• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Emerging Negative Warming Impacts on Tibetan Crop Yield

    2022-10-18 12:29:22TsehoeDorjiShilongPiaoXuhuiWangChuangZhaoBaohuaLiuAnpingChenShipingWangTaoWang
    Engineering 2022年7期

    Tsehoe Dorji, Shilong Piao,,*, Xuhui Wang, Chuang Zhao, Baohua Liu,Anping Chen, Shiping Wang, Tao Wang

    a Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China

    b Center for Excellence in Tibetan Plateau Earth Science, Chinese Academy of Sciences, Beijing 100085, China

    c Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China

    d Department of Biology, Colorado State University, Fort Collins, CO 80523, USA

    Keywords:Tibet Warming Crop yield Barley Negative warming impacts

    ABSTRACT Preserving Tibet’s unique history and cultural heritage relies on the sustainability of the Tibetan croplands, which are characterized by highland barley, the only cereal crop cultivated over 4000 m above sea level.Yet it is unknown how these croplands will respond to climate change.Here,using yield statistics from 1985 to 2015, we found that the impact of temperature anomalies on the Tibetan crop yield shifted from nonsignificant(P >0.10)in the 1980s and 1990s to significantly negative(P <0.05)in recent years. Meanwhile, the apparent sensitivity of the crop yield to temperature anomalies almost doubled,from (-0.13 ± 0.20) to (-0.22 ± 0.14) t·ha-1·°C-1. The emerging negative impacts of higher temperatures suggest an increasing vulnerability of Tibetan croplands to warmer climate.With global warming scenarios of+1.5 or+2.0°C above the pre-industry level,the temperature sensitivities of crop yield may further increase to (-0.33 ± 0.10) and (-0.51 ± 0.18) t·ha-1·°C-1, respectively, making the crops 2-3 times more vulnerable to warmer temperatures than they are today.

    1. Introduction

    As the third pole of our planet, the Tibetan Plateau in China is the highest and most extensive alpine region in the world [1]. It is also a hotspot of climate change,with an observed warming rate(Fig. 1(c)) twice that of the global average (0.25-0.27 °C per ten years) [2]. Its exposure to high levels of solar radiation distinguishes the Tibetan Plateau from other high-latitude regions with a similarly cold climate.The plateau is home to a population of three million people, half of which live on agriculture [3]. The cropping system across Tibet is also quite unique.The traditional staple food of Tibetan people is highland barley (Hordeum vulgare L., or‘‘Qingke” in Chinese), which is the only crop that can grow over 4000 m above sea level; it accounts for about 60% of the cropgrowing area and about 70% of the cereal production within the Tibet Autonomous Region(TAR)in China.The cultivation and production of highland barley also nurture the unique Tibetan culture.A simultaneous increase in yield and population in the TAR during the past three decades (Fig. 1) has significantly intensified both food supply and demand. The tightening demand-supply balance,which is due to the leveling of yield increment in the recent decade(Fig.1),along with growing evidence of globally widespread negative warming impacts on crop yield[4-6],should have raised concerns regarding the impacts of climate change on Tibetan crop yield.However,a lack of evidence on the impacts of rapid warming on Tibet limits the current understanding of Tibetan crop yield response to warmer climate. In this research, using crop yield statistics (1985-2015) and historical climate datasets, we investigate the yield-climate relationships in the TAR and their evolution during the past three decades.

    2. Methods

    2.1. Datasets

    Fig.1. (a)Highland barley in the Tibetan Autonomous Region(TAR)in China;(b)a time series of human population and crop yield in the TAR;and(c)a time series of anomalies in growing-season temperature and precipitation for barley-growing areas of the TAR. GST: growing-season temperature; GSP: growing-season precipitation.

    Time series of growing area and production for cereals in the TAR between 1985 and 2015 were obtained from the Tibet Statistical Yearbook. The dominant crop grow over the TAR is highland barley, which accounts for ~60% of crop growing area and ~70%of cereal production. Although the data for highland barley were only available for 1985-1994, the variability of cereal yield across the TAR generally reflects the variations in highland barley(R2= 0.91, P <0.01; Fig. S1 in Appendix A). Therefore, our analysis on cereal yield variability mostly reflects that of barley yield. The barley-growing area was obtained from the MIRCA2000 dataset[7] (Appendix A Fig. S2). Monthly climate data (including mean/maximum/minimum air temperature,precipitation,and solar radiation)were obtained from 0.1° gridded climate data from the Chinese Academy of Sciences of China Meteorological Forcing Dataset(CMFD)[8].The growing season was defined as May to August,and the growing-season temperature (GST), growing-season precipitation (GSP), and growing-season radiation (GSR) for each grid of barley-growing area were calculated by means of area-weighted averaging of the corresponding monthly data. The annual mean GST,GSP,and GSR across the entire TAR were obtained by weighting each grid cell(0.5°×0.5°grids)according to its cereal growing area [9]. Temperature data for the 1.5 and 2.0 °C above-preindustrial-level warming scenarios were derived from the biascorrected climate change projection by Institut Pierre-Simon Laplace Coupled Model,version 5,coupled with NEMO,low resolution (IPSL-CM5A-LR) [10], in which simulations extend from the pre-industrial period to the end of the 21st century. Temperature changes across the TAR under different warming scenarios were also obtained from IPSL-CM5A-LR.

    2.2. Data analyses

    To analyze the relationship between yield and climate, we first detrended all the time series based on a common approach of first difference (that is, year-to-year changes) [11,12]. The use of first differences minimizes the influence of slowly changing factors such as crop management, technology advances, and rising atmospheric carbon dioxide (CO2). Simple correlations between the detrended time series were used to analyze the relationships between yield and climate during 1985-2015. To minimize the confounding impacts of co-varying variables, we also performed partial correlations between yield and one climatic variable while statistically controlling for the other two variables. Temporary changes in temperature-yield relationships were examined by repeating both the ordinary and partial correlations using a moving time window of 15 years during 1985-2015.The robustness of the time window length choice was tested by repeating the same analyses using different time window lengths ranging from 10 to 17 years (Appendix A Fig. S3). Correlation analyses are generally more reliable with longer time series.We present the results from the 15-year window in the main text because it is the longest time window that ensures that the data points in the first and last time windows are fully independent.The sensitivity of yield to temperature (ST) was obtained from a multiple regression between the yield and the GST, GSP, and GSR. Regressions between STand GST were performed in order to explore possible reasons for the temporal changes in ST.Using the regression model,we also extrapolated STinto different climate change scenarios(1.5 and 2.0°C)with 95%confidence intervals.

    3. Results

    3.1. Crop yield variations are primarily driven by temperature anomalies

    First, we analyzed the interannual variations of the yield (ΔY),growing-season temperature (ΔGST), precipitation (ΔGSP), and incoming solar radiation (ΔGSR) over the past three decades (Fig. 2), obtained through detrending with the first difference(see Section 2) [11,12]. Across the entire period of 1985-2015,large anomalies in yield exhibited a strong anti-phase with those of temperature (Fig. 2(a)). Correlation analyses indicate that ΔY has a significant negative correlation with ΔGST when controlling for ΔGSP and ΔGSR(RY-GST=-0.37,P=0.05;Fig.2(b)).On average,a one-degree warmer temperature anomaly results in a yield loss of 0.11 t·ha-1.On the other hand,ΔY also appears to correlate with ΔGSP and ΔGSR (Figs. 2(e) and (f)); however, these correlations disappear after controlling for other climatic factors in partial correlation analyses(P >0.05;Figs.2(e)and(f)).Together,the results suggest that ΔGST is more important than ΔGSP and ΔGSR in driving variations of yield in the TAR, which is reasonable, as Tibetan croplands are exposed to abundant solar radiation (mean annual solar radiation ~7.2×109J·m-2·a-1)and are widely managed with irrigation [13].

    3.2. Crop yield appears to be more sensitive to warmer temperature

    As yield variations are primarily driven by temperature anomalies(Fig.2),which rose rapidly over the past three decades(Fig.1),the next question is whether the response of crop yield to warmer temperature has changed over the same period. To answer this question, we analyzed the relationship between ΔY and ΔGST(Fig. 3(a)) over 15-year moving time windows. As Fig. 3 shows,the partial correlation between ΔY and ΔGST(RY-GST)was not statistically significant during the late 1980s and 1990s, but became significantly negative during 2000s (RY-GST<-0.60, P <0.05). This change in the correlation coefficient between ΔY and ΔGST is also robust when ΔGSP and ΔGSR are controlled for. Since standard deviations of ΔY and ΔGST do not change significantly across time windows(Appendix A Fig.S4),this increasing negative correlation between ΔY and ΔGST should come from enhanced negative responses of crop yield to warmer temperature. Indeed, multiple regression of ΔY against ΔGST, ΔGSP, and ΔGSR indicates that a 1 °C increase in GST would reduce yield by (0.13 ± 0.20) t·ha-1in the first 15-year time window;however,the yield loss responding to the same amount of GST increase would almost double((-0.22 ± 0.14) t·ha-1) during 2001-2015.

    Fig.2. (a,c,e)Time series and(b,d,f)relationships between first differences of yield and(a,b)GST,(c,d)GSP,and(e,f)GSR in the TAR.Rsimple and Rpartial represent ordinary and partial correlation coefficients, respectively.

    We further performed two additional analyses to assess the robustness of the change in the partial correlation coefficient between ΔY and ΔGST (RY-GST) and the doubling of the apparent STvariations over the past three decades. First, we examined whether data from a few extreme years might have led to the observed changes in RY-GSTand ST. By performing 500-time bootstrapping analyses, we found that RY-GSTrobustly changed from-0.42 ± 0.21 in the first 15-year period to -0.70 ± 0.17 in the last 15-year period. The difference between the RY-GSTof the two periods is significant (P <0.01). Similarly, STsignificantly(P <0.01) increased from (-0.13 ± 0.07) t·ha-1·°C-1during the first 15-year period to (-0.22 ± 0.06) t·ha-1·°C-1in the last 15-year period (Appendix A Fig. S5). Thus, the increasing negative RY-GSTand STare not caused by the data from a few extreme years. Second, we tested whether the observed changes in RY-GSTand STwere artefacts of selected time window lengths.We performed the same moving window analyses with a time window length varying from 10 to 17 years. The results show that, regardless of the time window length, RY-GSTchanges from statistically nonsignificant (P >0.10) in the first time window to significantly negative (RY-GST<-0.68, P <0.05) in the last time window, except for 10-year time windows, in which RY-GSTis marginally significant in the last time window (RY-GST= -0.62,P <0.10). The average increment in STbetween the first and the last time windows across different time window lengths is 100% ± 49%, ranging from 55% (17-year time windows) to 177% (12-year time windows) (Appendix A Fig. S3). Thus, both the increasing negative RY-GSTand the almost doubling of STover the past three decades are robust to the choice of time window length.

    3.3. An alarm from the emerging negative impacts of warming on the TAR

    The magnitude of ST(-2%·°C-1to -4%·°C-1) in the TAR during the past three decades is less than the yield loss of global barley to temperature increase (-9%·oC-1) [12]. However, the emerging negative impacts of warmer temperatures on Tibetan crop yield are particularly alarming, given previous assumptions that crop yield at high latitudes and altitudes may more or less benefit from warmer temperatures [14]. The findings may also imply that the contemporary benefits of warming on crop yield in some wet and cold regions [15] may soon disappear in the near future. Furthermore, the shift of STfrom nonsignificant in the 1980s and 1990s to significantly negative in the 2000s can be associated with the rapid rise in GST(Fig.1(c)).Figs.3(c)and(d)show that RY-GSTis strongly correlated with GST (R = -0.78, P <0.001). This relationship does not vary much (R = -0.58, P = 0.03) when GSP and GSR are statistically controlled for. Although GSP also shows a large increasing trend (3 mm·a-1, P <0.05; Fig. 1(c); insignificant trend of GSR in Appendix A Fig. S6), the changes in GSP and GSR are not significantly correlated with those in RY-GSTin partial correlation analyses (Appendix A Fig. S7).

    Fig.3. Temporary changes in correlation coefficients between first differences of yield and GST,and yield sensitivity to GST in the TAR.(a)Temporary changes in correlation coefficients(Rsimple and Rpartial represent ordinary and partial correlation coefficients, respectively; dashed dots represent 10% significance levels);(b) temporary changes in the GST sensitivity of crop yield (ST represents the sensitivity derived from multiple linear regressions); (c) the relationship between Rpartial and GST; (d) the relationship between ST and GST.

    4. Discussion

    We propose two possible mechanisms that may explain our findings. First, given the exponential relationship between saturated water pressure and temperature [16], the same amount of temperature increase could induce a greater atmospheric water deficit in a warmer climate. Such a greater water vapor pressure deficit(VPD)can reduce stomatal conductance and thus photosynthesis [17], leading to declining crop productivity. Distinguishing direct warming impacts from indirect impacts by modifying the atmospheric water demand is not easy. However, partial correlation analyses between ΔY and variations in the growing-season average maximum daily temperature (ΔTmax) and minimum daily temperature (ΔTmin) showed that the partial correlation between ΔY and ΔTminwas not significant in most recent decades, and the partial correlation coefficients remained relatively stable across the study period(Fig.S8).On the contrary,the partial correlation between ΔY and ΔTmaxwas significant (P <0.05) in the recent decades, and the negative partial correlation between ΔY and ΔTmaxwas found to be strengthening over time(Fig.S8),which explained the observed temporal changes in RY-GST. The more dominant role of daytime temperature (Tmax) in comparison with nighttime temperature (Tmin) in the yield-temperature relationship indicates that temperature impacts on photosynthetic processes, rather than on respiratory processes, are what drive the change in RY-GST, which is consistent with our first hypothesis that warming-induced higher VPD stresses crop productivity in the TAR.

    Second, although the mean GST is rather low in the TAR, summer(July and August)daytime temperatures can still be quite high(>25 °C) (Appendix A Fig. S9). A recent study of the cardinal temperature thresholds indicated that, even for the Tibetan croplands with their relatively lower altitude, the optimum temperature for photosynthesis is still less than 25 °C [18]. This finding indicates that there is significant temperature stress beyond the optimum temperature for barley development [19], which could negatively affect the yield [20]. In fact, summer in Tibet coincides with highland barley’s reproductive growth period,which is known to be the period that is particularly sensitive to heat stress [21-23]. Rising temperatures result in an increase in both the intensity and frequency of hot days, which may lead to stronger yield decline[24-26]. Nonetheless, information on the reproductive growth of Tibetan highland barley is still very limited,which hinders us from narrowing down the exact point stress that is predominantly responsible for the negative warming impacts. Future studies should enhance the monitoring of phenological and growth indicators of Tibetan highland barley,and manipulative warming experiments on different growing periods are encouraged in order to further understand the mechanisms driving the increasing negative yield response to warmer temperatures.

    Deducing from the increasing yield sensitivity to GST under a warmer climate over the past three decades, we expect a stronger negative response of crop yield variations to temperature variations in the even warmer future. By extrapolating the historical relationship between GST and STto projected climate change, we found that STmay change from (-0.19 ± 0.04) t·ha-1·°C-1, that is,(4.3%·°C-1± 0.9%·°C-1) under contemporary climate, to (-0.33 ±0.10) t·ha-1·°C-1(-7.5%·°C-1± 2.3%·°C-1) under the 1.5 °C above pre-industrial levels scenario, and to (-0.51 ± 0.18) t·ha-1·°C-1(-11.6%·°C-1± 4.1%·°C-1) under the 2.0 °C warming scenario(Fig.4). This means that,even if the climate target set by the Paris Agreement(the 1.5°C warming scenario)[27]can be achieved,the sensitivity of Tibetan crop yield to temperature will still increase to almost twice that of the past three decades. Previous studies assuming an unchanged STover time [4,28] may have drastically underestimate future warming impacts on crop yield.With continuous warming, the vulnerability of Tibetan crop yield to the projected more frequent extreme heat events will also increase,putting food security and the unique culture of the Tibetan people in danger.

    5. Conclusions and future perspectives

    To summarize, we found emerging negative responses of crop yield to temperature change in the TAR during the past three decades. The apparent sensitivity of yield to GST approximately doubled. This finding is in contrast to previous studies suggesting weakening impacts of temperature variations on maize yield across the United States[29],and implies that increasing precipitation or atmospheric CO2may not mitigate negative warming impacts, at least in the TAR. Our analyses also call into question the often-used assumption of constant crop yield sensitivity to temperature in predicting future crop yield in response to climate change. Contemporary literature has largely focused on the ‘‘big four” crops; however, our results provide new insights into a crop system that is both biologically and culturally unique. While our understanding of how the unique crop system in the TAR may respond to climate change still contains large uncertainties—particularly when compared with process modeling and other approaches—it provides an additional line of evidence for constraining crop model projections [30]. Our finding highlights the urgency of further experiment and modeling efforts, in order to ensure regional/global food security and the lifestyle of the Tibetan people across the world’s third pole.

    Fig.4. Predicted ST in the TAR under different warming scenarios.The left and right parts represent the historical and predicted future relationships between ST and GST. The grey and red areas represent the 95% confidence intervals for historical and future estimates of ST, respectively. The two black vertical lines represent the scenarios of 1.5 °C and 2.0 °C warming above pre-industrial levels, respectively.

    Acknowledgments

    This work was supported by the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0405) and the National Natural Science Foundation of China project Basic Science Center for Tibetan Plateau Earth System (41988101).

    Authors’ contribution

    Shilong Piao and Xuhui Wang designed the research. Chuang Zhao performed the statistical analyses. Tsechoe Dorji, Chuang Zhao,Shilong Piao,Xuhui Wang,and Baohua Liu drafted the manuscript.All authors contributed to interpretations of the results and discussions of the contents.

    Compliance with ethics guidelines

    Tsechoe Dorji,Shilong Piao,Xuhui Wang,Chuang Zhao,Baohua Liu, Anping Chen, Shiping Wang, and Tao Wang declare that they have no conflict of interest or financial conflicts to disclose.

    Appendix A. Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.eng.2021.01.012.

    成人三级黄色视频| 18禁在线无遮挡免费观看视频| 网址你懂的国产日韩在线| 久久久久性生活片| 亚洲人与动物交配视频| 午夜爱爱视频在线播放| 国产成人影院久久av| 一区二区三区四区激情视频 | 嘟嘟电影网在线观看| 啦啦啦观看免费观看视频高清| 国产av麻豆久久久久久久| 丝袜喷水一区| 久久久久九九精品影院| 听说在线观看完整版免费高清| 国产成年人精品一区二区| 国国产精品蜜臀av免费| 五月玫瑰六月丁香| 国产一区二区在线av高清观看| 最近视频中文字幕2019在线8| 久久6这里有精品| 好男人视频免费观看在线| 精品欧美国产一区二区三| 国产精品嫩草影院av在线观看| 亚洲精品久久国产高清桃花| 99久久精品国产国产毛片| 91精品国产九色| 国产午夜精品论理片| 此物有八面人人有两片| 久久久久久国产a免费观看| 99riav亚洲国产免费| 午夜福利视频1000在线观看| 久久精品国产鲁丝片午夜精品| 国产精品国产高清国产av| 中文字幕av成人在线电影| 91午夜精品亚洲一区二区三区| 美女黄网站色视频| 国产精品人妻久久久影院| 好男人视频免费观看在线| 亚洲美女搞黄在线观看| 人妻制服诱惑在线中文字幕| 18禁黄网站禁片免费观看直播| 中文字幕熟女人妻在线| 两个人视频免费观看高清| 综合色丁香网| 毛片一级片免费看久久久久| 日日干狠狠操夜夜爽| 免费观看人在逋| 99久久无色码亚洲精品果冻| 能在线免费观看的黄片| 欧美成人免费av一区二区三区| 中出人妻视频一区二区| 女的被弄到高潮叫床怎么办| 最近最新中文字幕大全电影3| 在线播放国产精品三级| 日韩大尺度精品在线看网址| 欧美潮喷喷水| 色5月婷婷丁香| 欧美区成人在线视频| 亚洲精品日韩在线中文字幕 | 亚洲婷婷狠狠爱综合网| 久久午夜亚洲精品久久| 国产人妻一区二区三区在| 国产色爽女视频免费观看| 国产老妇女一区| 亚洲美女视频黄频| 久久韩国三级中文字幕| 别揉我奶头 嗯啊视频| 内射极品少妇av片p| 2021天堂中文幕一二区在线观| 深爱激情五月婷婷| 在线免费观看不下载黄p国产| 国产av麻豆久久久久久久| 午夜福利高清视频| 久久久久久大精品| 少妇熟女欧美另类| 麻豆成人av视频| 自拍偷自拍亚洲精品老妇| av在线天堂中文字幕| 久久精品国产亚洲网站| 91精品一卡2卡3卡4卡| 日本五十路高清| 欧美性感艳星| 啦啦啦啦在线视频资源| 亚洲,欧美,日韩| 久久国产乱子免费精品| 两个人视频免费观看高清| 欧美极品一区二区三区四区| 美女脱内裤让男人舔精品视频 | 色视频www国产| 亚洲性久久影院| 国产一区二区三区av在线 | av.在线天堂| 亚洲av免费在线观看| 欧美色视频一区免费| 99热精品在线国产| 日韩一本色道免费dvd| 欧美性猛交黑人性爽| 少妇熟女欧美另类| 欧美激情国产日韩精品一区| 男女做爰动态图高潮gif福利片| 好男人视频免费观看在线| 国产av一区在线观看免费| 在线天堂最新版资源| 97超视频在线观看视频| 成人av在线播放网站| 成人午夜精彩视频在线观看| 日产精品乱码卡一卡2卡三| 免费大片18禁| 中文字幕制服av| 人人妻人人澡人人爽人人夜夜 | 精品不卡国产一区二区三区| 亚洲一级一片aⅴ在线观看| 亚洲婷婷狠狠爱综合网| 国产精品麻豆人妻色哟哟久久 | 人体艺术视频欧美日本| 亚洲av免费在线观看| 国产人妻一区二区三区在| 中文字幕av在线有码专区| 91午夜精品亚洲一区二区三区| 欧美性感艳星| 直男gayav资源| 国产精品久久久久久久电影| 精品久久国产蜜桃| 亚洲成a人片在线一区二区| 亚洲在久久综合| 久久精品久久久久久噜噜老黄 | 在线播放国产精品三级| 日本黄大片高清| 一级毛片电影观看 | 别揉我奶头 嗯啊视频| 亚洲国产高清在线一区二区三| 精品久久国产蜜桃| 干丝袜人妻中文字幕| 看免费成人av毛片| 免费av毛片视频| 国产片特级美女逼逼视频| 小蜜桃在线观看免费完整版高清| 美女大奶头视频| 最近中文字幕高清免费大全6| 在线免费观看不下载黄p国产| 日韩大尺度精品在线看网址| 欧美xxxx黑人xx丫x性爽| 亚洲国产欧美人成| 毛片女人毛片| 久久久久久久久久久丰满| 在线观看免费视频日本深夜| 深夜精品福利| 精品欧美国产一区二区三| 十八禁国产超污无遮挡网站| 白带黄色成豆腐渣| 精品人妻视频免费看| 最近中文字幕高清免费大全6| 中出人妻视频一区二区| 午夜视频国产福利| 中文字幕av成人在线电影| 成年女人永久免费观看视频| 亚洲成人久久爱视频| 青春草视频在线免费观看| 国产高潮美女av| 99热只有精品国产| 最后的刺客免费高清国语| 亚洲人成网站在线播| 亚洲在线观看片| 一级黄色大片毛片| 亚洲精品日韩av片在线观看| 嫩草影院新地址| 老司机福利观看| 国产探花极品一区二区| 日本免费一区二区三区高清不卡| 爱豆传媒免费全集在线观看| 99在线人妻在线中文字幕| 亚洲欧美清纯卡通| 26uuu在线亚洲综合色| 国产黄色小视频在线观看| 国产麻豆成人av免费视频| 一级毛片aaaaaa免费看小| 免费无遮挡裸体视频| 在线观看午夜福利视频| 蜜桃久久精品国产亚洲av| 久久久久久久久久久免费av| 99久久精品热视频| 亚洲精品影视一区二区三区av| 亚洲欧美精品综合久久99| 人人妻人人看人人澡| 精品一区二区三区人妻视频| 久久精品国产清高在天天线| 69av精品久久久久久| 国产黄色视频一区二区在线观看 | 禁无遮挡网站| 日本三级黄在线观看| 精品少妇黑人巨大在线播放 | 成人三级黄色视频| 青青草视频在线视频观看| 国产精品一区www在线观看| 别揉我奶头 嗯啊视频| 亚洲色图av天堂| 26uuu在线亚洲综合色| 免费观看的影片在线观看| 在线播放无遮挡| 丰满的人妻完整版| 韩国av在线不卡| 亚洲成人av在线免费| 久久精品综合一区二区三区| 亚洲图色成人| 国产三级在线视频| 男人的好看免费观看在线视频| 欧美高清成人免费视频www| 国产蜜桃级精品一区二区三区| 国产精品美女特级片免费视频播放器| 亚洲av二区三区四区| 久久久久久国产a免费观看| 亚洲美女搞黄在线观看| 此物有八面人人有两片| 一边摸一边抽搐一进一小说| 亚洲,欧美,日韩| 黑人高潮一二区| 干丝袜人妻中文字幕| 午夜福利在线观看免费完整高清在 | 久久久久久伊人网av| 国产麻豆成人av免费视频| 亚洲av二区三区四区| a级毛片a级免费在线| 国产av一区在线观看免费| 波多野结衣高清无吗| 能在线免费看毛片的网站| 97超碰精品成人国产| 色综合亚洲欧美另类图片| 美女 人体艺术 gogo| 欧美日韩综合久久久久久| 噜噜噜噜噜久久久久久91| 尤物成人国产欧美一区二区三区| 亚洲成人精品中文字幕电影| 国产精品久久久久久精品电影小说 | 99久久人妻综合| 一级av片app| 国产高清视频在线观看网站| 岛国在线免费视频观看| 欧美极品一区二区三区四区| 麻豆成人av视频| 欧美成人免费av一区二区三区| 内射极品少妇av片p| 天堂av国产一区二区熟女人妻| 亚洲中文字幕日韩| 丰满人妻一区二区三区视频av| 国产成人a∨麻豆精品| 亚洲精品456在线播放app| 中国美白少妇内射xxxbb| 自拍偷自拍亚洲精品老妇| 男女边吃奶边做爰视频| 午夜爱爱视频在线播放| 可以在线观看毛片的网站| 日本黄大片高清| 久久久久久国产a免费观看| 精品人妻熟女av久视频| 看片在线看免费视频| 久久久久久九九精品二区国产| 国产一区二区在线av高清观看| 99在线视频只有这里精品首页| 久久久欧美国产精品| 国产亚洲5aaaaa淫片| 亚洲精品影视一区二区三区av| 成人午夜精彩视频在线观看| 黄片无遮挡物在线观看| 毛片一级片免费看久久久久| 内射极品少妇av片p| 亚洲欧洲日产国产| 日韩欧美国产在线观看| 五月伊人婷婷丁香| 韩国av在线不卡| 国内精品美女久久久久久| 免费人成视频x8x8入口观看| 亚洲在久久综合| 欧美一区二区国产精品久久精品| 国产在线精品亚洲第一网站| 久久婷婷人人爽人人干人人爱| 女人被狂操c到高潮| 男的添女的下面高潮视频| 插阴视频在线观看视频| 国产精品.久久久| 久久综合国产亚洲精品| 成人午夜精彩视频在线观看| 亚洲内射少妇av| 观看免费一级毛片| 久久亚洲精品不卡| 99久国产av精品| 亚洲精品日韩在线中文字幕 | 亚洲av二区三区四区| 欧美日韩乱码在线| 亚洲精华国产精华液的使用体验 | 熟妇人妻久久中文字幕3abv| 国产视频首页在线观看| 亚洲三级黄色毛片| 高清日韩中文字幕在线| 亚洲不卡免费看| 国产真实伦视频高清在线观看| 国产精品久久久久久精品电影小说 | 插逼视频在线观看| 欧美激情在线99| 91狼人影院| 国产精品日韩av在线免费观看| 国产亚洲av片在线观看秒播厂 | 少妇高潮的动态图| 中文字幕人妻熟人妻熟丝袜美| 蜜臀久久99精品久久宅男| 久久午夜亚洲精品久久| 九九在线视频观看精品| 午夜福利在线观看吧| 国产精品国产高清国产av| 亚洲av一区综合| 欧美变态另类bdsm刘玥| 99在线人妻在线中文字幕| 真实男女啪啪啪动态图| 日韩欧美一区二区三区在线观看| 性欧美人与动物交配| 午夜福利在线在线| 少妇人妻精品综合一区二区 | 好男人视频免费观看在线| 少妇熟女aⅴ在线视频| 青春草亚洲视频在线观看| 成人午夜精彩视频在线观看| 久久久久久久午夜电影| 国产午夜精品一二区理论片| 国产一区二区亚洲精品在线观看| 成人欧美大片| 久久精品综合一区二区三区| 亚洲人成网站在线观看播放| 一级毛片电影观看 | 久久精品国产亚洲av涩爱 | 黄色日韩在线| 国模一区二区三区四区视频| 精品不卡国产一区二区三区| 99riav亚洲国产免费| 亚洲色图av天堂| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久久成人| 最近视频中文字幕2019在线8| 天堂av国产一区二区熟女人妻| 久久人人爽人人爽人人片va| 啦啦啦韩国在线观看视频| 黑人高潮一二区| 老师上课跳d突然被开到最大视频| 热99在线观看视频| 蜜桃久久精品国产亚洲av| 久久精品国产自在天天线| 一级av片app| 久久人人精品亚洲av| 青春草国产在线视频 | 国产片特级美女逼逼视频| 国产极品精品免费视频能看的| 亚洲精品国产av成人精品| 一级黄色大片毛片| 插阴视频在线观看视频| 亚洲欧美精品自产自拍| 亚洲最大成人手机在线| 国产精品一区二区性色av| 99久国产av精品国产电影| 免费观看在线日韩| 一本一本综合久久| 不卡一级毛片| 成人性生交大片免费视频hd| 此物有八面人人有两片| 人妻系列 视频| 日本五十路高清| 国产视频内射| 亚洲国产精品sss在线观看| 久久久国产成人精品二区| 村上凉子中文字幕在线| 麻豆av噜噜一区二区三区| 最好的美女福利视频网| 日本黄色片子视频| 国产 一区精品| 极品教师在线视频| 久久精品夜夜夜夜夜久久蜜豆| 精品久久久久久成人av| 99久久精品热视频| 国产精品麻豆人妻色哟哟久久 | 久久婷婷人人爽人人干人人爱| 欧洲精品卡2卡3卡4卡5卡区| 丰满的人妻完整版| 丝袜喷水一区| 国产一区二区在线av高清观看| 国产欧美日韩精品一区二区| 亚洲最大成人av| 在线播放无遮挡| 欧美一区二区亚洲| 内射极品少妇av片p| 亚洲七黄色美女视频| 国产精品一区二区三区四区免费观看| 欧美成人一区二区免费高清观看| 亚洲国产高清在线一区二区三| 国产亚洲精品久久久com| 国内精品美女久久久久久| 国产真实乱freesex| 日韩一本色道免费dvd| 少妇熟女欧美另类| 91aial.com中文字幕在线观看| 亚洲精品456在线播放app| 少妇被粗大猛烈的视频| 亚洲国产精品国产精品| 亚洲熟妇中文字幕五十中出| 亚洲人成网站在线观看播放| 观看美女的网站| 不卡视频在线观看欧美| 色播亚洲综合网| 国语自产精品视频在线第100页| 精品久久久久久久末码| 亚洲第一区二区三区不卡| 毛片女人毛片| 亚洲精品亚洲一区二区| 久久久国产成人精品二区| 国产一区二区在线观看日韩| 亚洲天堂国产精品一区在线| 少妇的逼好多水| a级一级毛片免费在线观看| 激情 狠狠 欧美| 国产成人一区二区在线| 免费人成视频x8x8入口观看| 国产精品久久久久久久电影| 国产美女午夜福利| 91aial.com中文字幕在线观看| 精品日产1卡2卡| 一区福利在线观看| 老女人水多毛片| АⅤ资源中文在线天堂| 在线国产一区二区在线| 日本免费a在线| 黄色配什么色好看| 一区二区三区免费毛片| 亚洲成人久久性| 韩国av在线不卡| 哪个播放器可以免费观看大片| 校园春色视频在线观看| 97超视频在线观看视频| 国产在线男女| 嫩草影院新地址| 夫妻性生交免费视频一级片| 亚洲欧美日韩高清专用| 国产av在哪里看| 一卡2卡三卡四卡精品乱码亚洲| 婷婷六月久久综合丁香| 啦啦啦观看免费观看视频高清| 亚洲无线在线观看| 亚洲欧美日韩东京热| 麻豆国产97在线/欧美| 国产探花在线观看一区二区| 中国国产av一级| 成人高潮视频无遮挡免费网站| 夜夜爽天天搞| 悠悠久久av| 久久99热6这里只有精品| av国产免费在线观看| 国产av一区在线观看免费| 国产男人的电影天堂91| 在线播放无遮挡| 99国产精品一区二区蜜桃av| 亚洲国产高清在线一区二区三| 久99久视频精品免费| 2021天堂中文幕一二区在线观| 中文字幕免费在线视频6| 国产精品国产三级国产av玫瑰| 精品国内亚洲2022精品成人| 综合色丁香网| 国产高清不卡午夜福利| videossex国产| 婷婷精品国产亚洲av| 美女内射精品一级片tv| 欧美日韩综合久久久久久| 18禁裸乳无遮挡免费网站照片| 一个人看视频在线观看www免费| 久久综合国产亚洲精品| 国产探花极品一区二区| 搡老妇女老女人老熟妇| 不卡视频在线观看欧美| 国产黄色小视频在线观看| 91精品一卡2卡3卡4卡| a级毛片免费高清观看在线播放| 免费观看精品视频网站| 国产精品一及| 国产在线精品亚洲第一网站| 成人国产麻豆网| 午夜精品国产一区二区电影 | 欧美日韩一区二区视频在线观看视频在线 | 国产69精品久久久久777片| 亚洲精品日韩在线中文字幕 | 天天躁夜夜躁狠狠久久av| 好男人在线观看高清免费视频| 你懂的网址亚洲精品在线观看 | 久久精品夜色国产| 国产爱豆传媒在线观看| av女优亚洲男人天堂| 边亲边吃奶的免费视频| 麻豆成人午夜福利视频| 国产女主播在线喷水免费视频网站 | 日本-黄色视频高清免费观看| 亚洲欧美日韩卡通动漫| 国产精品99久久久久久久久| 综合色丁香网| 亚洲国产高清在线一区二区三| 中文字幕精品亚洲无线码一区| 最新中文字幕久久久久| 亚洲三级黄色毛片| 亚洲七黄色美女视频| 亚洲第一区二区三区不卡| 亚洲成a人片在线一区二区| 亚洲欧美成人综合另类久久久 | 大型黄色视频在线免费观看| 国产精品蜜桃在线观看 | 日本在线视频免费播放| 精品久久久久久久久av| 欧美不卡视频在线免费观看| 午夜爱爱视频在线播放| 日韩精品有码人妻一区| 国内精品久久久久精免费| 在线观看美女被高潮喷水网站| 99久久九九国产精品国产免费| 好男人视频免费观看在线| 亚洲国产高清在线一区二区三| 亚洲欧美清纯卡通| 国产精品综合久久久久久久免费| 国产中年淑女户外野战色| 亚洲精品日韩av片在线观看| 国产麻豆成人av免费视频| 男人舔奶头视频| 国产麻豆成人av免费视频| 亚洲精品乱码久久久久久按摩| 非洲黑人性xxxx精品又粗又长| 2022亚洲国产成人精品| 韩国av在线不卡| 国产一区二区三区av在线 | 色噜噜av男人的天堂激情| 精品久久久久久成人av| 99久久精品热视频| 十八禁国产超污无遮挡网站| 亚洲18禁久久av| 亚洲丝袜综合中文字幕| 欧美一区二区国产精品久久精品| 99久久精品一区二区三区| 丰满乱子伦码专区| 日日摸夜夜添夜夜添av毛片| 日韩强制内射视频| 成人永久免费在线观看视频| 亚洲欧美日韩卡通动漫| 黄色日韩在线| 春色校园在线视频观看| 一区二区三区高清视频在线| 国产精品美女特级片免费视频播放器| 国产 一区精品| 成人综合一区亚洲| 欧美在线一区亚洲| 22中文网久久字幕| 亚洲第一电影网av| 青春草亚洲视频在线观看| 中文亚洲av片在线观看爽| 欧美色欧美亚洲另类二区| 久久中文看片网| 国产免费男女视频| 亚洲国产色片| 亚洲欧美成人综合另类久久久 | 蜜臀久久99精品久久宅男| 老女人水多毛片| 国产黄色小视频在线观看| av在线蜜桃| 午夜精品国产一区二区电影 | 99热这里只有是精品50| 国产黄色小视频在线观看| 悠悠久久av| 亚洲精品乱码久久久v下载方式| a级毛片免费高清观看在线播放| 欧美日韩综合久久久久久| 国产69精品久久久久777片| 国产精品人妻久久久影院| 日本熟妇午夜| 乱系列少妇在线播放| 久久婷婷人人爽人人干人人爱| 国产精品不卡视频一区二区| 美女cb高潮喷水在线观看| 精华霜和精华液先用哪个| 欧美最黄视频在线播放免费| 女人十人毛片免费观看3o分钟| 91午夜精品亚洲一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩乱码在线| 国产精品综合久久久久久久免费| 久久久久久久久久久丰满| 一级毛片久久久久久久久女| 亚洲成人久久性| 久久精品国产鲁丝片午夜精品| 欧美一区二区亚洲| 国产女主播在线喷水免费视频网站 | 女人十人毛片免费观看3o分钟| 91午夜精品亚洲一区二区三区| 国产综合懂色| 亚洲av熟女| 午夜福利在线在线| 午夜精品一区二区三区免费看| 99久久无色码亚洲精品果冻| 最好的美女福利视频网| 青春草视频在线免费观看| 午夜福利在线观看吧| 深夜a级毛片| 亚洲av中文字字幕乱码综合| 久久久久九九精品影院| av国产免费在线观看| 看黄色毛片网站| 亚洲av免费高清在线观看| 国内揄拍国产精品人妻在线| 尾随美女入室| 亚洲欧美中文字幕日韩二区| 草草在线视频免费看| 欧美人与善性xxx| 国产精品一区www在线观看| 国产私拍福利视频在线观看| 九草在线视频观看| 欧美色欧美亚洲另类二区| 少妇的逼好多水|