–(g) n=4,m=3,c0=2,c1,2,3,4=i;The case ofA e,j: (i) n=3,m=2: (h) |p1|/a1,c0=1,c1=i,cj=0(j=2,3),(i)|p2|/a2,c0=1,c2=i,cj=0(j=1,3);(ii)n=4,m=3:(j)|p1|/a1,c0=1,c1=i,cj=0(j=2,3,4),(k)|p2|/a2,c0=1,c2=i,cj=0(j=1,3,4),(l) |p3|/a3,c0=1,c3=i,cj=0(j=1,2,4).

    4.Semi-rational rogon-soliton solutions with ultrahigh amplitudes

    In this section,we will consider the maximal amplitudes of the vector semi-rational rogon-soliton solutions given by equation(8).We will consider two the average amplitudes as follows:

    wherep(x,t)=(p1,p2,…,pn)T,a=(a1,a2,…,an)Twith aj≠0(j=1,2,…,m).

    Proposition 2.For the given the vector semi-rational

    rogon-soliton solutions (8),Aall,Ae,jcan be attained at{c=(n,i,…,i)T,(x,t)=(0,0)} and{c=(1,0,…,0,i,0,…,0)T,(x,t)=(0,0) }(non-zero number i in thecis the(j+1)-th entry),respectively,in the forms

    Proof.Firstly,we should note that W(n+1)×(n+1)(0,0)given by equation (9) is

    Given the(n+1)-dimensional vectors W=(∣α0∣,∣α1∣i,…,∣αn∣i)T,Wc=(α0,α1,…,αn)T,andβj=∣αj∣,we have

    The last equality holds if and only ifβ0==βj,0<i,j≤n.According to (35),we have the expression ofAallin equation (33).Notice that since W(x,t)is a unit matrix at(0,0),so we can takec=(,i,…,i)T.In the same way,according to

    we have the expression ofAe,jin equation (33).Notice that W(0,0)=In+1,thus one can takec=(1,0,…,0,i,0,…,0)T.This completes the proof.□

    In particular,we display the profiles of the 3-Hirota and 4-Hirota equations when Talland Te,jare attained for at{c=(,i,…,i)T,(x,t)=(0,0)} and{c=(1,0,…,0,i,0,…,0)T,(x,t)=(0,0)},respectively (see figure 9).

    5.Vector semi-rational solitons of the n-cmKdV equation

    At α=0,ε ≠0,we can find the vector semi-rational solitons of the n-cmKdV equation (3) from the solutions (8),whereNotice that the separated rational solutions are solitons,not rogons,which mainly result fromζ1=x-(1+‖a‖2)is a real-valued linear function of x,t,andζ2=is a pure imaginary function of t,however,ζ1=x+iαt-(1+‖a‖2)tis a complex-valued linear function of x,t,andζ2=is also a complex-valued function of t for the n-Hirota equation with αε ≠0.

    Case 1.For the ?=1,we have the vector semi-rational solitons of the n-cmKdV equation (3) in the form (11) with α=0.Figures 10(a)–(h)display the weak interactions for the larger γ0=7 and n=3,4,5 with m=n-1,and the strong interactions are illustrated in figures 10(i)–(p) for the smaller γ0=1 and n=3,4,5 with m=n-1.

    Similarly to the n-Hirota equation,we can also consider the time-dependent accelerations in the n-cmKdV equation for ?=1(see figure 3(d)).The corresponding curvature of the quasi-characteristic line is exhibited in figure 4(c) for γ0=9,n=5,m=4.

    Figure 10.Profiles of the semi-rational solitons(11)with α=0,ε=2 for ?=1,n=3,4,5 with m=n-1.Weak interactions with γ0=7:grey-like and W-shaped solitons with non-zero backgrounds (a) |p1|/a1(n=3),(c),(d) |pj|/aj(j=1,2;n=4),(f),(g) |pj|/aj(j=1,2;n=5),and soliton-like components with zero backgrounds: (b) |p3|(n=3),(e) |p4|(n=4),(h) |p5|(n=5).Strong interactions with γ0=1 for n=3,4,5 with m=n-1:grey-like and W-shaped solitons with non-zero backgrounds(i)|p1|/a1(n=3),(k),(l)|pj|/aj(j=1,2;n=4),(o,p)|pj|/aj(j=1,2;n=5),and soliton-like component with zero backgrounds:(j)|p3|(n=3),(m)|p4|(n=4),(p)|p5|(n=5).

    Case 2.For ?=2,we find the vector semi-rational solitons of the n-cmKdV equation (3) in the form (19) with α=0.Figures 11(a)–(e)display the weak interactions for the larger γ0=8 and n=3,4 with m=n-1,and the strong interactions are illustrated in figures 11(f)–(j) for the smaller γ0=-0.5 and n=3,4 with m=n-1.

    Similarly to the n-Hirota equation,we can also consider the time-dependent accelerations in the n-cmKdV equation for ?=2(see figure 3(e)).The corresponding curvature of the quasi-characteristic line is exhibited in figure 4(d)for γ0=9,n=5,m=4.

    Case 3.As ?=3,we find the vector semi-rational solitons of the n-cmKdV equation (3) in the form (25) with α=0.Figures 12(a)–(c)display the weak interactions for the larger γ0=15 and n=4,m=3,and the strong interactions are illustrated in figures 12(d)–(f) for the smaller γ0=-0.5 and n=4,m=3.Similarly to the n-Hirota equation,we can also consider the time-dependent accelerations for ?=3 (see figure 3(f)).

    Similarly,the results in section 4 with α=0,ε ≠0 also hold for the n-cmKdV equation (3),which are displayed in figure 13 for some parameters.

    6.Conclusions and discussions

    In conclusion,we start with the mixed background seed solutions and obtain the semi-rational rogon-soliton solutions of the n-Hirota equation through the modified Darboux transformation.Firstly,we require the selection of parameters makes the characteristic polynomial admit the (m+1)-multiple root and(n-m)simple roots,and then it is brought into the modified Darboux transform to find the semirational solutions of the n-Hirota equation.Finally,the exact semi-rational solutions of the n-Hirota equation are analyzed in detail for the cases of ?=1,2,3 and n=3,4,5,6.The semi-rational rogon-soliton solutions of first m components with non-zero backgrounds can be decomposed into the rational rogon solutions and the grey-like solitons.The last(n-m) components with zero backgrounds are gradually decayed to the bright-like solitons.The interactions between rogons and soliton-like solutions are characterized by analyzing the accelerations and curvatures along the quasicharacteristic curves.We also study the semi-rational solitons of the n-cmKdV equation.The ideas and methods used in this paper can be extended to other nonlinear integrable physical models.Among them,the higher-order Darboux transformation of n-Hirota equation can also be studied in future.

    Figure 11.Profiles of weak interactions for the semi-rational rogon-soliton components with non-zero backgrounds given by equation (19)with α=0,ε=2,γ0=8 for ?=2,n=3,4 with m=n-1:(a)|p1|/a1(n=3),(c),(d)|pj|/aj(j=1,2;n=4),and soliton-like component with zero backgrounds:(b)|p3|(n=3),(e)|p4|(n=4).Strong interactions with α=0,ε=2,γ0=-0.5 for ?=2,n=3,4 with m=n-1:(f) |p1|/a1(n=3),(h),(i) |pj|/aj(j=1,2;n=4),and soliton-like component with zero backgrounds: (g) |p3|(n=3),(j) |p4|(n=4).

    Figure 12.Profiles of weak interactions for the semi-rational rogon-soliton components with non-zero backgrounds given by equation (25)with α=0,ε=2,γ0=15 for ?=3,n=4 with m=n-1: (a),(b) |pj|/aj(j=1,2;n=4),and soliton-like component with zero backgrounds: (c) |p3|(n=3).Strong interactions with α=0,ε=2,γ0=-0.5 for ?=3,n=4 with m=n-1: (d),(e) |pj|/aj(j=1,2;n=4),and soliton-like component with zero backgrounds: (f) |p4|(n=4).

    Figure 13.Profiles of the semi-rational soliton solutions given by equation(8)with α=0,∈=2.The case ofAe,j :(i)n=3,m=2(a)|p1|/a1,c0=1,c1=i,cj=0(j=2,3),(b)|p2|/a2,c0=1,c2=i,cj=0(j=1,3);(ii)n=4,m=3:(c)|p1|/a1,c0=1,c1=i,cj=0(j=2,3,4),(d) |p2|/a2,c0=1,c2=i,cj=0(j=1,3,4),(e) |p3|/a3,c0=1,c3=i,cj=0(j=1,2,4).The case ofAall : (f)–(h) n=3,m=2,c0=,c1,2,3=i.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.11 925 108 and 11 731 014).

    宅男免费午夜| 一区福利在线观看| 亚洲自拍偷在线| 国产精品久久久av美女十八| 亚洲国产看品久久| 久久精品国产清高在天天线| 亚洲精品色激情综合| 婷婷六月久久综合丁香| 精品国产美女av久久久久小说| 88av欧美| 极品教师在线免费播放| 亚洲无线在线观看| 黄色视频,在线免费观看| 免费观看人在逋| 免费观看人在逋| 最近最新免费中文字幕在线| 午夜激情福利司机影院| 欧美黄色淫秽网站| 色av中文字幕| 国产成人av激情在线播放| 国产激情偷乱视频一区二区| 欧美高清成人免费视频www| 欧美乱色亚洲激情| 精品福利观看| 又紧又爽又黄一区二区| 精品国产亚洲在线| 国产精品综合久久久久久久免费| 99国产极品粉嫩在线观看| 国产爱豆传媒在线观看| www.自偷自拍.com| 无遮挡黄片免费观看| 国产精品av视频在线免费观看| АⅤ资源中文在线天堂| 一个人免费在线观看电影 | www.精华液| 国内精品久久久久精免费| 99热精品在线国产| 国产免费男女视频| 亚洲欧美精品综合一区二区三区| 18禁观看日本| 久久国产乱子伦精品免费另类| 色吧在线观看| 国产精品av久久久久免费| 亚洲五月天丁香| av女优亚洲男人天堂 | 国产真人三级小视频在线观看| 丰满人妻一区二区三区视频av | 日韩大尺度精品在线看网址| 国产伦在线观看视频一区| 国产亚洲av高清不卡| 亚洲 国产 在线| 国产不卡一卡二| 十八禁网站免费在线| 麻豆国产97在线/欧美| 午夜福利免费观看在线| av在线天堂中文字幕| 啪啪无遮挡十八禁网站| 一级作爱视频免费观看| 欧美日韩亚洲国产一区二区在线观看| 人妻久久中文字幕网| 久久久久久大精品| 国产一区二区激情短视频| 亚洲精品中文字幕一二三四区| 国产高清有码在线观看视频| 最新中文字幕久久久久 | 真人一进一出gif抽搐免费| 国产精华一区二区三区| 久久久国产成人免费| 一个人观看的视频www高清免费观看 | 亚洲精华国产精华精| 欧美在线一区亚洲| 18美女黄网站色大片免费观看| 午夜精品在线福利| 两人在一起打扑克的视频| 成人三级做爰电影| 性欧美人与动物交配| 日本一本二区三区精品| 亚洲国产日韩欧美精品在线观看 | 国产99白浆流出| 午夜福利18| 一个人免费在线观看的高清视频| 精品欧美国产一区二区三| 成年女人毛片免费观看观看9| 一个人看视频在线观看www免费 | 亚洲七黄色美女视频| 色综合欧美亚洲国产小说| 又黄又爽又免费观看的视频| 免费av毛片视频| 性色avwww在线观看| 国产又黄又爽又无遮挡在线| 好男人电影高清在线观看| 成人特级av手机在线观看| 国产视频内射| 国语自产精品视频在线第100页| 国产免费av片在线观看野外av| 在线观看午夜福利视频| 中文字幕久久专区| 欧美av亚洲av综合av国产av| 免费看十八禁软件| 看片在线看免费视频| 欧美+亚洲+日韩+国产| 噜噜噜噜噜久久久久久91| 欧美黄色淫秽网站| 九九在线视频观看精品| 国产精品日韩av在线免费观看| 午夜激情福利司机影院| 日韩精品中文字幕看吧| 久久精品aⅴ一区二区三区四区| 精品免费久久久久久久清纯| 欧洲精品卡2卡3卡4卡5卡区| 两个人的视频大全免费| 久久中文字幕一级| 观看免费一级毛片| 动漫黄色视频在线观看| 婷婷六月久久综合丁香| 亚洲国产精品成人综合色| 美女高潮的动态| 熟妇人妻久久中文字幕3abv| 久久欧美精品欧美久久欧美| 男女床上黄色一级片免费看| 两性夫妻黄色片| 可以在线观看毛片的网站| 神马国产精品三级电影在线观看| 69av精品久久久久久| svipshipincom国产片| 国产亚洲精品久久久久久毛片| 欧美黄色片欧美黄色片| 国产精品亚洲av一区麻豆| 婷婷亚洲欧美| 亚洲激情在线av| 别揉我奶头~嗯~啊~动态视频| 中文字幕av在线有码专区| 男女午夜视频在线观看| 久久天躁狠狠躁夜夜2o2o| 久久热在线av| www.自偷自拍.com| 欧美成人一区二区免费高清观看 | 极品教师在线免费播放| 成人亚洲精品av一区二区| 精品不卡国产一区二区三区| 床上黄色一级片| 日本黄色片子视频| 夜夜看夜夜爽夜夜摸| 哪里可以看免费的av片| 欧美成人免费av一区二区三区| 黑人巨大精品欧美一区二区mp4| 免费高清视频大片| 欧美极品一区二区三区四区| 国产一区二区三区视频了| 久久久久久大精品| 成人18禁在线播放| 日韩人妻高清精品专区| 最近最新中文字幕大全免费视频| 啦啦啦韩国在线观看视频| 日本五十路高清| 亚洲国产精品成人综合色| 两个人看的免费小视频| 村上凉子中文字幕在线| 午夜精品在线福利| 婷婷亚洲欧美| АⅤ资源中文在线天堂| 美女扒开内裤让男人捅视频| 12—13女人毛片做爰片一| 俄罗斯特黄特色一大片| 国产成人av激情在线播放| 男人舔奶头视频| 69av精品久久久久久| 国产综合懂色| 大型黄色视频在线免费观看| 性色avwww在线观看| 窝窝影院91人妻| 国产成人系列免费观看| 久久性视频一级片| www日本在线高清视频| 久久天堂一区二区三区四区| 日本黄色片子视频| 久久精品91蜜桃| 中文字幕熟女人妻在线| 色尼玛亚洲综合影院| 国产99白浆流出| 久久中文字幕一级| 欧美最黄视频在线播放免费| 热99在线观看视频| 国产日本99.免费观看| 白带黄色成豆腐渣| 亚洲国产欧洲综合997久久,| 欧美另类亚洲清纯唯美| 国产99白浆流出| 制服丝袜大香蕉在线| 精品久久久久久久久久久久久| 999久久久国产精品视频| 亚洲欧美日韩卡通动漫| 看黄色毛片网站| 国产高清激情床上av| 亚洲人成电影免费在线| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品美女久久av网站| 最新在线观看一区二区三区| 国产一级毛片七仙女欲春2| 久久久精品欧美日韩精品| 成年免费大片在线观看| 亚洲国产日韩欧美精品在线观看 | 日本 av在线| 精品一区二区三区视频在线 | 亚洲av成人不卡在线观看播放网| 99久久无色码亚洲精品果冻| 国产伦在线观看视频一区| 久久中文看片网| 成年免费大片在线观看| 黑人巨大精品欧美一区二区mp4| 久久中文看片网| 日本 欧美在线| 亚洲av日韩精品久久久久久密| 亚洲美女黄片视频| 亚洲七黄色美女视频| 色尼玛亚洲综合影院| 在线观看66精品国产| 国产精品免费一区二区三区在线| 别揉我奶头~嗯~啊~动态视频| 国产成人精品久久二区二区免费| 2021天堂中文幕一二区在线观| 精品国产乱码久久久久久男人| 国产成人aa在线观看| 99久久精品一区二区三区| 国产高清视频在线播放一区| 久久精品国产清高在天天线| 国模一区二区三区四区视频 | 91字幕亚洲| 国产精品九九99| 一本久久中文字幕| 午夜成年电影在线免费观看| 又黄又粗又硬又大视频| 欧美又色又爽又黄视频| 国产精品av久久久久免费| 国产亚洲欧美98| 国产熟女xx| 搡老岳熟女国产| 亚洲aⅴ乱码一区二区在线播放| 精品99又大又爽又粗少妇毛片 | 久久久水蜜桃国产精品网| 亚洲avbb在线观看| 国产三级在线视频| 99久久国产精品久久久| 老汉色∧v一级毛片| av视频在线观看入口| 国产精品野战在线观看| 国产精品一区二区三区四区久久| 欧美另类亚洲清纯唯美| 精品人妻1区二区| 国产精华一区二区三区| 麻豆成人av在线观看| 日韩欧美免费精品| 小蜜桃在线观看免费完整版高清| 免费av毛片视频| 首页视频小说图片口味搜索| 人人妻,人人澡人人爽秒播| 男人的好看免费观看在线视频| 特级一级黄色大片| 舔av片在线| 国产精品一区二区免费欧美| 香蕉av资源在线| 婷婷精品国产亚洲av在线| 又大又爽又粗| 婷婷精品国产亚洲av| 俄罗斯特黄特色一大片| 亚洲av片天天在线观看| 亚洲精品国产精品久久久不卡| 日本在线视频免费播放| 国产精品香港三级国产av潘金莲| 久久久久国产一级毛片高清牌| 国产精品综合久久久久久久免费| 亚洲色图 男人天堂 中文字幕| 在线十欧美十亚洲十日本专区| 久久精品aⅴ一区二区三区四区| 精品国产超薄肉色丝袜足j| 在线视频色国产色| 两个人视频免费观看高清| 高清在线国产一区| 日本a在线网址| 欧美色欧美亚洲另类二区| 国产av麻豆久久久久久久| 18禁黄网站禁片免费观看直播| 免费看十八禁软件| 91老司机精品| 此物有八面人人有两片| 欧美在线一区亚洲| 欧美一级a爱片免费观看看| 日本五十路高清| 亚洲国产欧美一区二区综合| 一级毛片女人18水好多| 最好的美女福利视频网| 亚洲国产欧美一区二区综合| 看免费av毛片| 亚洲国产精品999在线| 成人无遮挡网站| 脱女人内裤的视频| 巨乳人妻的诱惑在线观看| 又大又爽又粗| 99精品在免费线老司机午夜| 国产男靠女视频免费网站| 91在线精品国自产拍蜜月 | 特级一级黄色大片| 亚洲九九香蕉| 欧美日韩国产亚洲二区| 亚洲国产欧洲综合997久久,| 桃色一区二区三区在线观看| 国产精品一区二区三区四区免费观看 | 久久久久国产一级毛片高清牌| 欧美日韩综合久久久久久 | 免费大片18禁| 色尼玛亚洲综合影院| 国产精品综合久久久久久久免费| 在线观看美女被高潮喷水网站 | 久久这里只有精品中国| 麻豆国产av国片精品| 99国产精品一区二区三区| 国产一区二区在线观看日韩 | 特大巨黑吊av在线直播| 欧美不卡视频在线免费观看| 丰满人妻一区二区三区视频av | 久久久久久大精品| 成熟少妇高潮喷水视频| 午夜福利在线观看免费完整高清在 | 国产成人精品久久二区二区91| 男女那种视频在线观看| 人人妻人人澡欧美一区二区| 18美女黄网站色大片免费观看| 国产伦精品一区二区三区四那| 无遮挡黄片免费观看| 桃红色精品国产亚洲av| 9191精品国产免费久久| 国产又色又爽无遮挡免费看| 国产真实乱freesex| 国产精品一区二区三区四区免费观看 | 97超视频在线观看视频| 亚洲人成网站高清观看| 在线免费观看的www视频| 国产人伦9x9x在线观看| 日韩欧美三级三区| 精品一区二区三区av网在线观看| 久久精品影院6| 亚洲在线观看片| 久久久久久久久久黄片| 99热这里只有是精品50| 五月玫瑰六月丁香| 日日夜夜操网爽| 一进一出好大好爽视频| 精品一区二区三区四区五区乱码| 亚洲专区字幕在线| 在线永久观看黄色视频| www.精华液| 日本 av在线| www.精华液| 久久精品夜夜夜夜夜久久蜜豆| 成人三级做爰电影| 国产精品av视频在线免费观看| 熟女少妇亚洲综合色aaa.| 99re在线观看精品视频| 亚洲精品乱码久久久v下载方式 | 嫁个100分男人电影在线观看| 亚洲专区国产一区二区| 男插女下体视频免费在线播放| 亚洲人成网站在线播放欧美日韩| 国产成人影院久久av| 久久香蕉精品热| 欧美成人一区二区免费高清观看 | 国产麻豆成人av免费视频| 精品电影一区二区在线| 免费在线观看亚洲国产| 亚洲国产精品sss在线观看| 久久久国产成人精品二区| 亚洲欧美日韩无卡精品| 婷婷丁香在线五月| 久久婷婷人人爽人人干人人爱| 法律面前人人平等表现在哪些方面| 国产主播在线观看一区二区| 欧美大码av| 日韩欧美三级三区| 国产激情欧美一区二区| 淫秽高清视频在线观看| 国产午夜精品论理片| 我要搜黄色片| 亚洲av五月六月丁香网| 狠狠狠狠99中文字幕| av黄色大香蕉| 久久精品夜夜夜夜夜久久蜜豆| 99久久精品国产亚洲精品| 亚洲av片天天在线观看| 国内揄拍国产精品人妻在线| 国产美女午夜福利| 欧美日韩精品网址| 90打野战视频偷拍视频| 制服人妻中文乱码| 国产精品久久久av美女十八| 精品欧美国产一区二区三| 网址你懂的国产日韩在线| 成在线人永久免费视频| 国产激情欧美一区二区| 黄色女人牲交| 国产单亲对白刺激| 一进一出抽搐gif免费好疼| 夜夜爽天天搞| 亚洲午夜理论影院| 五月玫瑰六月丁香| 亚洲第一电影网av| 免费看a级黄色片| 亚洲成人久久爱视频| 网址你懂的国产日韩在线| 亚洲无线在线观看| 亚洲人成网站高清观看| 午夜a级毛片| 一本一本综合久久| 99视频精品全部免费 在线 | 9191精品国产免费久久| 波多野结衣高清作品| 色综合欧美亚洲国产小说| 波多野结衣高清无吗| 亚洲色图 男人天堂 中文字幕| 一个人看的www免费观看视频| 国产一区二区激情短视频| www.熟女人妻精品国产| 亚洲美女黄片视频| 亚洲人成电影免费在线| 国产精品亚洲一级av第二区| 欧美zozozo另类| 在线看三级毛片| 人妻久久中文字幕网| 欧美日韩黄片免| 99国产精品一区二区蜜桃av| 亚洲国产欧美网| 国产欧美日韩一区二区三| 午夜激情福利司机影院| 国产99白浆流出| 午夜亚洲福利在线播放| 一级毛片女人18水好多| 国产蜜桃级精品一区二区三区| 国产v大片淫在线免费观看| www.自偷自拍.com| 国产欧美日韩一区二区精品| av天堂中文字幕网| 69av精品久久久久久| 欧美绝顶高潮抽搐喷水| 精品久久久久久久末码| av在线蜜桃| x7x7x7水蜜桃| 日韩 欧美 亚洲 中文字幕| 国产精品 欧美亚洲| 日本精品一区二区三区蜜桃| 亚洲国产欧美网| 狠狠狠狠99中文字幕| 变态另类成人亚洲欧美熟女| 一级作爱视频免费观看| 亚洲欧美日韩无卡精品| 亚洲天堂国产精品一区在线| 欧美一区二区国产精品久久精品| 免费看光身美女| 国产蜜桃级精品一区二区三区| 很黄的视频免费| 日韩 欧美 亚洲 中文字幕| 观看免费一级毛片| a级毛片a级免费在线| 老司机深夜福利视频在线观看| 亚洲国产精品成人综合色| 日韩中文字幕欧美一区二区| 一进一出抽搐动态| 亚洲国产看品久久| 精品国产乱子伦一区二区三区| 嫩草影院精品99| 色老头精品视频在线观看| 这个男人来自地球电影免费观看| 国产精品综合久久久久久久免费| 久久草成人影院| 一进一出好大好爽视频| 成人精品一区二区免费| 91久久精品国产一区二区成人 | 国产亚洲精品一区二区www| 老鸭窝网址在线观看| 亚洲精品在线美女| x7x7x7水蜜桃| 国产伦精品一区二区三区视频9 | 国产毛片a区久久久久| 嫁个100分男人电影在线观看| 亚洲 国产 在线| 亚洲精品456在线播放app | 91九色精品人成在线观看| 母亲3免费完整高清在线观看| 国产午夜福利久久久久久| 三级毛片av免费| 国产不卡一卡二| 欧美一级a爱片免费观看看| 叶爱在线成人免费视频播放| 免费av不卡在线播放| 久久久国产成人免费| 日韩欧美精品v在线| 99久久成人亚洲精品观看| 久久久久久国产a免费观看| 成人高潮视频无遮挡免费网站| 性色avwww在线观看| www.自偷自拍.com| 欧洲精品卡2卡3卡4卡5卡区| 国产精品九九99| 岛国在线观看网站| 一本一本综合久久| 亚洲国产精品999在线| 久久热在线av| 国产精品女同一区二区软件 | 精品一区二区三区四区五区乱码| 婷婷六月久久综合丁香| 成人精品一区二区免费| 日本 欧美在线| 999久久久国产精品视频| 老司机福利观看| 老汉色av国产亚洲站长工具| 欧美精品啪啪一区二区三区| 国产欧美日韩一区二区精品| www日本黄色视频网| 久久久久久久久免费视频了| 国产伦人伦偷精品视频| 国产99白浆流出| 国产成人欧美在线观看| 日本精品一区二区三区蜜桃| 一个人看视频在线观看www免费 | 丁香六月欧美| 母亲3免费完整高清在线观看| 久久久久久九九精品二区国产| 精品日产1卡2卡| 久久中文看片网| 国产亚洲精品综合一区在线观看| 亚洲五月天丁香| 国内少妇人妻偷人精品xxx网站 | 99在线人妻在线中文字幕| 成人高潮视频无遮挡免费网站| 欧美色视频一区免费| 亚洲国产精品sss在线观看| 亚洲人成网站高清观看| 搡老妇女老女人老熟妇| 午夜福利在线观看免费完整高清在 | 综合色av麻豆| 三级男女做爰猛烈吃奶摸视频| 午夜激情欧美在线| 国产欧美日韩一区二区三| 在线观看舔阴道视频| 桃红色精品国产亚洲av| 欧美av亚洲av综合av国产av| 91老司机精品| 成人午夜高清在线视频| 国产高清视频在线播放一区| 法律面前人人平等表现在哪些方面| 久久精品综合一区二区三区| 三级男女做爰猛烈吃奶摸视频| 免费在线观看亚洲国产| 丰满人妻一区二区三区视频av | 夜夜看夜夜爽夜夜摸| 成人鲁丝片一二三区免费| 最新中文字幕久久久久 | 亚洲av电影在线进入| 日本成人三级电影网站| 老司机午夜十八禁免费视频| 欧美午夜高清在线| 国产伦一二天堂av在线观看| 好男人在线观看高清免费视频| 丁香欧美五月| 99久久精品一区二区三区| 国产精品久久视频播放| 午夜影院日韩av| 久久久精品大字幕| 51午夜福利影视在线观看| 一区二区三区高清视频在线| 国产精品 欧美亚洲| 黄色视频,在线免费观看| 成年女人看的毛片在线观看| 亚洲第一欧美日韩一区二区三区| 精品乱码久久久久久99久播| 亚洲无线观看免费| 好男人在线观看高清免费视频| 男女下面进入的视频免费午夜| 亚洲中文日韩欧美视频| 黄片大片在线免费观看| 搡老岳熟女国产| 麻豆一二三区av精品| 99riav亚洲国产免费| 日韩欧美精品v在线| 国产精品电影一区二区三区| a级毛片在线看网站| 人人妻,人人澡人人爽秒播| 国产高清三级在线| 日本a在线网址| 久久精品人妻少妇| 国产高清videossex| 国产伦人伦偷精品视频| 日韩免费av在线播放| 午夜久久久久精精品| 亚洲av第一区精品v没综合| 国产乱人视频| 久久人妻av系列| 最近最新中文字幕大全免费视频| 嫩草影视91久久| 黑人欧美特级aaaaaa片| 两个人视频免费观看高清| 此物有八面人人有两片| 久久久久久久久免费视频了| 91久久精品国产一区二区成人 | 国产精品久久久久久精品电影| 亚洲国产日韩欧美精品在线观看 | 啦啦啦韩国在线观看视频| 国产精品久久视频播放| 欧美av亚洲av综合av国产av| 国产1区2区3区精品| 久久久久国内视频| 少妇人妻一区二区三区视频| 麻豆一二三区av精品| 青草久久国产| 久久这里只有精品中国| 欧美乱色亚洲激情| 18禁黄网站禁片午夜丰满|