• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pt/NbPWO雙功能催化劑的制備及氫解堿木質(zhì)素制備芳香單體

    2022-10-19 10:09:50曹美芳陳博阮濤歐陽新平邱學(xué)青
    物理化學(xué)學(xué)報 2022年10期
    關(guān)鍵詞:陳博新平華南理工大學(xué)

    曹美芳,陳博,阮濤,歐陽新平,*,邱學(xué)青

    1華南理工大學(xué)化學(xué)與化工學(xué)院廣東省綠色化學(xué)產(chǎn)品技術(shù)重點實驗室,廣州 510640

    2 廣東工業(yè)大學(xué)輕工化工學(xué)院,廣州 510006

    1 Introduction

    Lignocellulosic biomass consisting of cellulose,hemicellulose and lignin is the abundant renewable resource,which is capable of substituting fossil resources in the production of chemicals and fuels1-3. However, lignin is notoriously recalcitrant to degradation, and hence is always treated as wastes4-6. If this resource can be efficiently transformed into chemicals or fuels, it can alleviate the dependence of fossil resources. Consequently, researches on lignin depolymerization have drawn an enormous amount of attention7,8.

    Many approaches to the conversion of lignin have emerged over the past decade, including hydrogenolysis9, oxidative depolymerization10, biodegradation11, photocatalysis12etc.Hydrogenolysis of lignin is considered as an efficient reductive depolymerization strategy to produce bulk aromatic compounds.During this process, a majority of heterogeneous catalysts based on metal (Ru, Pt, Pb, Ni) have been developed12-14.

    Niobium oxides as both promoter and support of catalyst can enhance catalytic activity and prolong catalyst life, which got lots of attentions in the catalytic transformation of lignin15.Wang’s group recently reported that layered Ru/Nb2O5could promote the cleavage of C-O bonds, and hence gain high yield of aromatic hydrocarbons16. Au/Nb2O5catalyst was also reported to be used in conversion lignin into phenolics, in which the synergistic effect of both the niobium support and electronrich Au nanoparticles facilitated the cleavage of C-O linkage17. Xia reported that woody biomass was directly converted to liquid alkanes over Pt/NbOPO4catalyst. The cleavage of C-O linkage was attributed to the synergetic effect of noble metal Pt particles which promote the dissociation of hydrogen and NbOxspecies which produce the Br?nsted acid sites and trigger specific adsorption18. Lately, the cleavage mechanism of C-C bonds via NbOxspecies was illustrated by depolymerization of aromatic plastic waste and aromatic polymers such as polyethylene terephthalate, polycarbonate, and polyphenylene oxide etc10,19.

    The current depolymerization of lignin is focused on cleavage of lignin β-O-4 linkages, resulting in lots of C-C linkages existed in the form of aromatic oligomers. Because the dissociation energy of C-C bonds (226-494 kJ·mol-1) is higher than that of C-O bonds (209-348 kJ·mol-1), the improved efficiency of depolymerization is dependent on the cleavage efficiency of C-C bond20,21.

    To provide the efficient catalyst and realize the efficient valorization of lignin, an environmentally friendly strategy was used to construct a Pt/NbPWO bifunctional catalyst, in which the NbPWO carrier was prepared by hydrothermal recrystallization of microemulsion containing template and Nb precursor. This catalyst applied to the hydrogenolysis of alkali lignin contributed to a high yield of aromatic monomer. This work provides guidance to design catalyst and paves a way to the valorization of alkali lignin.

    2 Experimental

    2.1 Catalyst preparation

    The mesoporous niobium phosphotungstic acid (PW12/Nb2O5abbreviate the NbPWO) catalyst support was prepared via hydrothermal method. In briefly, 36 mL of 0.25 mol·L-1ammonium niobate oxalate hydrate (99.9%, Shanghai Aladdin Biochemical Technology Co., Ltd., China), 0 g, 1 g, 1.5 g, 2.0 g phosphor-tungstic acid (PW12) (99%, Shanghai Macklin Biochemical Co., Ltd., China) and 12 mL cetyl trimethyl ammonium bromide (CTAB) (99%) were mixed with constant stirring rate of 300 r·min-1(named: PW0, PW1, PW2, PW3).Deionized water was then added to this solution in order to adjust pH. The emulsion was stirred for 30 min, followed by kept in an oven at 80 °C for 24 h, then aged at 130 °C for 24 h in a hydrothermal Teflon lined autoclave (HTG-100-SS1, Anhui CHEM Co., Ltd., China). The resultant solid was filtered,washed and dried, and then calcined in an air atmosphere22.According to the above preparation conditions, PW12was replaced with ammonium hydrogen phosphate (99%) and ammonium paratungstate (99%), named NbPO and NbWO.Additional, according to the above preparation conditions,ammonium niobate oxalate hydrate was replaced with aluminium trichloride (99%), colloidal silica (99%), titanium chloride (99%) and zirconium nitrate pentahydrate (99%),respectively, named AlPWO, SiPWO, TiPWO and ZrPWO.

    Pt supported on NbPWO catalyst was prepared by wet impregnation. 0.3 g support and 0.5 mL of 1 mg·L-1chloroplatinic acid (99.9%, Shanghai Aladdin Biochemical Technology Co., Ltd., China) solution was added to 20 mL distilled water and stirred for 24 h. Then, this solution was heated at 80 °C vaporate the water under magnetic agitation. The samples were reduced in 8% H2/92% Ar atmosphere at 200 °C for 2 h with a heating rate of 3 °C·min-123.

    2.2 Reaction procedure

    The reaction for the hydrogenolysis of lignin was test as follow method: 0.1 g alkali lignin (99%, Sigma-Aldrich, UK)and catalyst (0.05 g) were loaded into an autoclave reactor (Auto Chem100, Beijing Century Senlong experimental Co., Ltd.,China) with 15 mL distilled water and 5 mL cyclohexane(99.5%). After sealed and purged, the reactor was charged with different pressure H2and conducted at 300 °C with a magnetic stirring speed of 400 r·min-1, for 4 h. After the reaction, the catalyst was separated the organic phase was extract using ethyl acetate. The products were analyzed by gas chromatography(GC 2015, Shimadzu, Iapan) and GC-MS (5975C-7890A,Agilent Technology Co., Ltd., Germany)24. The aromatic product yield for hydrogenolysis of alkali lignin was calculated as follows:

    Structural information of depolymerized products and native lignin was analyzed by two-dimension heteronuclear single quantum coherence (HSQC)25. The molecular weight of depolymerized products and native lignin was calculated by gel permeation chromatography (GPC)26.

    2.3 Catalyst characterization

    X-ray diffraction (XRD): XRD measurement for the state and crystal structure of elements in the catalyst by Bruker D8 Advance (D8 Advance, Bruker Co., Ltd., Germany). The test conditions: Cu Kαwas used as the incident light source, the working voltage was 40 kV, the working current was 40 mA, the scanning speed was 10 (°)·min-1, and the scanning Angle was 10°-80°. MDI Jade 6.0 software was used to analyze the data27.

    Inductively coupled plasma atomic emission spectroscopy(ICP-AES): The content of precious metals in the catalyst were determined using ICP-AES (Agilent 5110, Agilent Technology Co., Ltd., Germany)28.

    Brunauer Emmett Teller (BET): The specific surface area and pore size distribution of catalyst were determined by nitrogen adsorption-desorption isotherms (Tristar 3020, Mike Co., Ltd.,USA). BET equation was used to calculate the specific surface area of the sample, and BJH model was used to calculate the pore distribution27.

    Infrared spectra of adsorbed pyridine (Py-IR): The sample was weighed and pressed into thin slices, placed in the sample chamber of the infrared spectrometer (Tensor 27, Bruker Co.,Ltd., Germany). After vacuum pretreatment, the background spectrogram was collected. Pyridine was then adsorbed for 30 min, and desorbed and IR scanned after equilibrium26.

    Ammonia temperature programmed desorption (NH3-TPD):Qualitative and quantitative analysis of solid acid catalyst was carried out via NH3-TPD (Auto Chem 2920, Mike Co., Ltd.,USA). Sample was placed in a reaction tube, and the temperature was raised from room temperature to 400 °C at 10 °C·min-1for drying pretreatment. After He was purged for 1 h, the sample was cooled to and exposed to 10% NH3/He for 1 h until saturation.Finally, the desorption gas was detected by TCD detector at a temperature of 10 °C·min-1to 700 °C.

    X-ray photoelectron spectroscopy (XPS): Valence state of different elements was analyzed by XPS (Thermo Scientific,Thermo Fisher Co., Ltd., USA)29. The full and partial spectra of different elements were obtained by calibration with the binding energy of C 1s (284.8). Then peak separation, fitting and integration of spectra of different elements used Advantage software.

    Hydrogen temperature-programmed reduction (H2-TPR):Reduction degree of precious metal and its interaction with support were performed using the Auto Chem 2920 apparatus(Auto Chem 2920, Mike Co., Ltd., USA). The above samples were heated to 900 °C at a heating rate of 10 °C·min-1and amount of hydrogen consumption was detected using a TCD detector30.

    3 Results and discussion

    3.1 Catalyst characterization

    Fig. 1a showed schematic representation of the formation process of the flower-shaped NbPWO support. The hydrothermally synthesized flower-like assembled nanorod NbPWO sample contained stacked nanorods, which arranged together and formed a spherical micro-flower, as confirmed by SEM and TEM (Fig. 1b,d). SEM image showed a developed channel structure on flower-shaped NbPWO support, which could promote diffusion of lignin bio-oil. Pt loaded by wet impregnation and the loading amount was 3% (w, mass fraction)by ICP-AES. EDS spectra showed the presence of Pt, Nb, P, W and O elements in Pt/NbPWO. Owing to the special flowershaped structure, NbPWO support could not only make full use of 3D rods for the loading of the active Pt metal, but also effectively limit the aggregation or restacking of nanorods.

    The X-ray diffraction (XRD) patterns of Pt/NbPWO display typical peaks at 2θ = 23.1°, 23.7°, 33.5° and 33.9° etc., which are readily indexed to planes of polycrystalline structure PW phase (PDF#41-0326) (Fig. 2a). Additionally, diffraction peak of Pt/NbPWO was in good agreement with PW phase, indicating the related crystal structure. No diffraction peak from NbOxis found in Pt/NbPWO composite because of the amorphous state of NbOx. This result was well matched with EDX mapping images (Fig. 1c), implying the homogeneous dispersion of NbOxthroughout the PW12framework. In general, we deduced that the Keggin structure of PW12remained unchanged when it was introduced into NbOxby hydrothermally method31,32.

    The N2adsorption isotherm measure of Pt/NbPWO showed an obvious hierarchically porous structure with a significantly higher specific surface area of 74 m2·g-1and a total pore volume of 0.19 m3·g-1(Fig. 2b and Table 1) than Pt/NbPO and Pt/NbWO, which is possibly due to that the addition of PW12promoted the formation of nano-flower structure of the support.NbPWO was a heteropolyacid composed of heteropoly anions(PW12) and cations (NbOx). PW12was formed by coordination bridge of oxygen atoms and had a certain pore structure (Fig.1a).

    Fig. 2c showed the acid content of NbPWO support at different calcination temperatures (500 °C, 600 °C, 700 °C). It was worth noting that the acid content was as higher as 1 mmol·g-1when the calcination temperature was 500 °C. With the increase of calcination temperature, the catalyst of solid acid content decreased obviously. When the calcination temperature is 700 °C, the acid content of the catalyst is 0.4 mmol·g-1. The reason may be that the crystal system of NbOxwas from T-NbOxto TT-NbOxat high calcination temperature30.

    Fig. 1 (a) Schematic representation of the formation process of the flower-shaped NbPWO support after heat treating in air at 500 °C.(b) SEM image, (c) the HADDF result and corresponding EDX mapping images and (d, e) TEM images of Pt/NbPWO samples.

    Fig. 2 (a) XRD pattern of Pt/NbWO samples and PW12 and (b) N2 adsorption isotherms of Pt/NbWO, Pt/NbPO and Pt/NbPWO; (c) NH3-TPD curves of different calcination temperature.

    Py-IR experiments were conducted to determine the acidic properties and the reaction mechanism in hydrogenolysis. Fig. 3 displayed that intense bands of Pt/NbPWO catalyst at 1450 cm-1and 1610 cm-1were assigned to Lewis acid (L), at 1543 cm-1and 1575 cm-1were attributed to Bronsted acid (B) and at 1492 cm-1was ascribed to the synergic effect of L and B acid sites15.Table 1 showed the content of L and B acid respectively in the above three Nb-based samples. The acid contents of the Pt/NbPWO catalyst were significantly higher than those of the other catalysts. In hydrogenolysis of lignin, L acid could promote C-O bonds cleavage, while B acid could promote C-C bonds fracture13. Pt/NbPWO catalyst had abundant B acidsites and higher acid content, which could effectively transform alkali lignin, and improve the yield of aromatic monomer.

    Fig. 3 Py-IR spectra of Pt/NbWO, Pt/NbPO and Pt/NbPWO.

    Table 1 Pore size distribution and acid content of different catalysts.

    Fig. 4 shows the H2-TPR patterns of the Pt/NbPWO, Pt/NbPO and Pt/NbPWO. The supports possess obvious reduction peaks,which could be ascribed to the bulk oxygen and surface or subsurface oxygen of NbPWO, NbPO and NbPWO33. Furthermore,two peaks at about 93 °C and 160 °C (< 200 °C) should attribute to the bulk platinum oxide reduction (PtOxto Pt0)34. Reduction peaks of Pt0over Pt/NbPWO was more obvious than those of other catalysts, the reason may be that flower -shaped Pt/NbPWO catalyst promoted the loading of the active Pt metal.A low valence of NbOxappeared after the reduction of Pt/NbPWO at 450 °C, while the additional weak reduction peak near 395 °C was assigned to the reduction of surface NbPWO which interacted with Pt, implying a stronger metal-support interaction (SMSI) of Pt particles with the NbPWO support35.These results demonstrated the existence of the Pt-NbOxinterface, where the NbPWO surface provided more anchoring sites for Pt.

    To explore the surface valence state of catalysts, the XPS survey spectrum of Pt/NbWO, Pt/NbPO and Pt/NbPWO samples were presented in Fig. 5. The Pt 4forbital showed two peaks in above samples, which were attributed to Pt 4f7/2and Pt 4f5/2,respectively. The binding energies (BEs) of Pt0were determined as 71 eV and 74 eV36. When P together with W species participated in the synthesis of catalyst, the BEs of Pt was significantly smaller compared with those with sole P and W species. The downward shift in BEs indicated that PW12affected the electron cloud density and distribution of Pt nanoparticles in the catalyst, reducing the energy barriers of H2dissociation. As shown in Fig. 5b, the Nb5+also presented two peaks corresponding to Nb 3d5/2and Nb 3d3/2. The binding energies of Nb5+over the Pt/NbPWO obviously decreased, indicating that PW12could promote the formation or exposure of Nbδ+species and increase surface acidic sites.

    Fig. 5 XPS spectra of (a) Pt 4f orbital in NbWO, NbPO and NbPWO. and (b) Nb 3d orbital in Pt/NbWO, Pt/NbPO and Pt/NbPWO.

    Fig. 6 (a) Reaction results for the hydrogenolysis of alkali lignin over various Pt-loaded catalysts, influence of (b) temperature and(c) H2 pressure over Pt/NbPWO. (a) Reaction conditions: alkali lignin 0.1 g, catalyst 0.05 g, H2O 15 mL, cyclohexane 5 mL, 300 °C, H2 1.2 MPa,4 h. (b) Reaction conditions: alkali lignin 0.1 g, catalyst 0.05 g, H2O 15 mL, cyclohexane 5 mL, H2 1.2 MPa, 4 h. (c) Reaction conditions: alkali lignin 0.1 g, catalyst 0.05 g, H2O 15 mL, cyclohexane 5 mL, 300 °C, 4 h. (d) Main structure of the depolymerized products.

    3.2 Evaluate of catalytic performance

    Fig. 6a compared the hydrogenolysis performance for alkali lignin over various Pt-based catalysts under the same reaction condition. It is found that among the selected Pt catalysts,Pt/NbPWO exhibited the highest yield of aromatic monomers(18.04%). In comparison, commercial Pt/C catalyst only gave a very low aromatic monomer yield (8.13%). The reason may be ascribed to the acid sites of Pt/NbPWO, preventing further hydrogenation24. Comparing with Pt/NbPO and Pt/NbWO,Pt/NbPWO possessed larger specific surface area and abundant mesoporous showed a large enhancement of catalytic activity.Moreover, the special flower-shaped structure took advantage of 3D rods for the loading of the active Pt metal, making Pt species uniform distributed on the NbPWO catalyst (Fig. 1c) and could effectively limit the aggregation.

    As shown in Fig. 6, the influence of reaction temperature and H2pressure on catalytic depolymerization of alkali lignin over Pt/NbPWO was studied. The yield of the aromatic monomers over the Pt/NbPWO catalyst increased to the peak value of 18.05% at 300 °C and 1.2 MPa H2. The efficiency of lignin depolymerization decreased under a low H2pressure short after reaction temperature due to the recalcitrance and the stability of lignin. However, increasing the H2pressure caused low aromatic monomer yield, the reason may be ascribed to overhydrogenation of benzene ring and partial products dissolved in aqueous-phase. Increasing the reaction temperature also caused low aromatic monomer yield, which may be attributed to the recondensation of lignin-depolymerized monomer products19.

    The depolymerization products of alkali lignin were analyzed by HSQC (Fig. 7 and Table 3). The signals of Aα(δC/δH 71.4/4.87 and δC/δH 85.5/4.7) and Aβ(δC/δH 84.1/4.32 for G unit and δC/δH 87.1/4.11 for S unit) corresponded to benzylic alcohol. The signals of Bα(δC/δH 876.7/5.5), Bβ(δC/δH 53.7/3.1), and Bγ(δC/δH 62.9/3.7) corresponded to phenylcoumaran linkages. The signals of Cα, Cβand Cγ(δC/δH 85.6/4.7, δC/δH 54.5/2.9 and δC/δH 72/3.8, 4.2, respectively)corresponded to resinol linkages13. The aromatic region of alkali lignin is mainly composed of G type units along with a small amount of S and H types37. Compared with the alkali lignin, the peak area of A, B and C structures of the depolymerized product decreased significantly or the signal peak disappeared directly,indicating that the catalyst could effectively break the C-O and C-C bonds of alkali lignin37.

    Fig. 8 shows that the molecular weight of alkali lignin was 1379 Da, which indicated that depolymerization products without the addition of catalyst was 727 Da, whereas the molecular weight of depolymerization products with Pt/NbPWO catalyst reduced to 583 Da, confirming that the catalyst could effectively break the linking bonds of lignin subunits.

    Fig. 7 2D-HSQC NMR spectra of alkali lignin (a: side-chain region; c: aromatic region) and depolymerization products at optimized condition(b: side-chain region; d: aromatic region); (A) β-O-4 alkyl-aryl ethers; (B) phenylcoumarans; (C) resinols; (S) syringyl units; (S’) oxidized syringyl units; (G) guaiacyl units; (H) P-hydroxyphenyl units and (PB) coumarate.

    Fig. 8 GPC distribution of depolymerization products.

    In order to verify the universality of the catalyst, Pt/NbPWO catalyst was applied to the depolymerization of Birch organosolv lignin (BOSL) and enzymatic hydrolysis lignin (EHL). The products distributions were shown in Table 2. The depolymerization products of the three kinds of lignin were mainly G-type products, with a small amount of H-type and S-type products37. The yield of aromatic monomer of lignin extracted with dioxane was 35.17% and that of enzymatic hydrolysis was 25.31%. The structures of native BOSL and EHL were measured by two-dimensional HSQC NMR spectroscopy(Fig. 9). Compared with alkali lignin, the β-O-4 units correlation signals of BOSL and EHL obviously resonated, meantime, the β-O-4 bonds contents of BOSL and EHL were higher (Table 3),which suggested the chemical structure changed mainlyviahydroxyl condensation of alkali lignin in the extraction process.The β-O-4 bond contents of BOSL were higher than that of AL and EHL, hence gaining the higher yield of aromatic monomers.By comparing the aromatic monomers yield and total bond content of different original lignin, it was found that utilization ratio of AL and EHL was higher over Pt/NbPWO catalyst, the reason may be that the structure of BOSL was fragile due to more β-O-4 units, causing that the depolymerization product was condensed.

    Table 2 The hydrogenolysis of lignin into aromatic monomers in different condition.

    Table 3 Structural characteristics of the different lignin by 2D-HSQC method.

    3.3 Catalyst reusability

    Stability of catalyst was shown in Fig. 10a, which indicated that the catalyst still maintained a high lignin depolymerization efficiency after used 5 times. XRD profiles of the used and fresh Pt/NbPWO catalysts (Fig. 10b) indicated that the crystal structure of the catalyst was not significantly changed. The particle size of NbOxon the used Pt/NbPWO catalyst was slightly larger relative to that of fresh activated samples,indicating that catalyst particles tiny agglomeration during the hydrothermal reaction (Fig. 10b). NH3-TPD profiles (Fig. 10c)shown that the total acid content of Pt/NbPWO catalysts after 5 times slightly decreased from 1.08 mmol·g-1to 1.02 mmol·g-1.

    Fig. 9 2D-HSQC NMR spectra of (a, b) BOSL and (c, d) EHL.

    Fig. 10 (a) The stability of the Pt/NbPWO catalyst for the hydrogenolysis of alkali lignin. Reaction conditions: alkali lignin 0.1 g, catalyst 0.05 g,H2O 15 mL, cyclohexane 5 mL, H2 1.2 MPa, 300 °C for 4 h. (b) XRD analysis and (c) NH3-TPD profiles of the fresh and used Pt/NbPWO catalyst.

    4 Conclusions

    The Pt/NbPWO catalyst was prepared by hydrothermal and wetness impregnation methods. The Pt/NbPWO catalyst displayed good ability for the cleavage of C-O ether band and C-C bonds of lignin, giving 18.05%, 35.17% and 25.13% of aromatic monomer yields for alkali lignin, BOSL and EHL,respectively. It was found that 500 °C was the optimized calcination temperature for preparing the catalyst, in which higher temperature led to a considerable loss of acidity, while lower temperature caused the unstablization of catalyst during the depolymerization process. Abundant Br?nsted acid sites and high total acid content should contribute to the desired catalytic activity in the hydrogenation of lignin.

    猜你喜歡
    陳博新平華南理工大學(xué)
    幼兒園里歡樂多
    幼兒園(2021年18期)2021-12-06 02:45:42
    小螞蟻去游玩
    幼兒園(2021年16期)2021-12-06 01:06:48
    策劃師
    名家名作(2021年1期)2021-11-13 00:52:33
    老腔唱新歌
    金秋(2021年22期)2021-03-10 07:59:16
    讓蘑菇
    幼兒園(2020年3期)2020-03-27 07:00:07
    咸的“糖”
    本期作者
    世界建筑(2018年5期)2018-05-25 09:51:38
    當(dāng)機器人遇上人工智能——記華南理工大學(xué)自動化科學(xué)與工程學(xué)院副教授張智軍
    精靈偵探團之神秘大盜(十一)
    焦唯、王琪斐美術(shù)作品
    纯流量卡能插随身wifi吗| 叶爱在线成人免费视频播放| 成人黄色视频免费在线看| 久久久久国产一级毛片高清牌| 国产aⅴ精品一区二区三区波| 91九色精品人成在线观看| 亚洲中文字幕日韩| 人妻 亚洲 视频| 在线看a的网站| 久久这里只有精品19| 欧美最黄视频在线播放免费 | 亚洲午夜理论影院| 不卡一级毛片| 99精品欧美一区二区三区四区| av超薄肉色丝袜交足视频| 精品午夜福利视频在线观看一区| 女性被躁到高潮视频| 精品亚洲成a人片在线观看| 中文字幕人妻丝袜一区二区| 一区在线观看完整版| 久久热在线av| 老汉色∧v一级毛片| 91麻豆精品激情在线观看国产 | av网站在线播放免费| 亚洲一区二区三区不卡视频| 亚洲国产毛片av蜜桃av| 欧美日韩乱码在线| 亚洲欧美激情综合另类| 自拍欧美九色日韩亚洲蝌蚪91| www.精华液| 久久人妻av系列| 免费在线观看日本一区| 日本黄色视频三级网站网址 | 看片在线看免费视频| 婷婷成人精品国产| 岛国毛片在线播放| av片东京热男人的天堂| av不卡在线播放| 精品亚洲成a人片在线观看| 国产一区二区三区在线臀色熟女 | 丁香六月欧美| 欧美+亚洲+日韩+国产| 黄色视频不卡| 性少妇av在线| 欧美激情久久久久久爽电影 | 丝瓜视频免费看黄片| 99国产精品免费福利视频| 日韩大码丰满熟妇| 国产成人av激情在线播放| 午夜福利在线免费观看网站| 三级毛片av免费| 国产精品电影一区二区三区 | 操美女的视频在线观看| www日本在线高清视频| 久久国产乱子伦精品免费另类| 五月开心婷婷网| 欧美人与性动交α欧美精品济南到| 淫妇啪啪啪对白视频| 动漫黄色视频在线观看| 老司机深夜福利视频在线观看| 少妇粗大呻吟视频| av有码第一页| 视频区图区小说| 国产成人免费无遮挡视频| 纯流量卡能插随身wifi吗| 女人久久www免费人成看片| 在线观看日韩欧美| 欧美乱码精品一区二区三区| 一a级毛片在线观看| cao死你这个sao货| 精品第一国产精品| 精品电影一区二区在线| 免费观看人在逋| 中文字幕色久视频| 国产免费男女视频| 80岁老熟妇乱子伦牲交| 国产av又大| 免费观看精品视频网站| 亚洲专区中文字幕在线| 亚洲欧美一区二区三区黑人| av一本久久久久| 一级a爱视频在线免费观看| 久久精品aⅴ一区二区三区四区| 国产精品久久久久久人妻精品电影| 国产激情久久老熟女| 97人妻天天添夜夜摸| 国产av一区二区精品久久| 丝袜人妻中文字幕| 免费一级毛片在线播放高清视频 | 在线观看免费视频日本深夜| 亚洲熟妇熟女久久| 视频区图区小说| 韩国av一区二区三区四区| 久久久国产欧美日韩av| 国产成人精品久久二区二区91| 久久久国产一区二区| 亚洲午夜精品一区,二区,三区| 久久亚洲精品不卡| 欧美日韩视频精品一区| 国产精品久久电影中文字幕 | av有码第一页| 自拍欧美九色日韩亚洲蝌蚪91| 老司机在亚洲福利影院| 宅男免费午夜| 精品无人区乱码1区二区| 9191精品国产免费久久| 国产在线观看jvid| 1024视频免费在线观看| 国精品久久久久久国模美| 亚洲 国产 在线| 国产男女超爽视频在线观看| 多毛熟女@视频| 女同久久另类99精品国产91| 久久香蕉国产精品| 高清av免费在线| 国产视频一区二区在线看| 1024香蕉在线观看| 欧美日韩福利视频一区二区| 亚洲一区二区三区不卡视频| 欧美黑人精品巨大| 中文欧美无线码| 国产成人免费无遮挡视频| 女人高潮潮喷娇喘18禁视频| 亚洲精华国产精华精| 黑人欧美特级aaaaaa片| 天天躁狠狠躁夜夜躁狠狠躁| 嫁个100分男人电影在线观看| 黄色a级毛片大全视频| 自线自在国产av| 精品国产乱码久久久久久男人| 欧美日韩亚洲国产一区二区在线观看 | 久久久久久人人人人人| 一级黄色大片毛片| 亚洲精品一二三| 久久性视频一级片| 可以免费在线观看a视频的电影网站| 激情在线观看视频在线高清 | 久久 成人 亚洲| 好男人电影高清在线观看| 国内毛片毛片毛片毛片毛片| 国产精品永久免费网站| 精品电影一区二区在线| 亚洲五月天丁香| 精品久久久久久久久久免费视频 | 一a级毛片在线观看| 最新的欧美精品一区二区| 精品国产乱子伦一区二区三区| 丝瓜视频免费看黄片| 18禁美女被吸乳视频| 男女高潮啪啪啪动态图| 久久精品国产a三级三级三级| 香蕉丝袜av| 亚洲人成电影免费在线| 黑人猛操日本美女一级片| 美女扒开内裤让男人捅视频| 老司机午夜福利在线观看视频| 精品国内亚洲2022精品成人 | 亚洲免费av在线视频| 精品少妇久久久久久888优播| 9热在线视频观看99| 国产精品影院久久| av有码第一页| 欧美人与性动交α欧美精品济南到| 久久ye,这里只有精品| 性少妇av在线| 99精品在免费线老司机午夜| 丁香欧美五月| 欧美日韩成人在线一区二区| 香蕉久久夜色| 久久亚洲精品不卡| 99久久国产精品久久久| 一边摸一边做爽爽视频免费| 极品教师在线免费播放| 制服人妻中文乱码| 嫩草影视91久久| 人成视频在线观看免费观看| 热re99久久国产66热| 国产又色又爽无遮挡免费看| 国产极品粉嫩免费观看在线| 亚洲精品一卡2卡三卡4卡5卡| 十八禁网站免费在线| 日本一区二区免费在线视频| 欧美性长视频在线观看| 亚洲熟妇熟女久久| www.熟女人妻精品国产| 韩国精品一区二区三区| 亚洲五月天丁香| 免费一级毛片在线播放高清视频 | 久久久久久久国产电影| 日本a在线网址| 99香蕉大伊视频| 国产成人免费无遮挡视频| 巨乳人妻的诱惑在线观看| 亚洲五月婷婷丁香| a级毛片黄视频| 在线天堂中文资源库| 欧美一级毛片孕妇| 老熟妇仑乱视频hdxx| 欧美日韩乱码在线| 欧美激情高清一区二区三区| 欧美大码av| 成人国产一区最新在线观看| 电影成人av| 免费一级毛片在线播放高清视频 | 亚洲伊人色综图| 一级,二级,三级黄色视频| 啦啦啦视频在线资源免费观看| 日本欧美视频一区| 如日韩欧美国产精品一区二区三区| 精品久久久精品久久久| 国产不卡av网站在线观看| 美女 人体艺术 gogo| 一级a爱视频在线免费观看| 国产免费现黄频在线看| 9色porny在线观看| avwww免费| 国产成人av教育| 亚洲专区国产一区二区| 久久人妻熟女aⅴ| 亚洲情色 制服丝袜| 在线观看免费视频日本深夜| 久久99一区二区三区| 久久热在线av| 国产欧美日韩一区二区三区在线| 久久久精品免费免费高清| 日本a在线网址| 一级毛片女人18水好多| 国产xxxxx性猛交| 欧美色视频一区免费| 老司机亚洲免费影院| 日韩三级视频一区二区三区| 国产精品一区二区在线不卡| av欧美777| 国产精品美女特级片免费视频播放器 | 亚洲人成伊人成综合网2020| 天堂俺去俺来也www色官网| 日韩欧美免费精品| 亚洲成人手机| 一本一本久久a久久精品综合妖精| 亚洲成国产人片在线观看| 999久久久精品免费观看国产| 亚洲欧美一区二区三区黑人| 咕卡用的链子| 亚洲精品美女久久av网站| 在线av久久热| 国产在视频线精品| 制服诱惑二区| 国产精品欧美亚洲77777| 777久久人妻少妇嫩草av网站| 国产高清激情床上av| 夜夜爽天天搞| 亚洲av成人一区二区三| 亚洲av美国av| svipshipincom国产片| av天堂在线播放| 欧美亚洲 丝袜 人妻 在线| 咕卡用的链子| 天堂√8在线中文| 国产精品 欧美亚洲| av天堂在线播放| 欧美成狂野欧美在线观看| 免费日韩欧美在线观看| 成在线人永久免费视频| 脱女人内裤的视频| 人人妻人人爽人人添夜夜欢视频| www.熟女人妻精品国产| avwww免费| 亚洲成a人片在线一区二区| 国产无遮挡羞羞视频在线观看| 精品福利永久在线观看| 欧美乱码精品一区二区三区| 国产精品一区二区在线观看99| 91大片在线观看| 国产一区在线观看成人免费| 欧美丝袜亚洲另类 | 亚洲五月天丁香| 日韩免费高清中文字幕av| 国产午夜精品久久久久久| 国产片内射在线| 亚洲成人免费av在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国产国语对白av| 另类亚洲欧美激情| 精品熟女少妇八av免费久了| 免费在线观看日本一区| 人人妻,人人澡人人爽秒播| 欧美激情高清一区二区三区| 可以免费在线观看a视频的电影网站| 欧美日韩精品网址| 精品视频人人做人人爽| av不卡在线播放| 国产淫语在线视频| 久久精品91无色码中文字幕| 91老司机精品| 大型黄色视频在线免费观看| 日韩视频一区二区在线观看| 女人被狂操c到高潮| 午夜激情av网站| 精品人妻熟女毛片av久久网站| 精品久久蜜臀av无| 国产在线一区二区三区精| 欧美成狂野欧美在线观看| 侵犯人妻中文字幕一二三四区| 日本a在线网址| 黑人操中国人逼视频| 天堂√8在线中文| 国产精品一区二区在线不卡| 在线观看舔阴道视频| 成年人免费黄色播放视频| 成人18禁高潮啪啪吃奶动态图| av在线播放免费不卡| 两人在一起打扑克的视频| 91字幕亚洲| 久9热在线精品视频| 亚洲欧美激情在线| 电影成人av| 欧美国产精品va在线观看不卡| 99精国产麻豆久久婷婷| 人妻丰满熟妇av一区二区三区 | 在线av久久热| 午夜免费成人在线视频| 精品福利永久在线观看| 中文字幕av电影在线播放| 99re在线观看精品视频| 久久久久久久精品吃奶| svipshipincom国产片| 日本黄色视频三级网站网址 | 国精品久久久久久国模美| 亚洲国产毛片av蜜桃av| 18禁美女被吸乳视频| 制服人妻中文乱码| 少妇粗大呻吟视频| 免费女性裸体啪啪无遮挡网站| 国产片内射在线| 自线自在国产av| 久久99一区二区三区| 精品久久久久久久久久免费视频 | 亚洲欧美精品综合一区二区三区| 捣出白浆h1v1| 国产亚洲欧美98| 国产精品亚洲一级av第二区| 国产精品自产拍在线观看55亚洲 | 午夜福利,免费看| 精品一区二区三区四区五区乱码| 欧美精品啪啪一区二区三区| 国产不卡av网站在线观看| 麻豆国产av国片精品| 午夜福利影视在线免费观看| 在线永久观看黄色视频| 国产极品粉嫩免费观看在线| www日本在线高清视频| www.999成人在线观看| 久久精品国产99精品国产亚洲性色 | 国产深夜福利视频在线观看| 亚洲欧美一区二区三区黑人| 黑人欧美特级aaaaaa片| 极品少妇高潮喷水抽搐| a在线观看视频网站| 9热在线视频观看99| cao死你这个sao货| 9热在线视频观看99| 大型av网站在线播放| www日本在线高清视频| 亚洲欧美激情在线| 久久精品亚洲av国产电影网| 亚洲国产欧美日韩在线播放| 人人妻人人澡人人看| 老熟妇仑乱视频hdxx| 99香蕉大伊视频| 一进一出抽搐gif免费好疼 | 色综合婷婷激情| videosex国产| 国产在视频线精品| 国产成人精品久久二区二区91| 久久久久国产精品人妻aⅴ院 | 婷婷成人精品国产| 99热国产这里只有精品6| 大型黄色视频在线免费观看| 精品国产一区二区久久| 色在线成人网| 熟女少妇亚洲综合色aaa.| 精品一区二区三卡| 国产精品 欧美亚洲| 两个人免费观看高清视频| www.熟女人妻精品国产| 亚洲精品一二三| 精品第一国产精品| 国产午夜精品久久久久久| 免费一级毛片在线播放高清视频 | 亚洲av美国av| 日日爽夜夜爽网站| 亚洲av电影在线进入| 亚洲国产欧美网| 国产成人精品在线电影| 欧美日韩国产mv在线观看视频| 成在线人永久免费视频| 国产精品乱码一区二三区的特点 | 91成年电影在线观看| 一级毛片高清免费大全| 欧美激情高清一区二区三区| 久久久久国产精品人妻aⅴ院 | 午夜视频精品福利| 精品久久久久久电影网| 国产在线观看jvid| 多毛熟女@视频| 国产一卡二卡三卡精品| 怎么达到女性高潮| 久久精品人人爽人人爽视色| 亚洲一区二区三区不卡视频| 亚洲av欧美aⅴ国产| 国产精品1区2区在线观看. | 麻豆成人av在线观看| 超色免费av| 身体一侧抽搐| 老司机午夜十八禁免费视频| 在线观看一区二区三区激情| 色尼玛亚洲综合影院| 亚洲,欧美精品.| 免费观看精品视频网站| 99精国产麻豆久久婷婷| 曰老女人黄片| 国产精品成人在线| 丝瓜视频免费看黄片| 亚洲一区高清亚洲精品| 精品一品国产午夜福利视频| 亚洲情色 制服丝袜| 国产欧美亚洲国产| 午夜福利影视在线免费观看| 电影成人av| 亚洲三区欧美一区| 日韩有码中文字幕| 无遮挡黄片免费观看| 熟女少妇亚洲综合色aaa.| 欧美午夜高清在线| 日日爽夜夜爽网站| 狠狠婷婷综合久久久久久88av| 超碰成人久久| 丝袜人妻中文字幕| 久久久久久久国产电影| 久久草成人影院| av欧美777| 最近最新中文字幕大全电影3 | 国产片内射在线| 天堂动漫精品| 亚洲午夜理论影院| 亚洲黑人精品在线| 国产99白浆流出| 热99re8久久精品国产| 亚洲国产毛片av蜜桃av| 伦理电影免费视频| 大香蕉久久网| 无限看片的www在线观看| 亚洲黑人精品在线| 亚洲精品国产区一区二| 国产极品粉嫩免费观看在线| 免费少妇av软件| www.熟女人妻精品国产| 国产午夜精品久久久久久| 女人爽到高潮嗷嗷叫在线视频| 交换朋友夫妻互换小说| 亚洲第一av免费看| 日韩欧美在线二视频 | 亚洲欧美一区二区三区久久| 人成视频在线观看免费观看| 亚洲精品国产区一区二| 女人精品久久久久毛片| 在线永久观看黄色视频| 黄色毛片三级朝国网站| 黄频高清免费视频| 最近最新中文字幕大全免费视频| 国产亚洲精品久久久久久毛片 | 丁香欧美五月| 久久国产精品人妻蜜桃| 国产一区二区三区在线臀色熟女 | 欧美黑人精品巨大| 国产99久久九九免费精品| 欧美日韩亚洲综合一区二区三区_| 老司机深夜福利视频在线观看| 国产精品久久视频播放| 18禁观看日本| 欧美另类亚洲清纯唯美| 天堂√8在线中文| 一本综合久久免费| av超薄肉色丝袜交足视频| 老司机靠b影院| 精品久久久久久电影网| 精品人妻在线不人妻| 久久青草综合色| 99国产综合亚洲精品| 欧美日韩精品网址| av福利片在线| 一a级毛片在线观看| 国产成人av激情在线播放| 99国产综合亚洲精品| 亚洲精品一卡2卡三卡4卡5卡| 欧美人与性动交α欧美精品济南到| 无遮挡黄片免费观看| 成人影院久久| 亚洲人成77777在线视频| a级毛片黄视频| 香蕉国产在线看| 女人高潮潮喷娇喘18禁视频| 伦理电影免费视频| 精品久久久久久久毛片微露脸| 国产亚洲欧美精品永久| 国产一卡二卡三卡精品| netflix在线观看网站| 亚洲国产欧美一区二区综合| 国产欧美日韩一区二区三区在线| 人妻久久中文字幕网| 欧美黄色片欧美黄色片| 日韩免费高清中文字幕av| 最新的欧美精品一区二区| 自线自在国产av| 国产成人啪精品午夜网站| 19禁男女啪啪无遮挡网站| www日本在线高清视频| 如日韩欧美国产精品一区二区三区| 色在线成人网| 久久人人爽av亚洲精品天堂| 香蕉丝袜av| 天堂俺去俺来也www色官网| av片东京热男人的天堂| 亚洲成人国产一区在线观看| 午夜91福利影院| 视频在线观看一区二区三区| 人人妻,人人澡人人爽秒播| 国内久久婷婷六月综合欲色啪| 女性生殖器流出的白浆| 亚洲色图av天堂| 国产极品粉嫩免费观看在线| 人妻 亚洲 视频| 精品高清国产在线一区| 中亚洲国语对白在线视频| 韩国精品一区二区三区| 久久久久精品国产欧美久久久| 国产三级黄色录像| 亚洲色图av天堂| 18禁黄网站禁片午夜丰满| 国产主播在线观看一区二区| 看黄色毛片网站| 亚洲精品自拍成人| 亚洲伊人色综图| 成人影院久久| 欧美激情高清一区二区三区| 亚洲精品国产区一区二| 自拍欧美九色日韩亚洲蝌蚪91| 99在线人妻在线中文字幕 | 成人黄色视频免费在线看| 日本欧美视频一区| 日日爽夜夜爽网站| 亚洲国产欧美一区二区综合| 亚洲伊人色综图| 91大片在线观看| 欧美激情高清一区二区三区| 亚洲精品中文字幕在线视频| 大片电影免费在线观看免费| 女人久久www免费人成看片| 九色亚洲精品在线播放| 久久精品成人免费网站| 老熟女久久久| 久久影院123| 精品国产乱码久久久久久男人| 不卡一级毛片| 欧美另类亚洲清纯唯美| 久久精品人人爽人人爽视色| 在线观看免费视频日本深夜| 首页视频小说图片口味搜索| 老汉色av国产亚洲站长工具| 老司机在亚洲福利影院| 极品人妻少妇av视频| 精品乱码久久久久久99久播| 99国产精品一区二区三区| 成人黄色视频免费在线看| 日韩精品免费视频一区二区三区| 中文字幕高清在线视频| 嫁个100分男人电影在线观看| 欧美精品高潮呻吟av久久| 日日夜夜操网爽| 中亚洲国语对白在线视频| 亚洲少妇的诱惑av| 50天的宝宝边吃奶边哭怎么回事| 男女下面插进去视频免费观看| 伊人久久大香线蕉亚洲五| 91大片在线观看| 亚洲av第一区精品v没综合| 纯流量卡能插随身wifi吗| 男女高潮啪啪啪动态图| 免费观看人在逋| 一进一出抽搐gif免费好疼 | 亚洲欧美激情在线| 精品久久蜜臀av无| 日韩熟女老妇一区二区性免费视频| 国产视频一区二区在线看| 中文字幕色久视频| 五月开心婷婷网| 中文亚洲av片在线观看爽 | 黄片小视频在线播放| 免费日韩欧美在线观看| 国产成人一区二区三区免费视频网站| 国产精品国产av在线观看| 国产免费男女视频| 99热国产这里只有精品6| 宅男免费午夜| 亚洲国产精品合色在线| 久久这里只有精品19| 男女床上黄色一级片免费看| 欧美日韩av久久| 十分钟在线观看高清视频www| 久久久久精品人妻al黑| 国产精品一区二区精品视频观看| 十分钟在线观看高清视频www| 亚洲精品粉嫩美女一区| 麻豆乱淫一区二区| 人妻久久中文字幕网|