• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The 2/3 scaling of twig nitrogen to phosphorus in woody plants

    2022-10-18 01:59:48ZhiqiangWangKarlNiklasZqingMaDhunJiangJianmingDng
    Forest Ecosystems 2022年4期

    Zhiqiang Wang, Karl J. Niklas, Zqing Ma, Dhun Jiang, Jianming Dng

    a Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, 610041, China

    b Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610041, China

    c Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA

    d Center for Forest Ecosystem Studies and Qianyanzhou Ecological Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China

    e Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China

    f State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China

    Keywords:Nitrogen Phosphorus Scaling exponents Twigs Woody plants

    ABSTRACT

    1. Introduction

    Nitrogen (N) and phosphorus (P) are crucial elements in regulating plant physiological processes, growth, and development (Sterner and Elser,2002;Güsewell,2004).It is well known that coordinated variation of N and P concentrations in plant organs can be quantified via a stoichiometric scaling relationship characterized by equation N = βPα, or logN = logβ + αlogP when log-transformed, in which α and logβ represent the slope (i.e., the scaling exponent) and the Y-intercept (i.e., the normalization constant), respectively (Niklas, 1994; Niklas et al., 2005;Kerkhoff et al., 2006; Wang et al., 2020a). The scaling exponent intrinsically reflects the relative accumulation rate of N compared to P (Sardans and Pe~nuelas, 2015; Guo et al., 2020), and has been frequently applied to predict plant growth dynamic and ecosystem functioning(Wright et al.,2005; Niklas,2006;Elser et al., 2010). Thus,quantifying the N versus P scaling exponent in plant organs can advance our understanding of nutrients cycling across plants and ecosystem dynamics.

    A uniform and constant scaling exponent of N to P is appealing because of its simplicity in empirical models. For example, using global datasets, two synthesis studies have proposed general 2/3 and 0.82 scaling “l(fā)aws” for leaves (Reich et al., 2010) and for fine roots (Wang et al., 2019), respectively. However, several studies have also shown some statistically differences in the scaling exponent of leaves(Han et al.,2005;Niklas and Cobb,2005;McGroddy et al.,2004;Zhao et al.,2016a;Tian et al.,2018)and roots(Yuan et al.,2011;Wang et al.,2021a;Zhao et al., 2021) across major plant functional groups and biomes. For example,a study based on global pooled data reports that the leaf N and P scaling exponent varies considerably across different plant functional groups, latitudinal zones, and local sites, whereas metabolic requirements for P to sustain growth rates mainly account for differences in the numerical values of scaling exponent(Tian et al.,2018).Similarly,a recent study demonstrates that the N versus P scaling exponent of the absorptive fine roots of woody species differs significantly within different functional groups and climatic zones(Wang et al.,2021a).Soil relative P availability plays a crucial role in influencing the ability of fine roots to absorb N and P and thus N vs. P scaling exponents.

    Twigs (here defined as a terminal segment of branches) bear leaves and flower buds(Wilson,1989;Xiang et al.,2009),which are responsible for light interception (and thus photosynthetic carbon gain) and reproduction.These organs therefore are the most metabolically active aerial compartments of the whole plant, and play important mechanical and hydraulic roles(Osada,2006;Yang et al.,2009;Poorter et al.,2012).It is reasonable therefore to suppose that the N and P requirements of twigs are similar to those of leaves, particularly since twigs are often photosynthetic organs in addition to their other functions (Sterner and Elser,2002; Ghimire et al., 2017). Previous studies have shown a strong correlation between the chemical composition of twigs and leaves (Ishida et al., 2008; Yang et al., 2014; Yan et al., 2016). Given the functional linkages between twigs and leaves, it is reasonable to expect that the N and P concentrations between these two organs will be tightly correlated and that it will conform generally to the 2/3 scaling relationship.

    Twig specific density(TSD)and twig dry matter content(TDMC)are two important functional traits(Cornelissen et al.,2003).Several studies have shown that twig specific density(TSD)is negatively correlated with photosynthetic capacity (Santiago et al., 2004) and radial growth rates(Fujimoto et al., 2006), whereas TSD is reported to be positively correlated with twig dry matter content(TDMC)(Yao et al.,2015).Thus,TSD and TDMC are reasonable surrogates for plant growth rates(Chave et al.,2009). Therefore, based on the growth rate hypothesis (GRH), stating that plants with greater metabolic and growth rates require more P than N content to ensure rapid protein(N-rich)synthesis supported by P-rich rRNA. We hypothesized that TSD and TDMC will correlate negatively with increasing rRNA(P)investments relative to protein(N)investments.

    We compiled a large comprehensive dataset of paired twig N and P data for woody species to test whether this hypothesis is supported by the data. Specifically, we focused on three questions. (1) Do twig N and P concentrations and N:P ratios vary within and across functional groups and biomes? (2) Is the numerical value of the twig N versus P scaling exponent uniform across different functional groups and biomes? And(3),if the scaling exponent is uniform,how is it related to the predictions of the GRH? We also examined whether local climate and soil nutrient conditions influenced the twig N and P scaling relationship.

    2. Materials and methods

    2.1. Data compilation

    A large dataset of pairwise twig N and P concentrations for woody species and their associated twig specific density (TSD) and twig dry matter content (TDMC) compiled for the goals of this study. The data were compiled from a broad range of peer-reviewed publications from 1980 to 2021 using the keywords“twig”,“nitrogen”and“phosphorus”in the Web of Science(http://apps.webofknowledge.com), Google Scholar(http://scholar.google.com), and National Knowledge Infrastructure Database (http://cnki.net). All of the data were taken directly from the tables, figures, appendices, and the main text of the original papers.When data were only presented graphically, the data were extracted using GetData Graph Digitizer 2.26(http://getdata-graph-digitizer.com).We gathered data only from publications reporting the paired N and P concentrations of twigs with species name and detailed site information,and excluded data from fertilized or polluted sites, or plants grown in greenhouses.The final dataset includes 2,038 paired observations of twig N and P from a total of 536 woody species spanning 75 sites worldwide(Fig. 1; A list of the literature sources is provided in the supplementary material).

    2.2. Statistical analysis

    Fig. 1. The distribution of the 75 sampling sites used in this study.

    After a preliminary analysis of distributions, the N and P concentration data were log10-transformed to assure normality, and subsequently subjected to reduced major axis (RMA) regression analyses using the‘lmodel2’ function of the R package LMODEL2 (Legendre, 2018) to determine the N versus P scaling exponents for different functional groups and biomes. The species were first sorted into two phylogenetic groups (i.e., angiosperms and gymnosperms) and four life-form groups(i.e.,tree,shrub,evergreen and deciduous species).We then divided the data into three biomes (i.e., tropical 0–25°, temperate 25°–50°, and boreal >50°). The likelihood-ratio test was used to evaluate the heterogeneity of the numerical values of the RMA scaling exponents within the functional groups and biomes.To evaluate whether the GRH predictions regarding P and N requirements for plant growth are consistent with the scaling exponents for twig P than twig N, we evaluated the scaling relationships of twig N and P concentrations in relation to TSD and TDMC using RMA regression.All statistical analyses were conducted in R 3.4.2(R Core Team,2017).

    To determine the numerical values of the N versus P scaling exponents at each site, we analyzed the scaling exponent for each of the 24 local sites with 10 or more samples using RMA regression protocols(Wang et al.,2021b).We also used‘Funnel plot’analyses to evaluate the scaling exponents in relation to the sample size for the same 24 local sites(Palmer, 1999; Wright et al., 2005; Reich et al., 2010; Wang et al.,2020c). We recorded the mean annual temperature (MAT) and mean annual precipitation(MAP),and soil N(STN)and P(STP)concentrations from each site, and examined their influence on variation in scaling exponents. When this information was missing in a paper, we used WorldClim global climatic database (http://www.worldclim.org/) to determine MAT and MAP data with a grid precision of 0.5°×0.5°based on each site's geographical coordinates.Missing STN and STP data were derived from a global harmonized database (http://www.openlan dmap.org/) with a grid precision of 0.5°× 0.5°(WISE30sec; Batjes,2016). A generalized linear model (GLM) was applied to evaluate the relative effects of climate factors(MAT and MAP)and soil nutrients(STN and STP) on the scaling exponents using the ‘glm’ function in the R package STATS(R Core Team,2017).

    3. Results

    3.1. Twig N and P concentrations and their ratios in functional groups and biomes

    Across all observations, the mean values of twig N and P concentrations and N:P ratios were 9.33 mg·g-1, 1.12 mg·g-1and 10.16, respectively.However,N and P concentrations and N:P ratios varied within and across the different functional groups and biomes(Table 1).For example,N concentrations ranged from 7.98 mg·g-1for gymnosperms to 9.68 mg·g-1for shrubs,whereas P concentration ranged from 1.04 mg·g-1for gymnosperms to 1.19 mg·g-1for deciduous species.In a similar manner,N:P ratios ranged from 8.06 for gymnosperms to 11.53 for evergreen species. Among the different biomes, tropical biomes had the highest N and P concentrations and N:P ratios(i.e.,9.94 mg·g-1,1.19 mg·g-1and 13.02, respectively), whereas boreal biomes had the lowest N and P concentrations and N:P ratios (i.e. 8.13 mg·g-1, 1.09 mg·g-1and 7.48,respectively).

    Table 1 The means of twig N and P concentrations and N:P ratios for different functional groups and biomes. n represents the number of samples. Different letters represent significant differences at 0.05 level.

    3.2. Twig N versus P scaling exponent across different functional groups and biomes

    Across all observations (n = 2,038), twig N increased with twig P,with a scaling exponent numerically equal to 0.67(95%CIs,(0.64,0.69),R2= 0.15, p <0.001) (Fig. 2a; Table 2). Likewise, among the major functional groups, all of the numerical values of the scaling exponents were close to 0.67(Fig.2b–d;Table 2), i.e.,the numerical values of the scaling exponent showed no significant differences among the contrasting functional groups. There were also similar twig N versus P scaling relationships among the biomes,with the scaling exponent very near to 0.67,i.e.,α=0.65 for boreal,α= 0.67 for temperate,and α =0.67 for tropical biomes(Fig.3;Table 2).Thus,the scaling exponents for all of the data,within the different plant functional groups,and within each of the biomes were approximately numerically equal to 2/3.

    3.3. Scaling relationships of twig N and P concentrations in relation to TSD and TDMC

    The twig N and P concentrations decreased with TSD,with α=-1.1(n = 671, 95% CIs, (-1.18, -1.03), R2= 0.08, p <0.001) for N versus TSD (Fig. 4a) and α = -1.58 (n = 671, 95% CIs, (-1.70, -1.47), R2=0.08, p <0.001) for P versus TSD (Fig. 4b). Likewise, the twig N and P concentrations also decreased with TDMC, with α = -1.27 (n = 1,524,95% CIs, (-1.33, -1.20), R2= 0.07, p <0.001) for N versus TDMC(Fig.4c)and α=-1.97(n=1,524,95%CIs,(-2.07,-1.48),R2=0.06,p <0.001)for P versus TDMC(Fig.4d).

    3.4. Twig N versus P scaling exponents across local sites

    The numerical values of the twig N versus P scaling exponents statistically differed among 24 local sites, ranging from 0.35 to 1.12(Fig. 5a). A ‘Funnel plot’ analysis of the scaling exponent in relation to the sample size for the 24 local sites showed that these scaling exponents numerically converge to a mean value of 0.66 with increasing sample size(Fig. 5b). The over effect of climate factors (MAT and MAP) and soil nutrients (STN and STP) explained 59.26% of the variation in the numerical values of the N versus P scaling exponents for 24 local sites.When taken separately,climate and soil nutrients accounted for 18.18%and 40.48% of the variation in twig N versus P scaling exponent,respectively.Of the climate and soil factors,MAP and STP accounted for the greater proportions of variation in the N versus P scaling exponent(6.11%and 22.47%,respectively) (Fig.5c).

    4. Discussion

    This study employs a comprehensive world-wide dataset for pairwise twig N and P concentrations of woody species to explore whether a general twig N versus P scaling relationship exists. The analyses presented here reveal that a uniform 0.67 scaling exponent for the twig N versus P scaling relationship exists across different functional groups and biomes. Thus, a general 2/3-power law appears to hold true for twigs.This numerical value is observed to vary among different local sites,but converges onto 0.67 as the sample size of sites increases.

    4.1. Variations in twig N and P concentrations and N:P ratios across functional groups and biomes

    Our results show that the global mean values of twig N and P concentrations and N:P ratios are 9.33 mg·g-1, 1.12 mg·g-1and 10.16,respectively. These values are obviously lower than the global mean values for leaves reported by Tian et al. (2018). This difference can be attributed to the different physiological functions of twigs and leaves(Westoby and Wright, 2003). Twigs primarily function mechanically to support leaves and to provide nutrients and water, whereas leaves are responsible for carbon gain.However,in addition to their other functions twigs are often photosynthetic.

    Fig. 2. Scaling relationships of twig nitrogen (N) and twig phosphorus (P) for all species pooled (a), angiosperm and gymnosperm (b), tree and shrub (c), and evergreen and deciduous (d).

    Table 2 Summary of reduced major axis (RMA) regression results of log-transformed twig N versus P for woody species across different functional groups and biomes (all relations were statistically significant with p <0.001).n,the number of observations, and letters represent significant differences in exponents based on a likelihood ratio test.

    The varied twig N and P concentrations and N:P ratios across functional groups are not surprising given their functional diversity and the diversity of plant nutrient use strategies. For instance, N and P concentrations and N:P ratios are lower in evergreen species than in deciduous species, supporting the notion that slow-growing species have lower N and P concentrations than those of fast-growing species(Güsewell,2004;Wang et al., 2015). Variations in twig N and P concentrations and N:P ratios among biomes are also statistically discernible. Tropical biomes tend to have the highest N and P concentrations and N:P ratios,whereas boreal biomes tend to have the lowest N and P concentrations and N:P ratios. Our results support the notion that plants growing in warm conditions may have higher N and P concentrations perhaps to decrease nutrient limitation and to increase water use efficiency(Palmroth et al.,2013;Wang et al.,2020b).

    4.2. A constant twig N versus P scaling exponent across different functional groups and biomes

    Fig. 3. Scaling relationships of twig nitrogen (N) and twig phosphorus (P) in different biomes. (a) boreal; (b) temperate; and (c) tropical.

    Fig.4. Scaling relationships of twig specific density(TSD)and twig nitrogen(N)(a),and twig phosphorus(P)(b);twig dry matter content(TDMC)and twig nitrogen(N) (c), and twig phosphorus (P) (d).

    As noted,the numerical value of the scaling exponent governing the twig N versus P scaling relationship is 0.67 across all the woody species examined in this study, and for the different functional groups and the biomes included in our dataset (Figs. 2 and 3; Table 2). These results support the hypothesis that the twig N versus P scaling exponent is conserved across the different functional groups and biomes as a result of structural and biochemical constraints, and evolutionary history(McGroddy et al., 2004; Wright et al., 2004). Structural constraints are relevant to the hierarchical branching networks of vascular plants,where fractal-like networks are posited to maximize resource uptake and minimize energy consumption at the organ level of organization (West et al.,1997).N and P are transported through the vascular plant network in such a manner that the scaling of N to P is constrained or at least profoundly influenced by vascular architecture (Enquist, 2002).Biochemical constraints are also associated with the stoichiometry of nutrient balance within plant organs (Sterner and Elser, 2002; ?gren,2008),i.e.,plants need to maintain a constant internal N and P balance in their organs to maintain growth (Sterner and Elser, 2002). Therefore,both structural and metabolic functional traits have direct effects on twig N versus P scaling exponents regardless of the functional group a plant belongs to or where it grows.Importantly,this result supports the GRH,which posits that plant organs with high growth rates (e.g., twigs and leaves)require relatively more P than N to ensure rapid protein synthesis(Elser et al., 2000, 2003; ?gren, 2004), thereby leading to N versus P scaling exponents with numerical values less than 1.0 (i.e., α <1)(Sterner and Elser,2002).

    Fig. 5. Scaling relationships of twig nitrogen(N)and phosphorus(P)for 24 local sites with more than ten records(a).Relationship between twig N versus P scaling exponents and sample size for 24 local sites(b).The solid and dashed lines denote the mean(0.66)and 95%CI for the scaling exponent.The effects(R2,%)of MAT,MAP, STN, and STP and their interaction on variation in scaling exponent for 24 local sites (c). The red ellipse presents the dominant group of variables. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

    The numerical value of the twig N versus P scaling exponent is statistically indistinguishable from 2/3, which has been also reported for leaves(e.g.,Niklas,2006;Reich et al.,2010).N and P play critical roles in the core metabolic pathways of plants and link the three different primary plant organs into integrated phenotype (Li et al., 2021). For example, N and P are absorbed by roots and transported through the trunk,branches,twigs,leaves,and reproductive organs to maintain all of the multi-functional requirements of the whole plant (Westoby et al.,2002;Craine et al.,2005;Li et al.,2010;Minden and Kleyer,2014;Reich,2014). Furthermore, leaves are important nutrient storage and assimilation organs wherein N and P are required for photosynthesis and respiration (Zhao et al., 2016b). In addition, the twigs of many woody species are photosynthetic (owing to the absence of phellem and the presence of photosynthetic hypodermal cells that intercept sunlight)(Wang et al.,2018;Zhang et al., 2018;Chen et al.,2020). For example,especially in arid ecosystems,many woody species have become leafless and evolved photosynthetic twigs to adapt to water stress(e.g.,Haloxylon ammodendron and Calligonum mongolicum) (Su and Yan, 2006; Wang et al., 2021, 2022). Thus, it is not surprising that the twig and leaf N versus P scaling relationships are similar if not identical.

    In addition,our results indicate that the scaling of twig P versus TSD is governed by a greater scaling exponent than the scaling of twig N versus TSD. Similarly, the scaling exponent of twig P versus TDMC is numerically higher than twig N versus TDMC exponent (Fig. 4). Both of the scaling differences translate into the 2/3 scaling exponent observed for the twig N versus P relationships seen within and among different functional groups and biomes (Table 2). These relationships are consistent with the GHR prediction that plants with high growth rates require more P than N to support protein synthesis.

    4.3. Variant twig N versus P scaling exponent within local sites

    Large variations in the numerical values of the twig N versus P scaling exponent are observed across the 24 local sites examined in this study(Fig.5a).These values are close to 0.67 with sufficient sample sizes,and converge onto the scaling exponent observed for the pooled data,and for the different functional groups or biomes examined in this study.Due to the effects of climate and soil nutrients on the numerical values of leaf and fine root N versus P scaling exponent(Tian et al.,2018;Wang et al.,2019), we speculated that climate (MAT and MAP) and soil nutrients(STN and STP) would play important roles in determining these numerical values across different local sites.As reported for leaves and fine roots(Tian et al.,2018;Wang et al.,2019),STP is observed to be the most important factor explaining the variation in the numerical value of the twig N versus P scaling exponent across different local sites. This result supports the notion that P tissue contents are directly related to soil nutrient concentrations (Sterner and Elser, 2002). Moreover, this result also supports the idea that the positive correlation between twig P and soil P is primarily a consequence of root absorption (Yao et al., 2015).Soil P availability clearly differs across the 24 local sites in our data base,and tends to increase with increasing latitude or from the humid to arid regions.In this context it is useful to note that species growing in tropical forests tend to be more P limited and uptake excess N,thereby leading to higher numerical values of the N vs.P scaling exponent,whereas species growing in boreal habitats tend to be N limited and tend to absorb excess P when soil N availability is deficient,resulting in lower numerical values of the N vs.P scaling exponent.These features may explain the variation of twig N vs.P scaling exponents across the local sites.However,due to the limited local sites,this inference requires more paired twig N and P data from different local sites along with associated soil nutrients to be evaluated.

    5. Conclusion

    Our results show that the twig N versus P scaling relationship is governed by an exponent approximately equal to 0.67 across different functional groups and biomes, supporting the GRH. However, this numerical value differs among different local sites as a function of climatic and soil nutrient.STP is the most important factor explaining differences in the numerical values of twig N versus P scaling exponents. These findings advance our understanding of the whole plant nutrient allocation strategy, and have important implications for predicting plant growth and nutrient cycling in terrestrial ecosystems in response to global environmental changes.

    Funding

    This study was financially supported by the National Science Fund for Excellent Young Scholars (No. 31822010), the National Key Research and Development Program of China (No. 2020YFA0608102), the Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment, China (No. 2019HJ2096001006), National Scientific and Technological Program on Basic Resources Investigation (No.2019FY102002)and the Innovation Base Project of Gansu Province(No.20190323), the Sichuan Science and Technology Program (No.2020YFH0005).

    Availability of data and materials

    Any data that support the findings of this study are included within the article.The list of references for dataset is publicly available and can be accessed in the appendix.

    Authors’contributions

    ZQW conceived the idea and designed the research. ZQW, DCJ and ZQM collected the data, ZQW,JMD,ZQM,and KJN performed the data analysis and contributed to the writing of the paper. All authors gave final approval for publication.

    Declaration of competing interest

    We declare that we have no competing financial and personal relationships with other people or organizations that could have appeared to influence our work reported in this paper.

    Acknowledgements

    We thank the scientists who contributed the valuable data for this study.We also thank the two anonymous referees for their comments to improve this study.

    Appendix A. Supplementary data

    Supplementary data to this article can be found online at https://do i.org/10.1016/j.fecs.2022.100049.

    References?gren, G.I., 2004. The C:N:P stoichiometry of autotrophs-theory and observations. Ecol.Lett. 7, 185–191.

    ?gren, G.I., 2008. Stoichiometry and nutrition of plant growth in natural communities.Annu. Rev. Ecol. Systemat. 39, 153–170.

    Batjes, N.H., 2016. Harmonized soil property values for broad-scale modelling(WISE30sec) with estimates of global soil carbon stocks. Geoderma 269, 61–68.

    Chave,J.,Coomes,D.,Jansen,S.,Lewis,S.L.,Swenson,N.G.,Zanne,A.E.,2009.Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366.

    Chen, X.P., Wang, M.T., Li, M., Sun, J., Lyu, M., Zhong, Q.L., Cheng, D.L., 2020.Convergent nitroge-phosphorus scaling relationships in different plant organs along an elevational gradient. AOB Plants 12 (3), plaa021.

    Core Team,R.,2017.v.3.3.3.R:a Language and Environment for Statistical Computing.R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/.(Accessed 8 August 2019).

    Cornelissen, J.H.C., Lavorel, S., Garnier, E., Diaz, S., Buchmann, N., Gurvich, D.E.,Reich, P.B., Ter Steege, H., Morgan, H.D., van der Heijden, M.G.A., Pausas, J.G.,Poorter,H.,2003.A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380.

    Craine, J.M., Lee, W.G., Bond, W.J., Williams, R.J., Johnson, L.C., 2005. Environmental constraints on a global relationship among leaf and root traits of grasses.Ecology 86,12–19.

    Elser, J.J., Sterner, R.W., Gorokhova, E., Fagan, W.F., Markow, T.A., Cotner, J.B.,Harrison,J.F.,Hobbie,S.E.,Odell,G.M.,Weider,L.J.,2000.Biological stoichiometry from genes to ecosystems. Ecol. Lett. 3, 540–550.

    Elser, J.J., Acharya, K., Kyle, M., Cotner, J.B., Makino, W., Markow, T., Watts, T.,Hobbie, S.E., Fagan, W.F., Schade, J., Hood, J., Sterner, R.W., 2003. Growth ratestoichiometry couplings in diverse biota. Ecol. Lett. 6, 936–943.

    Elser, J.J., Fagan, W.F., Kerkhoff, A.J., Swenson, N.G., Enquist, B.J., 2010. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytol. 186, 593–608.

    Enquist, B.J., 2002. Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems.Tree Physiol. 22, 1045–1064.

    Fujimoto,T.,Kita,K.,Uchiyama,K.,Kuromaru,M.,Akutsu,H.,Oda,K.,2006.Age trends in the genetic parameters of wood density and the relationship with growth rates in hybrid larch (Larix gmelinii var. japonica × L. kaempferi) F1. J. For. Res. 11, 157.

    Ghimire,B.,Riley,W.J.,Koven,C.D.,Kattge,J.,Rogers,A.,Reich,P.B.,Wright,I.J.,2017.A global trait-based approach to estimate leaf nitrogen functional allocation from observations. Ecol. Appl. 27, 1421–1434.

    Guo,Y.P.,Yan,Z.B.,Gheyret,G.,Zhou,G.Y.,Xie,Z.Q.,Tang,Z.Y.,2020.The communitylevel scaling relationship between leaf nitrogen and phosphorus changes with plant growth, climate and nutrient limitation. J. Ecol. 108, 1276–1286.

    Güsewell, S., 2004. N:P ratios in terrestrial plants: variation and functional significance.New Phytol. 164, 243–266.

    Han, W.X., Fang, J.Y., Guo, D.L., Zhang, Y., 2005. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 168,377–385.

    Ishida, A., Nakano, T., Yazaki, K., Matsuki, S., Koike, N., Lauenstein, D.L., Shimizu, M.,Yamashita,N.,2008.Coordination between leaf and stem traits related to leaf carbon gain and hydraulics across 32 drought-tolerant angiosperms. Oecologia 156,193–202.

    Kerkhoff,A.J.,Fagan,W.F.,Elser,J.J.,Enquist,B.J.,2006.Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants.Am.Nat.168,E103–E122.

    Legendre, P., 2018. lmodel2: Model II Regression. R Package v. 1.7-3. https://cran.r-project.org/web/packages/lmodel2/index.html. (Accessed 15 March 2022).

    Li, A., Guo, D.L., Wang, Z.Q., Liu, H.Y., 2010. Nitrogen and phosphorus allocation in leaves,twigs and fine roots across 49 temperate,subtropical and tropical tree species:a hierarchical pattern. Funct. Ecol. 24, 224–232.

    Li, J.L., Chen, X.P., Niklas, K.J., Sun, J., Wang, Z.Y., Zhong, Q.L., Hu, D.D., Cheng, D.L.,2021. A whole-plant economics spectrum including bark functional traits for 59 subtropical woody plant species. J. Ecol. 110, 248–261. https://doi.org/10.1111/1365-2745.13800.

    McGroddy, M.E., Daufresne, T., Hedin, L.O., 2004. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85,2390–2401.

    Minden, V., Kleyer, M., 2014. Internal and external regulation of plant organ stoichiometry. Plant Biol. 16, 897–907.

    Niklas, K.J., 1994. Plant Allometry: the Scaling of Form and Process. University of Chicago Press, Chicago.

    Niklas, K.J., 2006. Plant allometry, leaf nitrogen and phosphorus stoichiometry, and interspecific trends in annual growth rates. Ann. Bot. 97, 155–163.

    Niklas, K.J., Cobb, E.D., 2005. N, P, and C stoichiometry of Eranthis hyemalis (L). Salib.(Ranunculaceae) and the allometry of plant growth. Am. J. Bot. 92, 1263–1268.

    Niklas, K.J., Owens, T., Reich, P.B., Cobb, E.D., 2005. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecol. Lett. 8, 636–642.

    Osada,N.,2006.Crown development in a pioneer tree,Rhus trichocarpa,in relation to the structure and growth of individual branches. New Phytol. 172, 667–678.

    Palmer,A.R.,1999.Detecting publication bias in metaanalyses:a case study of fluctuating asymmetry and sexual selection. Am. Nat. 154, 220–233.

    Palmroth, S., Katul, G.G., Maier, C.A., Ward, E., Manzon, S., Vico, G., 2013. On the complementary relationship between marginal nitrogen and water-use efficiency among Pinus taeda leaves grown under ambient and CO2-riched environments. Ann.Bot. 111, 467–477.

    Poorter, H., Niklas, K.J., Reich, P.B., Oleksyn, J., Poot, P., Mommer, L., 2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50.

    Reich, P.B., 2014. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301.

    Reich, P.B., Oleksyn, J., Wright, I.J., Niklas, K.J., Hedin, L.O., Elser, J.J., 2010. Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major groups and biomes. P. Roy. Soc. B.-Biol. Sci. 277, 877–883.

    Santiago, L.S., Goldstein, G., Meinzer, F.C., Fisher, J.B., Machado, K., Woodruff, D.,Jones, T., 2004. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia 140, 543–550.

    Sardans, J., Pe~nuelas, J., 2015. Trees increase their P:N ratio with size. Global Ecol.Biogeogr. 24, 147–156.

    Sterner, R.W., Elser, J.J., 2002. Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.

    Su, P.X., Yan, Q.D., 2006. Photosynthetic characteristics of C4desert species Haloxylon ammodendron and Calligonum mongolicum under different moisture conditions. Acta Ecol. Sin. 26, 75–82.

    Tian, D., Yan, Z.B., Niklas, K.J., Han, W.X., Kattge, J., Reich, P.B., Luo, Y.K., Chen, Y.H.,Tang, Z.Y., Hu, H.F., Wright, I.J., Schmid, B., Fang, J.Y., 2018. Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent.Natl.Sci.Rev.5,728–739.

    Wang,Z.Q.,Ji,M.F.,Deng,J.M.,Milne,R.I.,Ran,J.Z.,Zhang,Q.,Fan,Z.X.,Zhang,X.W.,Li, J.T., Huang, H., Cheng, D.L., Niklas, K.J., 2015. A theoretical framework for whole-plant carbon assimilation efficiency based on metabolic scaling theory: a test case using Picea seedlings. Tree Physiol. 35, 599–607.

    Wang, Z.Q., Huang, H., Li, X.W., Mao, K.S., Ran, J.Z., Deng, J.M., 2018. Allocation of nitrogen and phosphorus within and between needles, stems and roots of Picea seedlings. Nord. J. Bot. 36, e01952.

    Wang, Z.Q., Yu, K.L., Lv, S.Q., Niklas, K.J., Mipam, T.D., Crowther, T.W., Uma~na, M.N.,Zhao, Q., Huang, H., Reich, P.B., 2019. The scaling of fine root nitrogen versus phosphorus in terrestrial plants: a global synthesis. Funct. Ecol. 33, 2081–2094.

    Wang,Z.Q.,Bu,H.Y.,Wang,M.C.,Huang,H.,Niklas,K.J.,2020a.Allocation strategies for seed nitrogen and phosphorus in an alpine meadow along an altitudinal gradient on the Tibetan Plateau. Front. Plant Sci. 11, 614644.

    Wang, M.C., Zhao, Q., Jiang, D.C., Wang, Z.Q., 2020b. Complete chloroplast genome sequence of Stachys japonica(Labiatae).Mitochondrial DNA B Resour 5,2675–2676.

    Wang,Z.Q.,Lv,S.Q.,Song,H.,Wang,M.C.,Zhao,Q.,Huang,H.,Niklas,K.J.,2020c.Plant type dominates fine-root C:N:P stoichiometry across China: a meta-analysis.J. Biogeogr. 47, 1019–1029.

    Wang, M.C., Gu, Z.J., Fu, Z.X., Jiang, D.C., 2021. High-quality genome assembly of an important biodiesel plant, Euphorbia lathyris L. DNA Res. 28, dsab022.

    Wang, Z.Q., Huang, H., Yao, B.Q., Deng, J.M., Ma, Z.Q., Niklas, K.J., 2021a. Divergent scaling of fine-root nitrogen and phosphorus in different root diameters, orders and functional categories: a meta-analysis. For. Ecol. Manag. 495, 119384.

    Wang, Z.Q., Wang, M.C., Yu, K.L., Hu, H.F., Yang, Y.H., Ciais, P., Ballantyne, A.P.,Niklas, K.J., Huang, H., Yao, B.Q., Wright, S.J., 2021b. Global synthesis for the scaling of soil microbial nitrogen to phosphorus in terrestrial ecosystems. Environ.Res. Lett. 16, 044034.

    Wang,M.C.,Zhang,L.,Tong,S.F.,Jiang,D.C.,Fu,Z.X.,2022.Chromosome-level genome assembly of a xerophytic plant, Haloxylon ammodendron. DNA Res. 29, dsac006.

    West, G.B.,Brown, J.H., Enquist, B.J., 1997. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126.

    Westoby, M., Wright, I.J., 2003. The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia 135, 621–628.

    Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A., Wright, I.J., 2002. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol.Systemat. 33, 125–159.

    Wilson, B.F., 1989. Tree branches as populations of twigs. Can. J. Bot. 67, 434–442.

    Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E.,Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C.,Midgley, J.J., Navas, M., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Poot, P.,Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J.,Villar, R., 2004. The worldwide leaf economics spectrum. Nature 428, 821–827.

    Wright, I.J., Reich, P.B., Cornelissen, J.H.C., Falster, D.S., Garnier, E., Hikosaka, K.,Lamont, B.B., Lee, W., Oleksyn, J., Osada, N., Poorter, H., Villar, R., Warton, D.I.,Westoby, M., 2005. Assessing the generality of global leaf trait relationships. New Phytol. 166, 485–496.

    Xiang, S., Wu, N., Sun, S.C., 2009. Within-twig biomass allocation in subtropical evergreen broad-leaved species along an altitudinal gradient: allometric scaling analysis. Trees (Berl.) 23, 637–647.

    Yan,Z.B.,Li,P.,Chen,Y.H.,Han,W.X.,Fang,J.Y.,2016.Nutrient allocation strategies of woody plants: an approach from the scaling of nitrogen and phosphorus between twig stems and leaves. Sci. Rep. 6, 20099.

    Yang,D.M.,Niklas,K.J.,Xiang,S.,Sun,S.C.,2009.Size-dependent leaf area ratio in plant twigs: implication for leaf size optimization. Ann. Bot. 105, 71–77.

    Yang, X., Tang, Z.Y., Ji, C.J., Liu, H.Y., Ma, W.H., Mohhamot, A., Shi, Z.Y., Sun, W.,Wang,T.,Wang,X.P.,Wu,X.,Yu,S.L.,Yue,M.,Zheng,C.Y.,2014.Scaling of nitrogen and phosphorus across plant organs in shrubland biomes across Northern China.Sci.Rep. 4, 5448.

    Yao, F.Y., Chen, Y.H., Yan, Z.B., Li, P., Han, W.X., Fang, J.Y., 2015. Biogeographic patterns of structural traits and C:N:P stoichiometry of tree twigs in China's forests.PLoS One 10, e0116391.

    Yuan,Z.Y.,Chen,H.Y.H.,Reich,P.B.,2011.Global-scale latitudinal patterns of plant fineroot nitrogen and phosphorus. Nat. Commun. 2, 344.

    Zhang, J.H., He, N.P., Liu, C.C., Xu, L., Yu, Q., Yu, G.R., 2018. Allocation strategies for nitrogen and phosphorus in forest plants. Oikos 127, 1506–1514.

    Zhao,N.,Yu,G.Y.,He,N.P.,Xia,F.C.,Wang,Q.F.,Wang,R.L.,Xu,Z.W.,Jia,Y.L.,2016a.Invariant allometric scaling of nitrogen and phosphorus in leaves, stem, and fine roots of woody plants along an altitudinal gradient. J. Plant Res. 129, 647–657.

    Zhao, Y.T., Ali, A., Yan, E.R., 2016b. The plant economics spectrum is structured by leaf habits and growth forms across subtropical species. Tree Physiol. 37, 173–185.

    Zhao,M.Y.,Luo,Y.K.,Chen,Y.H.,Shen,H.H.,Zhao,X.,Fang,J.Y.,Hu,H.H.,2021.Varied nitrogen versus phosphorus scaling exponents among shrub organs across China.Ecol. Indicat. 121, 107024.

    一进一出抽搐动态| 欧美最新免费一区二区三区 | 女人高潮潮喷娇喘18禁视频| 国产亚洲精品久久久久久毛片| 国产探花极品一区二区| 天堂网av新在线| 亚洲天堂国产精品一区在线| 国内久久婷婷六月综合欲色啪| 欧美另类亚洲清纯唯美| 亚洲人成网站在线播| 欧美3d第一页| 男人和女人高潮做爰伦理| 亚洲五月天丁香| 男女视频在线观看网站免费| 天美传媒精品一区二区| 亚洲av电影在线进入| 亚洲无线在线观看| 午夜福利免费观看在线| 久久精品国产清高在天天线| 久久这里只有精品中国| 中文字幕人成人乱码亚洲影| 亚洲精品日韩av片在线观看 | 久久久久久久午夜电影| 长腿黑丝高跟| 久久久久久国产a免费观看| 亚洲精品美女久久久久99蜜臀| 亚洲国产欧洲综合997久久,| 久久人人精品亚洲av| 淫妇啪啪啪对白视频| 非洲黑人性xxxx精品又粗又长| 无人区码免费观看不卡| 少妇人妻精品综合一区二区 | 亚洲专区中文字幕在线| 精品人妻偷拍中文字幕| 中文字幕av成人在线电影| 日本与韩国留学比较| 3wmmmm亚洲av在线观看| 一a级毛片在线观看| 一进一出好大好爽视频| 亚洲熟妇熟女久久| 叶爱在线成人免费视频播放| 日日干狠狠操夜夜爽| 国产精品久久久久久人妻精品电影| 老鸭窝网址在线观看| 久久精品91无色码中文字幕| 日韩欧美精品免费久久 | 成人无遮挡网站| 久久久久九九精品影院| 一本一本综合久久| x7x7x7水蜜桃| 97超级碰碰碰精品色视频在线观看| 亚洲精品456在线播放app | 2021天堂中文幕一二区在线观| 最好的美女福利视频网| eeuss影院久久| 欧美午夜高清在线| 一二三四社区在线视频社区8| 国产精品爽爽va在线观看网站| 两个人视频免费观看高清| 色精品久久人妻99蜜桃| 嫁个100分男人电影在线观看| 一进一出抽搐动态| 久久久国产成人精品二区| 欧美一级毛片孕妇| 欧美另类亚洲清纯唯美| 国产综合懂色| 9191精品国产免费久久| 日本熟妇午夜| 国产精品亚洲一级av第二区| 一进一出抽搐gif免费好疼| 老熟妇仑乱视频hdxx| 此物有八面人人有两片| 在线视频色国产色| 国产野战对白在线观看| 又粗又爽又猛毛片免费看| 亚洲精品在线观看二区| 伊人久久大香线蕉亚洲五| 欧美+亚洲+日韩+国产| 国产av在哪里看| 日韩 欧美 亚洲 中文字幕| 搡女人真爽免费视频火全软件 | 国产成人av教育| 国产伦人伦偷精品视频| 久久久久久大精品| 我要搜黄色片| 女人十人毛片免费观看3o分钟| 日韩高清综合在线| 18禁黄网站禁片午夜丰满| 久久草成人影院| 午夜精品一区二区三区免费看| 午夜日韩欧美国产| 内射极品少妇av片p| 日本黄色视频三级网站网址| 国产高清视频在线播放一区| 精品国产亚洲在线| 国产爱豆传媒在线观看| 亚洲成人精品中文字幕电影| 久久国产乱子伦精品免费另类| 免费观看人在逋| 免费搜索国产男女视频| 美女cb高潮喷水在线观看| 51国产日韩欧美| 亚洲av电影不卡..在线观看| 久久久久精品国产欧美久久久| 国产精品一区二区免费欧美| 看片在线看免费视频| 婷婷亚洲欧美| 在线观看免费视频日本深夜| 大型黄色视频在线免费观看| 欧美日韩综合久久久久久 | 亚洲精品成人久久久久久| 午夜a级毛片| 一二三四社区在线视频社区8| 亚洲精品国产精品久久久不卡| 香蕉丝袜av| 在线观看午夜福利视频| 亚洲av免费高清在线观看| 国产成人aa在线观看| 免费看日本二区| 久久久久精品国产欧美久久久| 午夜视频国产福利| 欧美激情久久久久久爽电影| 动漫黄色视频在线观看| 91av网一区二区| 88av欧美| 性色av乱码一区二区三区2| 国产成人影院久久av| 成人性生交大片免费视频hd| 亚洲成a人片在线一区二区| 日本在线视频免费播放| 午夜视频国产福利| 欧美精品啪啪一区二区三区| 中文亚洲av片在线观看爽| av天堂在线播放| 日韩欧美精品v在线| 久久婷婷人人爽人人干人人爱| 国产一区二区在线av高清观看| 亚洲性夜色夜夜综合| 欧美在线一区亚洲| 成年人黄色毛片网站| 久9热在线精品视频| 精品午夜福利视频在线观看一区| 男女那种视频在线观看| 熟妇人妻久久中文字幕3abv| 亚洲国产高清在线一区二区三| 精品人妻偷拍中文字幕| 亚洲欧美日韩无卡精品| 搡女人真爽免费视频火全软件 | 91久久精品电影网| 亚洲自拍偷在线| 丰满人妻一区二区三区视频av | 麻豆国产av国片精品| 精品久久久久久成人av| 国产激情偷乱视频一区二区| 白带黄色成豆腐渣| 1000部很黄的大片| 好男人电影高清在线观看| 少妇丰满av| 亚洲熟妇中文字幕五十中出| 欧美一区二区国产精品久久精品| 国产亚洲精品久久久com| 成人av在线播放网站| 欧美成人免费av一区二区三区| 欧美最黄视频在线播放免费| 少妇熟女aⅴ在线视频| 动漫黄色视频在线观看| 久久国产乱子伦精品免费另类| 少妇的逼好多水| 日韩av在线大香蕉| 美女 人体艺术 gogo| 成人18禁在线播放| 国产午夜精品论理片| 亚洲国产高清在线一区二区三| 欧美bdsm另类| 淫秽高清视频在线观看| 麻豆一二三区av精品| 亚洲人成网站高清观看| 国产熟女xx| 国产一级毛片七仙女欲春2| 久久人人精品亚洲av| 18禁国产床啪视频网站| 九色成人免费人妻av| 亚洲精品影视一区二区三区av| 黄色片一级片一级黄色片| 色尼玛亚洲综合影院| 中文字幕久久专区| 亚洲国产精品合色在线| 日本免费一区二区三区高清不卡| 亚洲片人在线观看| 我要搜黄色片| 很黄的视频免费| 日本一本二区三区精品| 久久久久国产精品人妻aⅴ院| 男人舔奶头视频| 国产免费av片在线观看野外av| 黄色视频,在线免费观看| 国产欧美日韩一区二区精品| 日本在线视频免费播放| 伊人久久精品亚洲午夜| 亚洲专区中文字幕在线| 黄片小视频在线播放| 91在线精品国自产拍蜜月 | 熟女电影av网| 中文字幕人成人乱码亚洲影| 乱人视频在线观看| a在线观看视频网站| 精品久久久久久成人av| 18+在线观看网站| 人妻夜夜爽99麻豆av| 一进一出好大好爽视频| 国产精品精品国产色婷婷| 欧美色视频一区免费| av黄色大香蕉| 白带黄色成豆腐渣| 亚洲国产精品sss在线观看| 噜噜噜噜噜久久久久久91| av视频在线观看入口| 国产单亲对白刺激| 中文资源天堂在线| 伊人久久大香线蕉亚洲五| 免费av毛片视频| 亚洲av第一区精品v没综合| 日本撒尿小便嘘嘘汇集6| 精品国内亚洲2022精品成人| 日本成人三级电影网站| 国产男靠女视频免费网站| 天堂√8在线中文| 久久九九热精品免费| svipshipincom国产片| 欧美不卡视频在线免费观看| 嫩草影视91久久| 亚洲18禁久久av| 香蕉丝袜av| 精品无人区乱码1区二区| 一级毛片女人18水好多| 在线观看66精品国产| 国内揄拍国产精品人妻在线| 我要搜黄色片| 97超级碰碰碰精品色视频在线观看| 亚洲av成人精品一区久久| 久久精品国产亚洲av涩爱 | 好男人在线观看高清免费视频| 两个人看的免费小视频| 欧美日韩精品网址| 久久久久亚洲av毛片大全| 色综合亚洲欧美另类图片| 日日干狠狠操夜夜爽| 国产亚洲欧美98| 久久久久免费精品人妻一区二区| 999久久久精品免费观看国产| 国产精品久久久久久精品电影| 精品国产三级普通话版| 哪里可以看免费的av片| 欧美一区二区国产精品久久精品| 俺也久久电影网| 欧美大码av| 一区二区三区激情视频| 久久久成人免费电影| 亚洲黑人精品在线| 亚洲一区高清亚洲精品| 成人精品一区二区免费| 日韩欧美 国产精品| 香蕉av资源在线| 亚洲精华国产精华精| 内地一区二区视频在线| 日本熟妇午夜| av国产免费在线观看| 国内毛片毛片毛片毛片毛片| 国产成人av教育| 可以在线观看毛片的网站| 熟女电影av网| 亚洲,欧美精品.| 99riav亚洲国产免费| 天堂影院成人在线观看| h日本视频在线播放| 久久久成人免费电影| 色精品久久人妻99蜜桃| 法律面前人人平等表现在哪些方面| 天天一区二区日本电影三级| 欧美在线黄色| 偷拍熟女少妇极品色| 性欧美人与动物交配| 在线播放国产精品三级| 精品久久久久久成人av| 久久天躁狠狠躁夜夜2o2o| 一区福利在线观看| 亚洲精品亚洲一区二区| 亚洲国产欧美网| 精品99又大又爽又粗少妇毛片 | 国产伦在线观看视频一区| 欧美三级亚洲精品| 欧美午夜高清在线| 午夜免费激情av| 法律面前人人平等表现在哪些方面| 99久久九九国产精品国产免费| 国内揄拍国产精品人妻在线| 日韩av在线大香蕉| 精品午夜福利视频在线观看一区| 岛国在线观看网站| 久久99热这里只有精品18| 最后的刺客免费高清国语| 精品人妻一区二区三区麻豆 | 午夜久久久久精精品| 一级黄色大片毛片| 欧美午夜高清在线| 国产亚洲精品久久久com| 国产av一区在线观看免费| 在线观看66精品国产| 国产蜜桃级精品一区二区三区| 午夜老司机福利剧场| 亚洲不卡免费看| 欧美+日韩+精品| 午夜a级毛片| 一区二区三区免费毛片| 色尼玛亚洲综合影院| 亚洲国产精品合色在线| 五月伊人婷婷丁香| 中亚洲国语对白在线视频| 国产在视频线在精品| 成人特级黄色片久久久久久久| 岛国视频午夜一区免费看| 午夜老司机福利剧场| 99热这里只有是精品50| 老熟妇仑乱视频hdxx| 国产精品精品国产色婷婷| 99久国产av精品| 国产精品99久久99久久久不卡| 一进一出好大好爽视频| 嫁个100分男人电影在线观看| 国产成人a区在线观看| 日本免费一区二区三区高清不卡| 嫩草影院精品99| 亚洲第一电影网av| 精品福利观看| av欧美777| 99riav亚洲国产免费| 天堂网av新在线| 精品电影一区二区在线| 叶爱在线成人免费视频播放| 欧美一级毛片孕妇| 在线a可以看的网站| 亚洲熟妇中文字幕五十中出| 麻豆成人午夜福利视频| 在线观看舔阴道视频| 日韩 欧美 亚洲 中文字幕| 久久久久国内视频| 淫妇啪啪啪对白视频| 国产爱豆传媒在线观看| 国产精品精品国产色婷婷| 亚洲欧美精品综合久久99| 变态另类成人亚洲欧美熟女| 黄片小视频在线播放| 一本久久中文字幕| 美女被艹到高潮喷水动态| 亚洲国产精品999在线| 18禁裸乳无遮挡免费网站照片| 窝窝影院91人妻| 日韩成人在线观看一区二区三区| 男女视频在线观看网站免费| 国产色婷婷99| 国产男靠女视频免费网站| 嫩草影院入口| 看片在线看免费视频| 精华霜和精华液先用哪个| 久久性视频一级片| 国产成+人综合+亚洲专区| 五月玫瑰六月丁香| 首页视频小说图片口味搜索| 小说图片视频综合网站| 色综合站精品国产| 亚洲欧美精品综合久久99| 午夜福利在线观看免费完整高清在 | 丰满的人妻完整版| 三级毛片av免费| 免费av不卡在线播放| 欧美一区二区国产精品久久精品| 国产成人啪精品午夜网站| 欧美一区二区精品小视频在线| 免费观看人在逋| 亚洲欧美日韩高清在线视频| 精品人妻1区二区| 日韩高清综合在线| 韩国av一区二区三区四区| 搡女人真爽免费视频火全软件 | 午夜福利在线观看吧| 精品久久久久久久久久免费视频| 亚洲成人精品中文字幕电影| 青草久久国产| 国产精品99久久久久久久久| 国产主播在线观看一区二区| 麻豆成人午夜福利视频| 一个人看视频在线观看www免费 | 欧美国产日韩亚洲一区| 日本免费一区二区三区高清不卡| 两个人视频免费观看高清| 免费一级毛片在线播放高清视频| 精品国产三级普通话版| 国产美女午夜福利| h日本视频在线播放| 久久久久久大精品| 国产精品永久免费网站| 国产精品影院久久| 欧美成人一区二区免费高清观看| 精品久久久久久久人妻蜜臀av| 国内揄拍国产精品人妻在线| 免费在线观看成人毛片| 在线a可以看的网站| 亚洲性夜色夜夜综合| 男女那种视频在线观看| 无遮挡黄片免费观看| 禁无遮挡网站| 国产精品乱码一区二三区的特点| 中文字幕人妻丝袜一区二区| 99久国产av精品| 成人国产一区最新在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲一区二区三区不卡视频| 日韩欧美三级三区| 国产v大片淫在线免费观看| 国产爱豆传媒在线观看| 亚洲精品久久国产高清桃花| 中文资源天堂在线| 亚洲精品色激情综合| 色av中文字幕| 亚洲 国产 在线| 男插女下体视频免费在线播放| 欧美高清成人免费视频www| 亚洲乱码一区二区免费版| 久久久色成人| 网址你懂的国产日韩在线| 久久久久久大精品| 九色国产91popny在线| 日韩 欧美 亚洲 中文字幕| 欧美日韩福利视频一区二区| av福利片在线观看| 中文字幕熟女人妻在线| 制服人妻中文乱码| 亚洲精品成人久久久久久| 成人av在线播放网站| 国产乱人伦免费视频| 亚洲性夜色夜夜综合| 夜夜躁狠狠躁天天躁| 美女大奶头视频| 操出白浆在线播放| 熟女电影av网| 色综合婷婷激情| www.www免费av| 亚洲一区二区三区不卡视频| 高清日韩中文字幕在线| 99热6这里只有精品| 亚洲国产高清在线一区二区三| 亚洲七黄色美女视频| 中文字幕av在线有码专区| 天堂动漫精品| 亚洲精品乱码久久久v下载方式 | 日本 欧美在线| 国产亚洲精品av在线| 亚洲av成人av| 欧美国产日韩亚洲一区| 亚洲国产精品sss在线观看| 午夜精品久久久久久毛片777| 免费看光身美女| 19禁男女啪啪无遮挡网站| 国产精品久久电影中文字幕| 无遮挡黄片免费观看| 一进一出抽搐动态| 国产视频一区二区在线看| 91在线精品国自产拍蜜月 | 九色成人免费人妻av| 亚洲国产精品久久男人天堂| av天堂在线播放| 在线观看日韩欧美| 麻豆成人av在线观看| 国产精品久久久久久人妻精品电影| 国产成+人综合+亚洲专区| 亚洲av日韩精品久久久久久密| 国产精品一区二区免费欧美| 久久亚洲精品不卡| 99久久精品国产亚洲精品| 我的老师免费观看完整版| 中亚洲国语对白在线视频| 国内精品一区二区在线观看| 琪琪午夜伦伦电影理论片6080| 国产成人a区在线观看| 久久久成人免费电影| 欧美日韩亚洲国产一区二区在线观看| 成人国产一区最新在线观看| 好男人在线观看高清免费视频| 一级黄色大片毛片| av视频在线观看入口| 在线观看舔阴道视频| 有码 亚洲区| 夜夜躁狠狠躁天天躁| 午夜a级毛片| 国产v大片淫在线免费观看| 国产野战对白在线观看| 亚洲人成电影免费在线| 不卡一级毛片| 男女视频在线观看网站免费| 无限看片的www在线观看| 90打野战视频偷拍视频| 尤物成人国产欧美一区二区三区| 3wmmmm亚洲av在线观看| 99久久精品国产亚洲精品| 一进一出抽搐gif免费好疼| 久久午夜亚洲精品久久| 午夜两性在线视频| 久久久久久久精品吃奶| 搞女人的毛片| 超碰av人人做人人爽久久 | 男人舔奶头视频| 熟女人妻精品中文字幕| 不卡一级毛片| 成年人黄色毛片网站| 夜夜看夜夜爽夜夜摸| 18美女黄网站色大片免费观看| 成人高潮视频无遮挡免费网站| 欧美日韩中文字幕国产精品一区二区三区| 男女那种视频在线观看| 久久精品国产亚洲av香蕉五月| 欧美中文日本在线观看视频| 村上凉子中文字幕在线| 亚洲av免费高清在线观看| 欧美日韩综合久久久久久 | 精品一区二区三区av网在线观看| 男女做爰动态图高潮gif福利片| 亚洲男人的天堂狠狠| eeuss影院久久| 精品日产1卡2卡| eeuss影院久久| 国产v大片淫在线免费观看| 美女大奶头视频| 99久久综合精品五月天人人| www日本黄色视频网| 亚洲一区高清亚洲精品| 午夜免费成人在线视频| 毛片女人毛片| 精品一区二区三区视频在线观看免费| 美女cb高潮喷水在线观看| 亚洲电影在线观看av| 成年人黄色毛片网站| 女同久久另类99精品国产91| 日韩高清综合在线| 熟女电影av网| 十八禁人妻一区二区| 在线观看免费视频日本深夜| 最后的刺客免费高清国语| av福利片在线观看| 中亚洲国语对白在线视频| 色老头精品视频在线观看| 69av精品久久久久久| 免费av不卡在线播放| 久久久久国内视频| 亚洲专区国产一区二区| 18禁裸乳无遮挡免费网站照片| 在线a可以看的网站| www.www免费av| 夜夜看夜夜爽夜夜摸| 桃红色精品国产亚洲av| 精品一区二区三区视频在线观看免费| 午夜精品在线福利| 12—13女人毛片做爰片一| 精品熟女少妇八av免费久了| 久久久久久九九精品二区国产| 亚洲成人久久爱视频| 97碰自拍视频| 国产亚洲欧美98| 一级a爱片免费观看的视频| 国产69精品久久久久777片| 日韩精品青青久久久久久| 无遮挡黄片免费观看| 在线看三级毛片| 日韩免费av在线播放| 久久久国产成人免费| 欧美一区二区精品小视频在线| 操出白浆在线播放| 嫩草影视91久久| 日本撒尿小便嘘嘘汇集6| 最好的美女福利视频网| 欧美色欧美亚洲另类二区| av天堂在线播放| 成年免费大片在线观看| 91av网一区二区| 欧美成人免费av一区二区三区| 国产主播在线观看一区二区| 99久久成人亚洲精品观看| 亚洲,欧美精品.| 99精品在免费线老司机午夜| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕高清在线视频| 超碰av人人做人人爽久久 | 国产一区在线观看成人免费| 亚洲久久久久久中文字幕| www.色视频.com| 亚洲人成网站高清观看| 色综合站精品国产| netflix在线观看网站| 一个人免费在线观看电影| 日韩精品中文字幕看吧| 久久天躁狠狠躁夜夜2o2o| 亚洲一区二区三区色噜噜| 精品无人区乱码1区二区| 国产野战对白在线观看| 熟女少妇亚洲综合色aaa.| 黄片小视频在线播放| 可以在线观看毛片的网站| av在线天堂中文字幕| 手机成人av网站| 最后的刺客免费高清国语| 每晚都被弄得嗷嗷叫到高潮| 欧美色欧美亚洲另类二区| 国产一区在线观看成人免费| 精品99又大又爽又粗少妇毛片 | 日日摸夜夜添夜夜添小说| 国内毛片毛片毛片毛片毛片|