• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coevolutionary insights between promoters and transcription factors in the plant and animal kingdoms

    2022-10-17 03:27:32JingSongZhangHaiQuanWangJieXiaKunShaShuTaoHeHaoDaiXiaoHuHaoYiWeiZhouQiuWangKeKeDingZhangLeiJuWenWangLuoNanChen
    Zoological Research 2022年5期

    Jing-Song Zhang, Hai-Quan Wang, Jie Xia, Kun Sha, Shu-Tao He, Hao Dai, Xiao-Hu Hao, Yi-Wei Zhou,Qiu Wang, Ke-Ke Ding, Zhang-Lei Ju, Wen Wang, Luo-Nan Chen,0,,*

    1 Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science,Chinese Academy of Sciences, Shanghai 200031, China

    2 Department of General Surgery, Shanghai General Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai 200080,China

    3 College of Information Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China

    4 Naval Healthcare Information Center, Faculty of Military Health Services, Naval Medical University, Shanghai 200433, China

    5 Bioinformatics Core of Excellence Department, GenScript Biotech Corporation, Nanjing, Jiangsu 211110, China

    6 Waigaoqiao Free Trade Zone, Wuxi Biologics, Shanghai 200131, China

    7 Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China

    8 School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China

    9 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming,Yunnan 650223, China

    10 Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China

    11 Guangdong Institute of Intelligence Science and Technology, Zhuhai, Guangdong 519031, China

    ABSTRACT The divergence and continuous evolution of plants and animals contribute to ecological diversity.Promoters and transcription factors (TFs) are key determinants of gene regulation and transcription throughout life. However, the evolutionary trajectories and relationships of promoters and TFs are still poorly understood. Here, we conducted extensive analysis of large-scale multi-omics sequences in 420 animal species and 223 plant species spanning nearly a billion years of evolutionary history. Results showed that promoter GC-content and TF isoelectric points, as features/signatures that accompany long biological evolution, exhibited increasing growth in animal cells but a decreasing trend in plant cells. Furthermore,the evolutionary trajectories of promoter and TF signatures in the animal kingdom provided further evidence that Mammalia as well as Aves evolved directly from the ancestor Reptilia. The strong correlation between promoter and TF signatures indicates that promoters and TFs formed antagonistic coevolution in the animal kingdom, but mutualistic coevolution in the plant kingdom. The distinct coevolutionary patterns potentially drive the plant-animal divergence, divergent evolution and ecological diversity.

    Keywords: Molecular evolution; Coevolution;Promoter; Transcription factor; Plant-animal divergence

    INTRODUCTION

    Promoters, transcription factors (TFs), and their interactions are vital for transcriptional regulation and affect nearly all stages of the cell life cycle (Mirny, 2010). The evolution of promoters and TFs (Thomas & Chiang, 2006) in eukaryotic cells has occurred approximately 1.6-2.1 billion years(Bengtson et al., 2017; Zhu et al., 2016). However, our knowledge concerning the evolutionary trajectories and relationships of promoters and TFs remains limited. In this study, we explored promoter and TF evolution over nearly a billion years of evolutionary history by analyzing their signatures.

    Promoter stability is critical for the initiation of gene transcription. The GC-content (see Materials and Methods) of promoters has a substantial effect on DNA molecular stability and gene activity because the connection between G and C bases (three hydrogen bonds, G≡C) is stronger than that between A and T bases (two hydrogen bonds, A=T), and stacking energy is more favorable for GC pairs than for AT pairs (Yakovchuk et al., 2006). GC-content is variable within a given genome (Furey & Haussler, 2003) and across organisms (Birdsell, 2002), and is well developed in biological evolution (Blanc-Mathieu et al., 2017; Clément et al., 2015;Shen et al., 2020; Su et al., 2011; Tan et al., 2011; Zahn,2015). Therefore, GC-content is a useful signature for exploring the evolution of promoters. In addition to GCcontent, the isoelectric point (pI) of proteins is a crucial physicochemical property and a major biochemical factor(Dika et al., 2015; Liu et al., 2009) affecting the structure and functions of proteins (including TFs). Thus, we explored the evolutionary trajectories and relationships of TFs and their corresponding promoters in an entire phylogeny by assessing the variation in their signatures, i.e., isoelectric points of TFs and GC-content of promoters.

    The benchmark datasets included both genome and proteome sequences (from the AnimalTFDB (Hu et al., 2019),PlantTFDB (Jin et al., 2017), Ensembl (Hunt et al., 2018),EnsemblPlants (Kersey et al., 2018), and UniProt databases(The UniProt Consortium, 2019), see Supplementary Table S1) and covered almost the entire evolutionary history of the plant and animal kingdoms. We performed extensive multiomics sequence analysis of promoter and TF signatures to evaluate their evolutionary trajectories. Results showed that the evolutionary trajectories of promoter and TF signatures shared a strikingly synchronous increase in animal cells but a synchronous decreasing trend in plant cells. These signature trajectories provide additional evidence that both Mammalia and Aves originated directly from Reptilia.

    MATERIALS AND METHODS

    Data acquisition and preprocessing

    The genome and proteome sequence datasets were obtained from several benchmark databases (i.e., AnimalTFDB (Hu et al., 2019), PlantTFDB (Jin et al., 2017), Ensembl (Hunt et al.,2018), EnsemblPlants (Kersey et al., 2018), and UniProt (The UniProt Consortium, 2019)). Promoters are generally located upstream of the transcription start sites (TSSs) and typically contain 1 000-5 000 bases. As 2 000 bases are commonly used as a gene promoter, we selected 2 000 bases as the upstream promoter sequence.

    It is inevitable that information for some sites is ambiguous due to site mutations or limitations of sequencing depth. For example, many sites are labeled N in genome sequences or X in proteome sequences (Malde, 2008). Noise from indeterminate nucleic acids and amino acids was considered in our study to increase accuracy.

    GC-content

    GC-content is generally the percentage of guanine or cytosine in a DNA or RNA molecule (Kudla et al., 2006; ?marda et al.,2014; Smith, 2009). In our study, for a given promoter sequence, GC-content is the sum of the percentages of guanine and cytosine:

    whereNdenotes uncertain sites.

    TF and protein isoelectric points

    Similar to promoter data, the TF and proteome sequences also contain noise. Given protein sequence S and isoelectric point values of 20 amino acids (Supplementary Table S2) at 25 °C, the mean isoelectric point of protein S was calculated as:

    RESULTS

    Promoter and TF/TF-cofactor signatures

    TFs and TF-cofactors play distinct roles in gene expression(Reiter et al., 2017; Thomas & Chiang, 2006). TFs typically bind to transcription factor binding sites (TFBSs) located in the corresponding promoters to open the double DNA strands of a gene and further control the rate of transcription of genetic information from DNA to mRNA. As intermediary proteins, TFcofactors are recruited by TFs to activate RNA polymerase II,thereby modulating the expression of genes. Why do they perform differential functions? The difference in spatial conformation between TF and TF-cofactor molecules is an important factor affecting their functions (Garcia et al., 2019;Frankel & Kim, 1991; Gonzalez, 2016; Liu et al., 2001). The electrical properties of amino acids are crucial physicochemical properties that shape the specific spatial conformation of proteins. Therefore, we estimated the electrical properties of TFs/TF-cofactors (97 animal species)and whole proteomes (74 animal species) in terms of isoelectric point.

    Interestingly, we found that the mean isoelectric points of TFs were significantly higher than those of TF-cofactors at all phylogenetic levels of evolution (Figure 1A, totalP=4.68E-71),and the combined isoelectric points of TFs and TF-cofactors were also significantly higher (totalP=1.04E-18) than those of the corresponding whole proteomes (except for Arthropoda).Based on the total mean isoelectric point (=6.066 at 25 °C) of all whole proteomes, we found that amino acids with higher isoelectric points (>6.066 at 25 °C) tended to be positively charged (alkalinity), whereas those with lower isoelectric points (<6.066 at 25 °C) tended to be negatively charged(acidity) under the same physiological conditions. Thus,TFs/TF-cofactors displayed relatively stronger positive charges compared to the corresponding whole proteomes.DNA exhibits one intrinsic negative charge per base at its sugar-phosphate backbone (Fritz et al., 2002). Therefore,TF/TF-cofactor proteins with high isoelectric points may preferentially access DNA strands.

    We then assessed the GC-content of promoter sequences as well as exon and coding sequences in 249 animal species.Results showed that GC-content was significantly lower in promoter sequences than in exon and coding sequences across the tree of life (Figure 1B), indicating that promoters may interact with TFs more readily. Taken together, the above findings suggest that isoelectric point and GC-content, as signatures, can represent protein family- and DNA sequencespecific physicochemical properties, respectively. Notably,TFs/TF-cofactors with higher isoelectric points are more likely to interact with promoters (TFBSs), especially those with lower GC-content. This is because TFs/TF-cofactors hold relatively stronger positive charges compared to corresponding whole proteomes, while DNA exhibits one intrinsic negative charge per base at its sugar-phosphate backbone. Furthermore,promoters with lower GC-content have lower stacking energy,which is beneficial for TF binding.

    Figure 1 TF Isoelectric points and promoter GC-content as signatures

    Increased evolution of animal promoter and TF signatures

    As signatures, GC-content and isoelectric point can represent DNA sequence and protein family specificity, respectively(Figure 1; Supplementary Table S3). Here, we first investigated the evolutionary trajectories of GC-content in the promoters of 249 animal species (Nematoda to Homo in Ensembl (Hunt et al., 2018)) grouped by the most probable(overall) evolutionary history. The phylogenetic tree is illustrated in Figure 2B using the representative logos of the animal categories. We found that promoter GC-content clearly increased (Figure 2A) in almost all categories (except Aves).Following convention, we use TFs hereafter to refer to TFs and TF-cofactors if not otherwise specified. We next estimated the changes in the isoelectric points of TFs during the same evolutionary process described above and found that isoelectric points showed an overall increasing trend(Figure 2C). In particular, the isoelectric points of mammals exhibited a strong monotonic trend.

    Figure 2 Trajectories and correlations of promoter GC-content and TF isoelectric points in animal evolution

    Figure 2A, C showed a similar trend. Therefore, we explored the relationship between promoter GC-content and TF isoelectric points using a scatter diagram. Results showed a strong positive correlation between promoter GC-content(Figure 2A) and TF isoelectric points (Figure 2C) in animal cells, with a Pearson correlation coefficient (PCC) of 0.8141 andP-value of 0.0007 using two-tailedt-test (Figure 2D).Observation revealed that the points for Aves diverged markedly from the global trajectory in Figure 2A, C. We then analyzed the relationship between promoter GC-content and TF isoelectric points in the Amphibia, Aves, and Mammalia group. The scatter diagram (Figure 2E) showed clear separation of Aves (outlier) from Mammalia and Amphibia.Subsequently, we combined Amphibia, Reptilia, and Mammalia as a hypothetical evolutionary lineage and investigated the relationship between promoter GC-content and TF isoelectric points. Results (Figure 2F) showed that the Reptilia point was close to the fitted line (PCC=0.9084,P=0.0018). Regression analysis of promoter GC-content and TF isoelectric points provided additional evidence that mammals more likely evolved from reptiles than from birds, as reported in previous research (Janes et al., 2010), thus supporting the correlation between the two signatures.

    We further explored the evolutionary trajectories of promoter GC-content and TF isoelectric points in both gene families and genes. Results showed that gene families and major genes exhibited similar evolutionary trends and correlations in promoter and TF signatures at the genome scale(Figure 2G-I; Supplementary Figure S1 and Tables S4, S5).Thus, promoter and TF signatures in animal cells displayed a synchronous increase with strong correlations during evolution.

    Decreased evolution of plant promoter and TF signatures

    We also explored the relationship between promoter and TF signatures in 223 plant species categorized by evolution. The phylogenetic tree of these plant categories is shown in Figure 3C. Due to the absence of gymnosperm data in the benchmark databases, angiosperm species were divided into three sub-groups, i.e., lower, medium, and higher angiosperms, to increase the number of evolutionary categories.

    By tracking the trend of promoter GC-content in plant cells(62 plant species), we unexpectedly found an overall decrease in GC-content (Figure 3A), opposite to the trend found in animal cells. In addition, the TF isoelectric point trends in 161 plant species (Algae to Angiosperm) showed an overall decrease in the isoelectric point curve (Figure 3B), similar to the trend found for promoter GC-content (Figure 3A).Analyzing the scatter diagram (Figure 3D) between promoter GC-content and TF isoelectric points, we found a strong positive correlation (PCC=0.9357,P=0.0061) between all plant categories and an equally strong positive correlation(PCC=0.9357) in the Algae, Pteridophyta, and Angiosperm group, indicating that both Pteridophyta and Bryophyta may evolve directly from Algae rather than Pteridophyta evolves from Bryophyta. The evolution of TFs in gene families(Supplementary Table S6) also showed a similar isoelectric point trajectory at the genome scale (Figure 3F, G). Together,promoter GC-content and TF isoelectric point, as signatures accompanying biological evolution, exhibited a downward trend in plant cells.

    Coevolution between promoters and TFs

    Molecular evolution is a fundamental driver of genetic divergence, ontogenesis, and ongoing trait evolution in species (Cui et al., 2021; Yang et al., 2021). Billions of years of interactions between promoters and TFs have potentially driven their coevolution. Our results showed that paired promoter and TF signatures accompanying evolutionary processes monotonically increased in animal cells but decreased in plant cells, reflecting different evolutionary trajectories of promoters and TFs in the evolution of animals and plants. The strong correlation between promoter and TF signatures suggests that promoters and TFs formed coevolutionary relationships in plant and animal evolution.

    In animal cells (Figure 4A, B), promoter GC-content clearly increased during the evolutionary process. In this case,promoter region strands tend to be harder to unwind and transcribe because: (1) GC pairs contain three hydrogen bonds while AT pairs contain only two bonds; and (2) GC-rich regions typically contribute to the base stacking of adjacent bases and therefore block interactions between promoters and TFs (Yakovchuk et al., 2006). The evolutionary increase in the isoelectric points of TFs suggests that TFs carried stronger positive electrical charges during animal evolution, thus providing more opportunities to trigger interactions with promoters, as DNA molecules exhibit an intrinsic negative charge on their double-helix backbone (Fritz et al., 2002). The opposite charges between TFs and DNA molecules increased their attraction and interactions with each other. Thus,promoters protected double-strand DNA from TF unwinding and transcription by increasing promoter GC-content. In contrast, TFs strengthened their own ability to bind to TFBSs by increasing their positive electrical properties. These findings provide potential evidence for parasitism and mutualism between promoters and TFs. Thus, the selective pressures of their physicochemical properties may have driven an evolutionary arms race between promoters and TFs,namely an antagonistic coevolutionary relationship.

    In contrast to animal cells, promoter GC-content showed an overall decrease in plant cells (Figure 4C, D). This decrease may be beneficial for TF function during transcription.Interestingly, the positive electrical property of TFs was weaker, showing a similar trend as promoter GC-content. The simultaneous weakening of promoter stability and TF activity may benefit both partners, thus retaining symbiotic evolution of molecules in plant cells. Taken together, the altruistic interactions between promoters and TFs resulted in the mutualistic coevolution in plant cells.

    Figure 3 Trajectories and correlations of promoter GC-content and TF isoelectric points in plant evolution

    Overall, promoters and TFs showed an antagonistic coevolutionary relationship induced by syntropic changes in promoter and TF signatures in animal cells, but exhibited a mutualistic coevolutionary relationship due to the altruistic features of their signatures in plant cells.

    DISCUSSION

    Figure 4 Coevolution between promoters and TFs (TF complexes) in plant and animal cells

    Our extensive analysis of multi-omics sequences of animal and plant species revealed several intriguing patterns.Promoter GC-content and TF isoelectric points, as signatures accompanying biological evolution, showed a continuing increase in animal cells but a decreasing trend in plant cells.The evolutionary trajectories of promoter and TF signatures in the animal kingdom provide further evidence that Mammalia as well as Aves evolved directly from a common ancestor in Reptilia. In addition, the strong correlation between promoter and TF signatures suggested that promoters and TFs formed an antagonistic coevolutionary relationship in the animal kingdom, but a mutualistic coevolutionary relationship in the plant kingdom. Molecular adaptation (Guo et al., 2021; Peng et al., 2021) and evolution are fundamental drivers of species genetic divergence, ontogenesis, and trait evolution. Due to the vital roles of promoters and TFs in transcriptional regulation in eukaryotic cells, the distinct evolutionary trajectories and strong correlations in signatures may highlight genetic divergence between animals and plants from their common ancestor. Under natural selection, pervasive antagonistic coevolution may be a critical pattern and important driver of species diversity in the animal kingdom(~7.77 million species (Mora et al., 2011; Strain, 2011))compared to the plant kingdom (~298 000 species (Mora et al., 2011)). These results provide a strong basis for further exploration of plant-animal evolution using conserved patterns(Zhang et al., 2015, 2016, 2020), (co-)mutations (Zhang et al.,2021b), gene regulatory networks (Dai et al., 2020), and network biomarkers (Shi et al., 2021, 2022; Zhang et al.,2021a). This study not only provides insights into the interactions between promoters and TFs, but also advances our understanding of plant-animal divergence, divergent evolution and ecological diversity.

    DATA AVAILABILITY

    The raw sequencing data reported in this paper were deposited in the Ensembl (http://asia.ensembl.org/index.html),EnsemblPlants (http://plants.ensembl.org/index.html),AnimalTFDB (http://bioinfo.life.hust.edu.cn/AnimalTFDB#!/),and PlantTFDB (http://planttfdb.cbi.pku.edu.cn/) websites.They are also available from the corresponding author upon reasonable request.

    SUPPLEMENTARY DATA

    Supplementary data to this article can be found online.

    COMPETING INTERESTS

    The authors declare that they have no competing interests.

    AUTHORS’ CONTRIBUTIONS

    L.N.C., W.W., and J.S.Z. designed the study. J.S.Z., H.Q.W.,J.X., and K.S. coded programs and analyzed output data.J.S.Z. designed the phylogenetic tree. S.T.H. provided the original datasets. Y.W.Z. performed the statistical analysis.H.D. designed the isoelectric point experiments. J.S.Z. and X.H.H. designed the evolutionary mechanism figure. Q.W.,Z.L.J., and K.K.D. polished the manuscript. W.W. supervised the experiments. J.S.Z. wrote the manuscript. All authors participated in result interpretation and discussion. All authors read and approved the final version of the manuscript.

    ACKNOWLEDGEMENTS

    We thank Profs. Man-Yuan Long, Aaron Hsueh, Jian-Mei Guo,Tao Zeng, Zhi-Xi Su, and Fu-Yuan Zhang for useful comments on the manuscript. We also thank LetPub for linguistic assistance during the preparation of this manuscript.

    黄色日韩在线| 18禁裸乳无遮挡动漫免费视频 | 国产成人freesex在线| 我的老师免费观看完整版| 搡女人真爽免费视频火全软件| 精品久久国产蜜桃| 在线免费十八禁| 国产亚洲av片在线观看秒播厂| 亚洲性久久影院| 亚洲精品日韩在线中文字幕| 精品久久国产蜜桃| 99热全是精品| 国产伦在线观看视频一区| 婷婷色麻豆天堂久久| 高清av免费在线| 成人无遮挡网站| 精品99又大又爽又粗少妇毛片| 久久亚洲国产成人精品v| 欧美精品人与动牲交sv欧美| 国产成人精品婷婷| 亚洲成人久久爱视频| 中文字幕久久专区| 国内少妇人妻偷人精品xxx网站| 日韩大片免费观看网站| 久久国内精品自在自线图片| 成人综合一区亚洲| 久久久久久九九精品二区国产| 国产欧美另类精品又又久久亚洲欧美| 国产片特级美女逼逼视频| 免费黄频网站在线观看国产| 日本免费在线观看一区| 在线观看三级黄色| 国产黄色视频一区二区在线观看| 亚洲欧美成人精品一区二区| freevideosex欧美| 在线观看美女被高潮喷水网站| 97精品久久久久久久久久精品| 联通29元200g的流量卡| 亚洲精品视频女| 国产精品三级大全| 少妇熟女欧美另类| 人人妻人人爽人人添夜夜欢视频 | 国产精品不卡视频一区二区| 深夜a级毛片| 99九九线精品视频在线观看视频| 国产精品蜜桃在线观看| 国产黄片美女视频| 18禁裸乳无遮挡动漫免费视频 | 国产午夜福利久久久久久| 91aial.com中文字幕在线观看| 成人国产av品久久久| 久久久久久久久久久丰满| 欧美潮喷喷水| 成人高潮视频无遮挡免费网站| 永久网站在线| 久久久午夜欧美精品| 男人舔奶头视频| 精品国产三级普通话版| 亚洲精品国产成人久久av| 18禁在线无遮挡免费观看视频| 国产精品久久久久久精品电影小说 | 日本色播在线视频| 黑人高潮一二区| av在线天堂中文字幕| 免费观看无遮挡的男女| 麻豆成人午夜福利视频| 久热久热在线精品观看| 新久久久久国产一级毛片| 成人综合一区亚洲| 免费看光身美女| 午夜福利高清视频| 少妇被粗大猛烈的视频| 色哟哟·www| 国产免费一区二区三区四区乱码| 高清av免费在线| 亚洲国产欧美在线一区| 日韩人妻高清精品专区| 亚洲伊人久久精品综合| 欧美日韩视频高清一区二区三区二| 禁无遮挡网站| 丝瓜视频免费看黄片| 精品久久久久久久人妻蜜臀av| 精品酒店卫生间| 高清午夜精品一区二区三区| 欧美精品一区二区大全| 只有这里有精品99| 久久久久久久久大av| 青青草视频在线视频观看| av国产久精品久网站免费入址| 免费黄色在线免费观看| 成年av动漫网址| 亚洲av成人精品一区久久| a级一级毛片免费在线观看| 一个人看的www免费观看视频| 男的添女的下面高潮视频| 日韩中字成人| 国产av不卡久久| 免费大片18禁| 亚洲av福利一区| 91久久精品国产一区二区三区| 精品久久久久久电影网| 狂野欧美激情性xxxx在线观看| 亚洲最大成人手机在线| 中文字幕制服av| 亚洲av中文字字幕乱码综合| 欧美日韩精品成人综合77777| 国产成人a∨麻豆精品| 精品人妻一区二区三区麻豆| 亚洲精品自拍成人| 丝袜美腿在线中文| 成人综合一区亚洲| 汤姆久久久久久久影院中文字幕| 久久韩国三级中文字幕| 国产成人精品一,二区| 国产免费一级a男人的天堂| 欧美国产精品一级二级三级 | 久久影院123| 如何舔出高潮| 高清午夜精品一区二区三区| 久久久精品欧美日韩精品| 久久99热6这里只有精品| 内射极品少妇av片p| 少妇被粗大猛烈的视频| 色婷婷久久久亚洲欧美| 亚洲最大成人中文| 一级片'在线观看视频| 99热全是精品| 人妻制服诱惑在线中文字幕| 欧美精品国产亚洲| 欧美日韩亚洲高清精品| 肉色欧美久久久久久久蜜桃 | 日本熟妇午夜| 啦啦啦在线观看免费高清www| 国产美女午夜福利| 免费av不卡在线播放| 亚洲国产欧美在线一区| 啦啦啦啦在线视频资源| 日韩国内少妇激情av| 精品一区二区免费观看| 禁无遮挡网站| 人妻一区二区av| 日韩伦理黄色片| 一本久久精品| 在线精品无人区一区二区三 | 午夜老司机福利剧场| 黄色欧美视频在线观看| 美女主播在线视频| 禁无遮挡网站| 看免费成人av毛片| 国产亚洲午夜精品一区二区久久 | 亚洲av.av天堂| 熟女人妻精品中文字幕| 欧美激情国产日韩精品一区| 黑人高潮一二区| 国产中年淑女户外野战色| 国产探花极品一区二区| 18禁裸乳无遮挡动漫免费视频 | 久久久久精品久久久久真实原创| 亚洲欧美一区二区三区国产| 人人妻人人澡人人爽人人夜夜| 五月玫瑰六月丁香| 国产精品久久久久久久久免| 欧美精品一区二区大全| 亚洲高清免费不卡视频| 日韩一区二区视频免费看| 亚洲精品视频女| 欧美少妇被猛烈插入视频| 日韩人妻高清精品专区| 免费人成在线观看视频色| 在线免费观看不下载黄p国产| 天堂俺去俺来也www色官网| 久久精品国产a三级三级三级| av专区在线播放| 美女脱内裤让男人舔精品视频| 日日啪夜夜撸| 国产成人精品婷婷| 亚洲婷婷狠狠爱综合网| 一级av片app| 18+在线观看网站| 欧美精品人与动牲交sv欧美| 爱豆传媒免费全集在线观看| 在线观看免费高清a一片| 欧美丝袜亚洲另类| 久久久久久久亚洲中文字幕| 国产永久视频网站| 丝袜美腿在线中文| av专区在线播放| av国产免费在线观看| 插阴视频在线观看视频| 尾随美女入室| 大码成人一级视频| 18禁动态无遮挡网站| 日本-黄色视频高清免费观看| 狂野欧美激情性xxxx在线观看| 午夜精品国产一区二区电影 | 久久人人爽人人爽人人片va| 在线亚洲精品国产二区图片欧美 | 一本一本综合久久| 欧美+日韩+精品| 99久久中文字幕三级久久日本| 熟妇人妻不卡中文字幕| av.在线天堂| 日本猛色少妇xxxxx猛交久久| 如何舔出高潮| 91久久精品电影网| 欧美zozozo另类| 成人综合一区亚洲| 国产成人91sexporn| 97精品久久久久久久久久精品| 网址你懂的国产日韩在线| 在线观看三级黄色| 狠狠精品人妻久久久久久综合| 我的老师免费观看完整版| 91在线精品国自产拍蜜月| 日韩视频在线欧美| 亚洲av.av天堂| 国产亚洲一区二区精品| 麻豆久久精品国产亚洲av| 一级毛片久久久久久久久女| 99久久精品一区二区三区| 草草在线视频免费看| 一级黄片播放器| 国产老妇女一区| 欧美一区二区亚洲| 国产淫语在线视频| 免费电影在线观看免费观看| 女的被弄到高潮叫床怎么办| 蜜臀久久99精品久久宅男| 国语对白做爰xxxⅹ性视频网站| 91精品一卡2卡3卡4卡| 国产精品一及| 又爽又黄无遮挡网站| 大话2 男鬼变身卡| 欧美成人一区二区免费高清观看| 久久鲁丝午夜福利片| 高清av免费在线| 亚洲美女搞黄在线观看| 国产黄色免费在线视频| 五月天丁香电影| 欧美激情久久久久久爽电影| 激情 狠狠 欧美| 国产日韩欧美亚洲二区| 少妇丰满av| 99热6这里只有精品| 国产老妇女一区| 视频中文字幕在线观看| 国产淫语在线视频| 日韩三级伦理在线观看| 尤物成人国产欧美一区二区三区| 欧美bdsm另类| 成人鲁丝片一二三区免费| 永久免费av网站大全| 91久久精品国产一区二区成人| 成人午夜精彩视频在线观看| 国产成人免费观看mmmm| 亚洲精品国产av蜜桃| 午夜福利在线在线| 狂野欧美白嫩少妇大欣赏| 国产有黄有色有爽视频| 性插视频无遮挡在线免费观看| 国产精品国产av在线观看| 我的女老师完整版在线观看| 国产精品蜜桃在线观看| 少妇人妻一区二区三区视频| 国产中年淑女户外野战色| 亚洲第一区二区三区不卡| 欧美激情在线99| 人人妻人人看人人澡| 亚洲精品乱久久久久久| 久久久久久久国产电影| 日本午夜av视频| 久久人人爽人人片av| 国产午夜福利久久久久久| 午夜福利视频精品| www.av在线官网国产| 精品一区在线观看国产| 午夜免费观看性视频| 免费电影在线观看免费观看| 又爽又黄a免费视频| 97人妻精品一区二区三区麻豆| av女优亚洲男人天堂| 国产老妇女一区| 69av精品久久久久久| 亚洲性久久影院| 欧美国产精品一级二级三级 | 国产久久久一区二区三区| 免费看a级黄色片| 下体分泌物呈黄色| 纵有疾风起免费观看全集完整版| 最后的刺客免费高清国语| 看免费成人av毛片| av国产精品久久久久影院| 免费av观看视频| 日韩av免费高清视频| 极品少妇高潮喷水抽搐| 亚洲伊人久久精品综合| 亚洲av在线观看美女高潮| 日本午夜av视频| 国产视频内射| 汤姆久久久久久久影院中文字幕| 国产中年淑女户外野战色| 两个人的视频大全免费| 在线 av 中文字幕| 人妻夜夜爽99麻豆av| 能在线免费看毛片的网站| 五月开心婷婷网| 午夜免费鲁丝| 免费看光身美女| 欧美性感艳星| 人人妻人人爽人人添夜夜欢视频 | 国产精品成人在线| 国产精品国产三级国产专区5o| 久久久久久九九精品二区国产| 99久久精品国产国产毛片| 老司机影院毛片| 亚洲国产精品成人综合色| 在线精品无人区一区二区三 | 一级av片app| 国产精品国产三级专区第一集| 亚洲国产色片| 亚洲成色77777| 久久久久久久午夜电影| 天堂俺去俺来也www色官网| 特级一级黄色大片| 日韩精品有码人妻一区| 丝袜脚勾引网站| 99re6热这里在线精品视频| 国产精品久久久久久精品电影| 亚洲欧美一区二区三区国产| 中国美白少妇内射xxxbb| 欧美日韩视频精品一区| videossex国产| 精品久久久噜噜| 亚洲一区二区三区欧美精品 | 网址你懂的国产日韩在线| 国产成年人精品一区二区| 国产中年淑女户外野战色| 欧美激情久久久久久爽电影| 国产成人精品婷婷| 熟女人妻精品中文字幕| 看免费成人av毛片| 精品午夜福利在线看| 狂野欧美白嫩少妇大欣赏| 久久久久久久久久久免费av| 超碰av人人做人人爽久久| 欧美老熟妇乱子伦牲交| 18禁在线播放成人免费| av在线亚洲专区| 亚洲精品国产色婷婷电影| 午夜视频国产福利| 搡老乐熟女国产| 精品久久久久久久人妻蜜臀av| 有码 亚洲区| 一级毛片aaaaaa免费看小| 国产男人的电影天堂91| 中文字幕久久专区| 欧美另类一区| 免费av观看视频| 亚洲最大成人av| 午夜免费男女啪啪视频观看| 亚洲av电影在线观看一区二区三区 | 少妇丰满av| 亚洲精品国产av蜜桃| 99热国产这里只有精品6| 亚洲精品国产av蜜桃| 26uuu在线亚洲综合色| 亚洲国产成人一精品久久久| 搡女人真爽免费视频火全软件| 日韩av在线免费看完整版不卡| 国产 精品1| 久久热精品热| 三级国产精品片| 日产精品乱码卡一卡2卡三| 99热6这里只有精品| 日日啪夜夜撸| 91精品国产九色| 国产一区二区在线观看日韩| 亚洲精品一区蜜桃| 一本色道久久久久久精品综合| 国产亚洲av片在线观看秒播厂| 中国三级夫妇交换| 亚洲三级黄色毛片| 综合色av麻豆| 搞女人的毛片| 国精品久久久久久国模美| 免费大片黄手机在线观看| 免费观看无遮挡的男女| 欧美日韩综合久久久久久| 久久久久九九精品影院| 国产女主播在线喷水免费视频网站| 亚洲国产精品成人久久小说| 男人舔奶头视频| a级毛色黄片| 亚洲成人精品中文字幕电影| 婷婷色av中文字幕| 日韩精品有码人妻一区| 中文在线观看免费www的网站| 一本色道久久久久久精品综合| 午夜精品一区二区三区免费看| 少妇的逼好多水| 赤兔流量卡办理| 中国国产av一级| 久久久久久久久久成人| 国产成人a∨麻豆精品| 三级男女做爰猛烈吃奶摸视频| 亚洲综合精品二区| 交换朋友夫妻互换小说| 久久99热6这里只有精品| 亚洲精品日韩av片在线观看| 久久精品国产亚洲av天美| 久久久久久久久大av| 男女那种视频在线观看| 九色成人免费人妻av| 国产精品国产av在线观看| 超碰av人人做人人爽久久| 国产欧美亚洲国产| 能在线免费看毛片的网站| 国产午夜福利久久久久久| 在线免费十八禁| 寂寞人妻少妇视频99o| 男人和女人高潮做爰伦理| 久久热精品热| 亚洲成人一二三区av| 又大又黄又爽视频免费| 久久久久久久亚洲中文字幕| 激情五月婷婷亚洲| 亚洲国产日韩一区二区| 欧美成人a在线观看| 精品国产一区二区三区久久久樱花 | 久久影院123| 国产探花极品一区二区| av国产久精品久网站免费入址| 成年女人看的毛片在线观看| 国产美女午夜福利| 哪个播放器可以免费观看大片| 亚洲精品乱码久久久v下载方式| 最近最新中文字幕免费大全7| 联通29元200g的流量卡| 欧美少妇被猛烈插入视频| 国产成人一区二区在线| 18禁在线无遮挡免费观看视频| 成年女人看的毛片在线观看| 99热6这里只有精品| 日本色播在线视频| 老师上课跳d突然被开到最大视频| 亚洲精品色激情综合| 国产伦精品一区二区三区四那| av在线天堂中文字幕| 国产毛片a区久久久久| 欧美xxxx黑人xx丫x性爽| 国产免费福利视频在线观看| 国产精品国产三级国产专区5o| 精品久久久久久久久亚洲| 高清毛片免费看| av又黄又爽大尺度在线免费看| 精品久久久久久久人妻蜜臀av| 国产综合精华液| 成人高潮视频无遮挡免费网站| 性色avwww在线观看| 午夜福利网站1000一区二区三区| 麻豆精品久久久久久蜜桃| 五月伊人婷婷丁香| 中文在线观看免费www的网站| 精品久久国产蜜桃| 日韩,欧美,国产一区二区三区| 精品久久久久久久末码| 在线观看人妻少妇| 日日啪夜夜撸| 午夜爱爱视频在线播放| 亚洲欧美精品自产自拍| 一区二区三区免费毛片| 免费大片黄手机在线观看| 欧美一区二区亚洲| kizo精华| 成人特级av手机在线观看| 日韩视频在线欧美| 国产精品人妻久久久影院| 观看免费一级毛片| 草草在线视频免费看| 狠狠精品人妻久久久久久综合| 国产午夜精品久久久久久一区二区三区| 亚洲精品第二区| 日韩av在线免费看完整版不卡| 在线 av 中文字幕| av在线蜜桃| 亚洲最大成人手机在线| 美女脱内裤让男人舔精品视频| 人妻少妇偷人精品九色| av免费观看日本| 国产高清三级在线| 成人漫画全彩无遮挡| 亚洲经典国产精华液单| 在线免费十八禁| 久久国产乱子免费精品| 99热这里只有是精品50| 国产综合精华液| 熟女电影av网| 国产精品一二三区在线看| 免费播放大片免费观看视频在线观看| 欧美97在线视频| 18禁在线播放成人免费| 在线天堂最新版资源| 亚洲av免费高清在线观看| 成年女人看的毛片在线观看| 一本久久精品| 成人亚洲精品一区在线观看 | 国产精品国产三级国产av玫瑰| 亚洲av在线观看美女高潮| 深夜a级毛片| 亚洲成人一二三区av| 欧美日韩在线观看h| 久久精品久久久久久久性| 一区二区三区精品91| 国产乱来视频区| 2022亚洲国产成人精品| 免费黄色在线免费观看| 亚洲av国产av综合av卡| 国产 精品1| 日韩av不卡免费在线播放| 五月天丁香电影| 男的添女的下面高潮视频| 亚洲成人久久爱视频| 亚洲激情五月婷婷啪啪| 亚洲人与动物交配视频| 亚洲激情五月婷婷啪啪| 最近2019中文字幕mv第一页| 午夜福利高清视频| 久久久久久久大尺度免费视频| 久久人人爽人人爽人人片va| 九草在线视频观看| 国产 精品1| 日韩精品有码人妻一区| 午夜视频国产福利| 一区二区三区免费毛片| 日产精品乱码卡一卡2卡三| 又爽又黄a免费视频| 国产高清国产精品国产三级 | 久久久久久久久大av| kizo精华| 春色校园在线视频观看| 深夜a级毛片| 夜夜爽夜夜爽视频| av在线播放精品| 纵有疾风起免费观看全集完整版| 中文字幕免费在线视频6| 大片电影免费在线观看免费| 日韩,欧美,国产一区二区三区| 成年人午夜在线观看视频| 国产极品天堂在线| 香蕉精品网在线| 亚洲内射少妇av| 成年版毛片免费区| 欧美xxxx性猛交bbbb| 亚洲伊人久久精品综合| 亚洲欧美成人精品一区二区| 一区二区三区乱码不卡18| 国产永久视频网站| 亚洲国产精品国产精品| 欧美性感艳星| 亚洲av日韩在线播放| 中文字幕制服av| 久久久久久国产a免费观看| av福利片在线观看| 男人和女人高潮做爰伦理| 亚洲精品自拍成人| 亚洲内射少妇av| 午夜免费观看性视频| 久久人人爽av亚洲精品天堂 | 久久鲁丝午夜福利片| 18禁在线无遮挡免费观看视频| 肉色欧美久久久久久久蜜桃 | 日韩人妻高清精品专区| 青春草国产在线视频| 看非洲黑人一级黄片| av在线app专区| 2018国产大陆天天弄谢| 欧美日本视频| 午夜免费鲁丝| 国产高清不卡午夜福利| 亚洲av免费高清在线观看| 午夜日本视频在线| 中文字幕亚洲精品专区| 色吧在线观看| 欧美变态另类bdsm刘玥| 校园人妻丝袜中文字幕| 老司机影院毛片| 国产精品久久久久久精品电影小说 | 夜夜看夜夜爽夜夜摸| 少妇人妻精品综合一区二区| 国产精品福利在线免费观看| 国产爽快片一区二区三区| 国产成人免费观看mmmm| av专区在线播放| 免费观看性生交大片5| 欧美最新免费一区二区三区| 2021少妇久久久久久久久久久| 久久久久久九九精品二区国产| 国产69精品久久久久777片| 一区二区av电影网| 中文字幕久久专区| 美女xxoo啪啪120秒动态图| 成人亚洲精品一区在线观看 | 最近中文字幕高清免费大全6| 欧美最新免费一区二区三区| 五月天丁香电影| 街头女战士在线观看网站| 精品亚洲乱码少妇综合久久| 有码 亚洲区| 国产一区二区三区综合在线观看 | 噜噜噜噜噜久久久久久91| 全区人妻精品视频| 狠狠精品人妻久久久久久综合| 中国国产av一级| 国产高潮美女av| 国产爽快片一区二区三区|