張家浩,丁奕豪,雷瑩,徐子涵,施建濤,張懿強(qiáng),宋延林
基于形核結(jié)晶調(diào)控的鈣鈦礦太陽(yáng)電池印刷制造的研究進(jìn)展
張家浩1a,丁奕豪1b,雷瑩1a,徐子涵1b,施建濤1a,張懿強(qiáng)1a,宋延林2
(1.鄭州大學(xué) a.化學(xué)學(xué)院 b.國(guó)際學(xué)院,鄭州 450001;2.中國(guó)科學(xué)院化學(xué)研究所,北京 100190)
有機(jī)–無(wú)機(jī)雜化鈣鈦礦太陽(yáng)電池以其優(yōu)異的光電轉(zhuǎn)換性能和低成本溶液加工等優(yōu)勢(shì)受到了科研工作者和產(chǎn)業(yè)界人士的廣泛關(guān)注,文中著眼于解決把實(shí)驗(yàn)室的旋涂研發(fā)工藝轉(zhuǎn)換為可大規(guī)模重復(fù)生產(chǎn)的工藝這一直接挑戰(zhàn)。印刷制造技術(shù)具有低成本、大規(guī)模、高產(chǎn)率、適用于柔性基底等優(yōu)點(diǎn),是應(yīng)對(duì)該挑戰(zhàn)的有效手段。深入梳理和總結(jié)印刷制造中鈣鈦礦薄膜的形核與結(jié)晶過(guò)程,對(duì)于印刷高質(zhì)量鈣鈦礦薄膜和實(shí)現(xiàn)大面積高效鈣鈦礦太陽(yáng)電池制造至關(guān)重要。分析了鈣鈦礦形核結(jié)晶的熱力學(xué)與動(dòng)力學(xué)基本理論,從鈣鈦礦形核結(jié)晶調(diào)控這一角度出發(fā),對(duì)各類(lèi)印刷工藝制造大面積鈣鈦礦薄膜及光伏器件的研究現(xiàn)狀做出相應(yīng)評(píng)價(jià),認(rèn)為“升級(jí)制備技術(shù)、創(chuàng)新材料體系、改善穩(wěn)定性能”三步走將掀起鈣鈦礦產(chǎn)業(yè)化的新浪潮。
形核結(jié)晶;光電轉(zhuǎn)換;鈣鈦礦太陽(yáng)能電池;印刷技術(shù)
隨著化石能源消耗殆盡,人們不得不把目光投向新能源的開(kāi)發(fā)與應(yīng)用。在眾多新能源(如風(fēng)能、潮汐能等)中,太陽(yáng)能作為取之不盡、用之不竭的可再生能源,具有廣闊的開(kāi)發(fā)前景。太陽(yáng)能電池作為太陽(yáng)能利用的有效途徑之一,是將太陽(yáng)能轉(zhuǎn)換為光能。目前,已經(jīng)商業(yè)化應(yīng)用的晶硅太陽(yáng)能電池有著成熟的生產(chǎn)線,預(yù)計(jì)2022年中國(guó)硅片產(chǎn)量將達(dá)到234.8 GW,然而晶硅太陽(yáng)能電池存在諸多問(wèn)題,如能源消耗大,制造工藝復(fù)雜,生產(chǎn)成本高等。因此開(kāi)發(fā)新型光電轉(zhuǎn)換材料,有利于提升太陽(yáng)能利用效率。近年來(lái),有機(jī)?無(wú)機(jī)雜化鈣鈦礦太陽(yáng)電池(Perovskite Solar Cells, PSCs)以其優(yōu)異的光電轉(zhuǎn)換性能和低成本溶液加工等優(yōu)勢(shì)受到了科研工作者和產(chǎn)業(yè)界人士的廣泛關(guān)注,被認(rèn)為是新一代薄膜太陽(yáng)電池技術(shù)中的杰出代表[1-3]。目前,鈣鈦礦太陽(yáng)電池的光電轉(zhuǎn)換效率(Power Conversion Efficiency, PCE)已經(jīng)從2009年報(bào)道的3.8%[4]迅速提升到現(xiàn)在的25.7%[5],超過(guò)了多晶硅太陽(yáng)電池效率紀(jì)錄(23.3%),具有廣闊的發(fā)展前景。
雖然,研究人員已使用各種添加劑工程[6-8]、界面工程[9]和組分工程[10-11]對(duì)鈣鈦礦太陽(yáng)電池進(jìn)行了系統(tǒng)優(yōu)化,但是,在實(shí)驗(yàn)室制備鈣鈦礦太陽(yáng)電池,主要利用基底高速旋轉(zhuǎn)產(chǎn)生的離心力將大部分溶液甩出去,在基底上形成一層均勻的薄膜,即旋涂法[12]。當(dāng)制備的鈣鈦礦薄膜面積增大至1 cm2以上后,旋涂工藝對(duì)鈣鈦礦膜的均勻形核結(jié)晶將會(huì)產(chǎn)生諸多負(fù)面影響[13],因此,許多不同的印刷制造工藝被用于探索制備大面積鈣鈦礦薄膜,包括噴墨印刷[14-16]、噴涂法[17]、刮涂法[18-20]、絲網(wǎng)印刷[21]以及卷對(duì)卷印刷[22-23]等。印刷技術(shù)不僅能克服鈣鈦礦太陽(yáng)電池傳統(tǒng)旋涂制備方法的缺點(diǎn),還具有材料利用率高、成本低、可大面積制備、適用于柔性基底等優(yōu)點(diǎn)。
眾所周知,制備高質(zhì)量的光電薄膜材料是高性能光電器件的優(yōu)先保障[24],因此,盡管不同印刷技術(shù)的工作原理不盡相同,但是其印刷制造的目標(biāo)都是制備出晶粒飽滿、晶界密實(shí)的鈣鈦礦薄膜吸光層。文中聚焦于鈣鈦礦形核結(jié)晶的熱力學(xué)原理,以各類(lèi)不同印刷工藝對(duì)鈣鈦礦層形核結(jié)晶的調(diào)控工程為切入點(diǎn),系統(tǒng)梳理了不同印刷技術(shù)對(duì)于優(yōu)化鈣鈦礦薄膜形核結(jié)晶調(diào)控的研究進(jìn)展。最后,提出了印刷制造高質(zhì)量鈣鈦礦薄膜及高性能鈣鈦礦光伏器件的未來(lái)努力方向。
首先,晶粒的形成和增長(zhǎng)必須發(fā)生在過(guò)飽和的溶液中,當(dāng)溶質(zhì)濃度高于固體的溶解度時(shí),細(xì)小的晶核開(kāi)始形成。在這里先不考慮異質(zhì)成核的情況,均勻成核的過(guò)程受系統(tǒng)吉布斯自由能(Δ)的控制,系統(tǒng)的自由能(Δ)在溶液中由表面自由能(Δs)和體自由能(Δv)組成[25],它們之間的關(guān)系可用式(1)表示。
(1)
式中:Δ為系統(tǒng)的吉布斯自由能;Δs為表面自由能;Δv為體自由能;為析出晶核的半徑;為晶體表面與過(guò)飽和溶液之間的表面能或界面能。
由式(1)即可看出,表面自由能和體自由能均與球形離子的半徑呈正相關(guān),因此不難得出,晶核的形成存在臨界半徑*。即只有超過(guò)臨界半徑*的粒子才可以進(jìn)一步生長(zhǎng),反之則只能再度溶解,回到溶液中[26]。
針對(duì)整個(gè)結(jié)晶的過(guò)程,在經(jīng)典的LaMer模型中,晶體的生長(zhǎng)可分為3步[27]。首先,眾多以不同形式存在的單體,即粒子的最小亞基,在溶液中逐步累積,雖然單體濃度超過(guò)固體溶解度,但由于熱力學(xué)限制,并沒(méi)有晶核的生成;其次,單體濃度達(dá)到成核的最低要求,緩慢有晶核的出現(xiàn),隨著單體濃度繼續(xù)增大至接近最高時(shí),成核與增長(zhǎng)速度也達(dá)到頂峰;最后,單體的累積逐漸被消耗,以至于濃度低于成核要求濃度,此后不再成核,但是晶粒依舊遵循單體擴(kuò)散機(jī)制繼續(xù)生長(zhǎng),最終當(dāng)單體的濃度接近于整體固體的溶解度時(shí),晶粒停止生長(zhǎng)[28]。
那么如何讓晶粒更加飽滿、晶界更加密實(shí)?對(duì)形核結(jié)晶機(jī)理的深入理解是印刷制造高質(zhì)量鈣鈦礦薄膜的關(guān)鍵。不論采用何種印刷工藝,制備大面積的均質(zhì)鈣鈦礦薄膜就必須做到“一快一慢”,即快速的成核和緩慢的晶體生長(zhǎng)。提出“一快一慢”的指導(dǎo)思想是由于結(jié)晶成核和晶核生長(zhǎng)本質(zhì)上是相互補(bǔ)充和互相競(jìng)爭(zhēng)的過(guò)程。成核過(guò)程盡可能短、生長(zhǎng)過(guò)程足夠慢能夠?yàn)楂@得飽滿密實(shí)的結(jié)晶薄膜留足空間[29]。除此之外還要最大限度抑制二次成核,否則原有晶核的生長(zhǎng)空間將會(huì)被壓縮。
噴墨打印是一種廉價(jià)、可靠、快速、方便的數(shù)碼打印技術(shù),屬非接觸式印刷技術(shù)。從理論上講,噴墨打印就是油墨通過(guò)噴頭噴射到基底的過(guò)程。首先需要提供一個(gè)連續(xù)的油墨供應(yīng)裝置,然后通過(guò)對(duì)打印噴頭施加脈沖電壓,即可噴射出所需要的液滴。噴墨打印有利于規(guī)?;苽浯竺娣e鈣鈦礦太陽(yáng)電池器件,具有高性價(jià)比、高書(shū)寫(xiě)準(zhǔn)確性和接近百分之百材料利用率的優(yōu)勢(shì)。
噴墨打印法作為制備大面積鈣鈦礦太陽(yáng)能電池最有效的方法之一,最早由Yang等[30]開(kāi)創(chuàng),可制備鈣鈦礦薄膜的面積高達(dá)2~802 cm2[31]。噴墨印刷工藝因其精確的液滴可控性以及可圖案化處理[32]等優(yōu)勢(shì),被人們廣泛研究,而且被認(rèn)為是達(dá)成光伏建筑一體化(Building Integrated Photovoltaic, BIPV)最有效的途徑[33]。由于油墨在印刷過(guò)程中結(jié)晶迅速,造成了印刷的鈣鈦礦薄膜不連續(xù)、缺陷較多的現(xiàn)象,這嚴(yán)重限制了噴墨印刷技術(shù)在鈣鈦礦光伏器件制造中的應(yīng)用。為得到高質(zhì)量低缺陷的薄膜,Song等[34]將正–甲基吡咯烷酮(NMP)作為溶劑引入墨水體系,NMP可以有效地調(diào)節(jié)溶劑的黏度和表面能,以延長(zhǎng)液體膜的保留時(shí)間;并采用PbX2–DMSO(X=Br,I)配合物取代PbX2,阻礙前驅(qū)體離子之間的快速反應(yīng),從而減緩鈣鈦礦的成核、生長(zhǎng)速率,最終在1.01 cm2的有效面積上獲得了17.9%的高效率。Zhang等[35]在油墨配方中摻入乙酸鉛(PbAc2)、氯化鉛(PbCl2)和碘化銨(MAI)控制鈣鈦礦液滴的擴(kuò)散和結(jié)晶行為。含純PbAc2的鈣鈦礦液滴表現(xiàn)出快速的結(jié)晶速度,形成了板狀晶體,而適當(dāng)添加氯化鉛的噴墨印刷鈣鈦礦薄膜顯示出致密和均勻的晶體。在此基礎(chǔ)上,噴墨打印的MAPbIxCl3?x型PSCs前體的PCE為16.6%。除此之外,聚合物添加劑被證明會(huì)影響鈣鈦礦形貌,并可以鈍化表面缺陷[36],Pathak等[37]將PTB7作為三元混合陽(yáng)離子鈣鈦礦油墨前驅(qū)體的添加劑,他們認(rèn)為PTB7與鈣鈦礦前驅(qū)體作用阻礙了晶種的形成,從而延緩了整個(gè)結(jié)晶的過(guò)程,從而得到了更大的晶粒。
a 噴墨打印鈣鈦礦薄膜示意圖以及2種新的油墨工程策略 b DMSO配合物的掃描電鏡截面圖 c 鈣鈦礦的X射線衍射(XRD)圖隨退火溫度的變化規(guī)律[34] d 不同前驅(qū)體組成或不同印刷溫度下的鈣鈦礦薄膜的俯視SEM圖 e 晶粒尺寸較大時(shí),因點(diǎn)狀和線狀分布不均勻而在界線處產(chǎn)生缺陷的示意圖[35] f PTB7的化學(xué)結(jié)構(gòu) g 噴墨打印后真空退火后不同濃度PTB7的前驅(qū)體油墨結(jié)晶動(dòng)力學(xué)的差異[37]
Lan等[38]提出,打印頭參數(shù)如脈沖寬度和電壓、打印頻率、打印頭溫度等,也會(huì)影響油墨液滴的形成和噴射的速度,進(jìn)而影響油墨在基板上的形核結(jié)晶質(zhì)量。其中,晶體尺寸隨著噴墨打印速度和襯底溫度的升高而減小,從而影響了激子的解離;π–π的堆積距離隨著噴墨打印速度的增加而減小,有利于電荷傳輸,從而提高器件性能。其中溫度對(duì)鈣鈦礦結(jié)晶的影響在此之前即被Wang等[39]系統(tǒng)研究,他們?cè)诶鋬龌咨现苽溻}鈦礦薄膜,可以精確控制晶體生長(zhǎng)的方向。Eggers等[40]著眼于噴墨打印出的薄膜厚度,他們將鈣鈦礦吸光層薄膜加厚至微米級(jí)別,得到了較低的碘化鉛含量和較長(zhǎng)的載流子壽命的吸光層,其中最佳厚度1.5微米的器件展示出超過(guò)21%的PCE,穩(wěn)定后仍高達(dá)18.5%。
相對(duì)于噴墨印刷技術(shù)而言,刮涂法設(shè)備更加簡(jiǎn)單、成本更加低廉且高效易行,能夠更加快速的制備出大面積的鈣鈦礦薄膜,對(duì)于工業(yè)生產(chǎn)來(lái)說(shuō)意義重大。采用刮涂法制備的鈣鈦礦太陽(yáng)能電池組件效率最高已達(dá)23.19%(0.04 cm2)[41]、大面積組件則最高可達(dá)19.2%(50 cm2)[42]。在標(biāo)準(zhǔn)的刮涂設(shè)備中,適量的液體油墨首先被放置在基板上,然后通過(guò)移動(dòng)刮刀刀片或基板刮走多余的溶液,從而得到所需厚度的薄膜。經(jīng)研究表明,刮涂法可以比旋涂法節(jié)省90%以上的原料[43]。以上分析表明,欲得到均勻沉積的大面積鈣鈦礦薄膜,刮涂工藝比噴墨印刷工藝對(duì)油墨的要求更加嚴(yán)格[44]。研究人員對(duì)刮涂法的研究主要集中在鈣鈦礦組成工程、溶劑工程、添加劑工程等方面。在組成調(diào)控領(lǐng)域,甲基銨(MA+)、甲酰胺(FA+)、混合陽(yáng)離子和2D鈣鈦礦在刮涂領(lǐng)域都得到了廣泛的應(yīng)用并取得了效率的提升,但欲進(jìn)一步提高器件效率及穩(wěn)定性,不得不把目光投向溶劑以及添加劑的應(yīng)用。
傳統(tǒng)的操作是把MAI/FAI和PbI2按等摩爾比溶解于DMF中得到前驅(qū)體溶液,經(jīng)刮涂、真空成膜、退火從而得到MAPbI3/FAPbI3相鈣鈦礦膜。雖然MAI在DMF中溶解度高,但是PbI2溶解度相對(duì)較低,而且單獨(dú)使用DMF會(huì)因蒸發(fā)速率過(guò)快導(dǎo)致成核速率不可控,從而缺陷較多[45],因此,路易斯堿型溶劑DMSO在延緩鈣鈦礦結(jié)晶方面得到了廣泛的應(yīng)用[46],它作為供體與Pb2+進(jìn)行配位,提高了結(jié)晶的質(zhì)量,得到更加飽滿的均質(zhì)薄膜。Huang等[47]進(jìn)一步將揮發(fā)性非配位溶劑(乙腈等)與非揮發(fā)性配位溶劑(DMSO)的混合物應(yīng)用于刮涂工藝。在室溫快速刮涂的條件下,觀察到復(fù)合溶劑可以形成強(qiáng)鍵與Pb2+離子緊密結(jié)合,以至于形成溶劑中間相,增加鈣鈦礦結(jié)晶度,而揮發(fā)性溶劑在N2吹淋下的快速蒸發(fā)可以使鈣鈦礦薄膜更加光滑。通過(guò)對(duì)鈣鈦礦薄膜在溫和的溫度下進(jìn)行退火,非揮發(fā)性溶劑的緩慢釋放有助于使晶粒更大,并與底部空穴傳輸層形成良好的接觸,最終得到的器件具有21.1%的高認(rèn)證效率。最近,Liang等[48]將乙醇摻入鈣鈦礦墨水中,作為一種混合溶劑。混合溶劑中的乙醇在痕量溶劑輔助相變過(guò)程中顯著促進(jìn)了FA基前體溶劑化物(FA2PbBr4·DMSO)的形成,調(diào)節(jié)成核和晶體生長(zhǎng)之間的平衡,所制備的冠軍器件達(dá)到了23.19%的記錄效率。
a 噴墨打印有機(jī)薄膜形成示意圖 b 基片溫度為50 ℃或80 ℃時(shí)不同噴墨印刷速度下的薄膜厚度[38] c 制備鈣鈦礦薄膜的NPCG方法原理圖[39] d 不同分辨率條件下印刷的鈣鈦礦太陽(yáng)能電池截面掃描電鏡(SEM)圖像[40]
除此之外,許多種溶劑添加劑被用于調(diào)節(jié)形核結(jié)晶的過(guò)程中,它們可以與鈣鈦礦前驅(qū)體進(jìn)行配位作用,進(jìn)而鈍化缺陷。Li等[49]在FA基鈣鈦礦的前驅(qū)體中引入N,N–二甲基丙基尿素(DMPU),該路易斯堿的可與Pb2+離子進(jìn)行配位,最終制備的大面積器件(10 cm2)的PCE高達(dá)17.71%,而且耐高溫耐水氧性能良好。Abbas等[50]引入3–氨基苯基硼酸作為溶劑添加劑,它具有π共軛苯基,而且可以在鈣鈦礦晶界上自組裝,明顯地降低了鈣鈦礦薄膜的缺陷密度,從而使具有倒置結(jié)構(gòu)的刮涂鈣鈦礦太陽(yáng)能電池的PCE提升至18.89%。
與其他大面積薄膜制備技術(shù)相似,噴涂法也具有操作簡(jiǎn)單、成本低廉等優(yōu)勢(shì),而且噴涂設(shè)備還可以與卷對(duì)卷印刷設(shè)備組合起來(lái),用于制備大面積柔性鈣鈦礦太陽(yáng)能電池,對(duì)鈣鈦礦的產(chǎn)業(yè)化有著積極的推動(dòng)作用[51]。使用噴涂設(shè)備制備鈣鈦礦薄膜時(shí),首先要通過(guò)超聲波霧化器將鈣鈦礦前驅(qū)體進(jìn)行霧化處理,然后經(jīng)由噴嘴噴射到已經(jīng)預(yù)熱的基底上;細(xì)小的液滴在基底上匯聚成濕潤(rùn)的、連續(xù)的薄膜,最后干燥處理即可得到大面積的鈣鈦礦薄膜。
在噴涂法中,為了使采用噴涂法制備的薄膜晶粒更加密實(shí),研究人員發(fā)展了的高壓氣體噴涂[52-53]、超聲驅(qū)動(dòng)的超聲噴涂[54]以及電驅(qū)動(dòng)噴涂[55]等先進(jìn)的噴涂工藝。近年來(lái),為了優(yōu)化鈣鈦礦的結(jié)晶,Yang等[56]將NMP和DMF雙重溶劑組合用于噴涂裝置,制備鈣鈦礦薄膜后隨即加入乙醚作為反溶劑,除此之外,還在前驅(qū)體溶液中加入MACl以促進(jìn)晶粒生長(zhǎng)。在多重努力下,器件尺寸被拓展到1 cm2,反向掃描PCE最高為15.07%,柔性器件則為13.21%,是噴涂法的記錄效率之一。Rapid團(tuán)隊(duì)[57]作為噴涂工藝的開(kāi)拓者,近年再度使用VASP噴涂沉積方法創(chuàng)建了全噴涂裝置,目的是使PSC中的所有層都可以使用噴霧工藝進(jìn)行沉積。而且這一方法縮短了真空暴露時(shí)間,改善了成膜質(zhì)量。
雖然如此,采用噴涂法制備鈣鈦礦仍然無(wú)法完全消除薄膜中的缺陷,依舊有大大小小的孔洞在鈣鈦礦體相和表面中[58],這是噴涂法未來(lái)發(fā)展的巨大瓶頸。
在絲網(wǎng)印刷過(guò)程中,絲網(wǎng)被放置在固定基板的上方,與基板相距幾毫米。墨水首先放在刀片或橡皮刮刀的前面,然后,將刀片或橡皮刮刀在屏幕上移動(dòng),將墨水注入屏幕上打開(kāi)的網(wǎng)孔中,接著把預(yù)先設(shè)計(jì)的圖案從網(wǎng)孔中拉出,油墨通過(guò)移動(dòng)刀片或刮刀沉積在基板上。通過(guò)這種方式,在基底上用所設(shè)計(jì)的圖案沉積一種薄膜。絲網(wǎng)印刷有兩種類(lèi)型:平板印刷和旋轉(zhuǎn)印刷,這兩種類(lèi)型都已成功應(yīng)用于卷對(duì)卷工藝,而且后者的印刷效率極高。
Huang等[59]于2014年首次報(bào)道了一種采用絲網(wǎng)印刷方法制備的完全打印、無(wú)空穴傳輸層、碳電極的鈣鈦礦太陽(yáng)能電池,這種器件由于其成本低、不含蒸發(fā)金屬電極、穩(wěn)定性高而引起了廣泛關(guān)注。絲網(wǎng)印刷作為另一種印刷技術(shù),其中使用合成纖維或鋼網(wǎng)將油墨轉(zhuǎn)移到基板上,以形成預(yù)先設(shè)計(jì)的圖案。Zi等[60]通過(guò)優(yōu)化空穴傳輸層、鈣鈦礦層,并采用了溶劑工程、界面工程等手段,這種無(wú)空穴傳輸層的器件得到了改進(jìn),最佳PCE接近16%。劉生忠等[61]首先用空穴傳輸材料一氧化鎳取代上述無(wú)空穴傳輸材料-碳電極基鈣鈦礦太陽(yáng)能電池中的二氧化鋯間隔層,形成n型/p型堆疊配置。然后又通過(guò)在n型二氧化鈦和p型一氧化鎳之間引入另一個(gè)二氧化鋯或氧化鋁間隔層來(lái)更新配置,形成一個(gè)四重堆疊配置,這種設(shè)備也顯示PCE超過(guò)15%。
Giacomo等[62]使用絲網(wǎng)印刷方法將二氧化鈦支架沉積在柔性襯底上。在他們的工作中,紫外線照射被用于去除有機(jī)黏合劑和促進(jìn)粒子間的黏合。他們的柔性鈣鈦礦模塊可絲網(wǎng)打印二氧化鈦層和ALD緊湊層實(shí)現(xiàn)PCE為3.1%。使用類(lèi)似的方法,Mei等[63]展示了一種新型的吸收劑滲透到絲網(wǎng)印刷層堆棧中,使太陽(yáng)能電池具有12.0%以上的PCE,在標(biāo)準(zhǔn)太陽(yáng)光下、環(huán)境空氣中的穩(wěn)定性為1 000 h。這些設(shè)備在環(huán)境和潮濕環(huán)境中的高穩(wěn)定性通??梢杂锰茧姌O本身具有疏水性質(zhì),可以作為一個(gè)水保護(hù)層來(lái)解釋。通過(guò)優(yōu)化層堆疊,將2017年報(bào)道的小面積設(shè)備的PCE提高到14.0%。更重要的是,顯示了完全可打印過(guò)程的升級(jí),由10個(gè)10 cm的亞電池組成,在10×10的基板上,PCE超過(guò)10%(有效面積為49 cm2),以及第1個(gè)大型(7 m2)PV面板。在標(biāo)準(zhǔn)光AM1.5G照明、溫度為55 ℃條件下,可進(jìn)一步提高到11.2%(>10 000 h)。從那時(shí)起,該方法得到了進(jìn)一步的優(yōu)化,對(duì)于小面積絲網(wǎng)印刷設(shè)備的PCE實(shí)現(xiàn)了高達(dá)15.6%。
對(duì)卷對(duì)卷的印刷技術(shù)并不陌生,因?yàn)楦魇礁鳂拥膱?bào)紙都使用這一工藝進(jìn)行印刷。利用卷對(duì)卷印刷工藝制備大面積鈣鈦礦太陽(yáng)能電池時(shí),需要首先對(duì)基底進(jìn)行清洗,然后放卷,并在柔性基底上依次制備空穴傳輸層、鈣鈦礦層、電子傳輸層以及電極,最后復(fù)合以制備封裝膜并收卷。
a 不同溶劑制備的鈣鈦礦薄膜的SEM圖像 b 5種溶劑以及碘離子的蒸汽壓和給體數(shù)(DN)。c 在柔性基板上涂覆鈣鈦礦薄膜的照片[47] d 不同DMF/EtOH體積比的油墨制備的鈣鈦礦薄膜的表征 e 乙醇對(duì)FA2PbBr4·DMSO鍵長(zhǎng)分布的影響[48] f FA基鈣鈦礦薄膜的刮涂過(guò)程示意圖和N,N′-二甲基丙烯脲(DMPU)添加劑的化學(xué)結(jié)構(gòu)[49] g 對(duì)照組和3a鈍化鈣鈦礦器件的橫斷面及表面的SEM圖像[50]
a 噴涂法設(shè)備示意圖以及在柔性或剛性基板上噴涂量子點(diǎn)薄膜的照片[56] b 展示UV處理的ITO表面以及優(yōu)化np-SnO2干燥過(guò)程的方案[57]
與其他研究方向不同,柔性鈣鈦礦太陽(yáng)能電池因其在可穿戴器件等新興領(lǐng)域的需求而具有廣闊前景,這使得能夠制備大面積柔性器件的卷對(duì)卷印刷工藝得以推廣開(kāi)來(lái)[65-66]。Zuo團(tuán)隊(duì)[67]首次于2018年開(kāi)發(fā)出N2吹淋輔助澆注的方法,應(yīng)用于卷對(duì)卷印刷工藝。在調(diào)控結(jié)晶方面,他們?cè)缭?014年即發(fā)現(xiàn)氯化銨(NH4Cl)作為添加劑可以大大改善薄膜的形貌,而且只需要30秒的熱退火就可以形成均勻的無(wú)針孔的鈣鈦礦層[68]。氯化銨的加入使晶粒尺寸顯著增大,用10 mg/mL氯化銨添加劑制備的薄膜晶粒尺寸最大,器件效率最高,這與文中研究形核與結(jié)晶過(guò)程的初衷相一致。只有結(jié)晶度更高、晶粒尺寸更大,器件的性能才會(huì)更好。[69]
Othman等[70]將卷對(duì)卷印刷技術(shù)中傳統(tǒng)的鈣鈦礦組成拓展到三元混合陽(yáng)離子,創(chuàng)新性制備出了Cs0.07FA0.79MA0.14Pb(I0.83Br0.17)3型鈣鈦礦薄膜。為了提高制備這種薄膜的均勻性,他們將碘化胍(GAI)添加劑摻雜到PEDOT:PSS空穴傳輸層(HTL)中作為界面修飾劑,如此得到了更大尺寸的鈣鈦礦團(tuán)簇,而且鈍化了表面和層面之間的缺陷,提高了電荷提取率,最終得到了將近12%的效率。Wang等[64]針對(duì)NiOx基空穴傳輸層,提出用氫碘酸(HI)對(duì)其進(jìn)行簡(jiǎn)單的浸泡,將薄膜表面的三價(jià)鎳化合物還原為碘化鎳(NiI2),從而誘導(dǎo)了鈣鈦礦晶格的有序生長(zhǎng),提高了成核與結(jié)晶的質(zhì)量。
近年來(lái),更多熱門(mén)的研究領(lǐng)域都在嘗試與鈣鈦礦相聯(lián)系,擦出別樣的火花[71-72]。Kang等[73]在卷對(duì)卷工藝基礎(chǔ)上引入可交聯(lián)的多功能離子凝膠(TFEA、AAm等),從而有效地調(diào)節(jié)了鈣鈦礦器件的力學(xué)性能,而且能使缺陷密度降低,對(duì)應(yīng)力的釋放起到了關(guān)鍵作用。除此之外,Swartwout等[74]前瞻性地提出使用低毒性的醇和醚取代傳統(tǒng)的DMF、DMSO等溶劑。究其原因,他們認(rèn)為有毒廢水的將使管理成本極度增加,油墨的毒性很可能會(huì)限制卷對(duì)卷印刷工藝的推廣[75]。要遵守世界范圍內(nèi)工人關(guān)于溶劑暴露限制的安全法規(guī),否則卷對(duì)卷工藝甚至其他大面積印刷方法帶來(lái)的經(jīng)濟(jì)效益將不復(fù)存在。作者認(rèn)為這個(gè)觀點(diǎn)不容忽視,降低溶液體系的毒性、同時(shí)保持良好的性能是未來(lái)鈣鈦礦走向商業(yè)化的必經(jīng)之路。
a TiO2/NiO(CH3NH3PbI3)/碳電極器件結(jié)構(gòu)示意圖 b 絲網(wǎng)印刷的成品照片[61] c 串聯(lián)模組照片(5.6 cm×5.6 cm) d 在ALD沉積的PET基底上無(wú)致密TiO2支架生長(zhǎng)CH3NH3PbI3-xClx的俯視SEM圖像 e 紫外輻照TiO2支架上生長(zhǎng)CH3NH3PbI3-xClx的SEM俯視圖[62] f 卷對(duì)卷工藝制備鈣鈦礦太陽(yáng)能電池的過(guò)程 g 相應(yīng)鈣鈦礦薄膜的二維GIWAXS散射體圖形[64]
制備大面積的鈣鈦礦太陽(yáng)能電池器件及其模組是一個(gè)持續(xù)受關(guān)注的前沿領(lǐng)域,大面積均質(zhì)鈣鈦礦薄膜的制備是將實(shí)驗(yàn)室科研成果進(jìn)行商業(yè)化應(yīng)用的關(guān)鍵。噴墨打印、刮涂等眾多新興的印刷工藝在大面積鈣鈦礦薄膜的制備中發(fā)揮了重要的作用,油墨配方的改造、添加劑工程的設(shè)計(jì)等手段對(duì)于未來(lái)調(diào)控鈣鈦礦薄膜形核結(jié)晶有著巨大的應(yīng)用前景。盡管多種印刷方法已經(jīng)被報(bào)道并發(fā)展,然而印刷出的大面積器件的效率仍與旋轉(zhuǎn)涂覆所得的小面積器件差距較大,因此如何提升大面積印刷器件的效率是未來(lái)科研工作者努力的目標(biāo)。同時(shí),現(xiàn)行報(bào)道大面積鈣鈦礦光伏器件的文獻(xiàn)中對(duì)其水氧穩(wěn)定性、熱穩(wěn)定性的研究少之又少,遠(yuǎn)遠(yuǎn)達(dá)不到商業(yè)化的應(yīng)用標(biāo)準(zhǔn)。認(rèn)為,今后在印刷制備大面積鈣鈦礦光伏器件的領(lǐng)域,以下方面應(yīng)受到更廣泛的關(guān)注。
對(duì)于大面積器件的濕熱穩(wěn)定性、水氧穩(wěn)定性,暫時(shí)沒(méi)有統(tǒng)一的衡量標(biāo)準(zhǔn),甚至出現(xiàn)了一度追求面積大、效率高即可的局面。一方面可以與《如何準(zhǔn)確地報(bào)告透明的太陽(yáng)能電池》[76]相對(duì)應(yīng),制定大面積鈣鈦礦太陽(yáng)能電池的行業(yè)標(biāo)準(zhǔn),使研究更加規(guī)范化;另一方面,大面積薄膜如為商用,則更加需要在穩(wěn)定性方面進(jìn)行表征,因此必須大力發(fā)展大面積鈣鈦礦太陽(yáng)能組件的穩(wěn)定性測(cè)試手段。
以上無(wú)論組分工程、添加劑工程還是溶劑工程,所有的形核結(jié)晶過(guò)程在化學(xué)熱力學(xué)角度來(lái)看都是同質(zhì)形核結(jié)晶。在小面積器件方面已經(jīng)有關(guān)于異核結(jié)晶的研究[77-78],最近Han等[79]在2021年又提出晶種輔助生長(zhǎng)結(jié)晶,通過(guò)引入規(guī)則分布的鈣鈦礦晶體陣列(PCA),使形核結(jié)晶過(guò)程更加可控,進(jìn)一步降低了缺陷態(tài)密度,得到了晶界密實(shí)、晶粒飽滿的鈣鈦礦薄膜??梢試L試將這種思想引入大面積鈣鈦礦太陽(yáng)能電池的領(lǐng)域。
在印刷制備鈣鈦礦太陽(yáng)能電池之初,全印刷鈣鈦礦太陽(yáng)能組件便提上日程。既然鈣鈦礦薄膜可以印刷,電子傳輸層、空穴傳輸層以及界面層是否也可以進(jìn)行印刷?時(shí)至今日,全印刷鈣鈦礦太陽(yáng)能電池已經(jīng)實(shí)現(xiàn)[80-81]。其中最具代表性的工作為陳義旺團(tuán)隊(duì)報(bào)道的3D網(wǎng)絡(luò)輔助結(jié)晶工作,他們采用硅氧烷的3D網(wǎng)絡(luò)阻礙了由毛細(xì)力引起的溶質(zhì)遷移,并作為骨架促進(jìn)鈣鈦礦薄膜的均勻成核結(jié)晶,優(yōu)化后的全印刷鈣鈦礦太陽(yáng)能電池達(dá)到了22.0%的能量轉(zhuǎn)換效率[82],相信未來(lái)在這一領(lǐng)域仍會(huì)有巨大發(fā)展。
疊層太陽(yáng)能電池是當(dāng)下最熱門(mén)的領(lǐng)域之一,鈣鈦礦/硅疊層認(rèn)證效率已經(jīng)突破31.3%[5]。然而疊層太陽(yáng)能電池大多數(shù)仍依舊停留在極小面積的組件(0.04 cm2),這與其構(gòu)建的初衷嚴(yán)重不符,無(wú)實(shí)現(xiàn)商業(yè)化應(yīng)用。因此,制備大面積疊層電池時(shí),需要對(duì)頂部電池與鈣鈦礦的電荷選擇性接觸處的缺陷進(jìn)行有效鈍化。譚海仁團(tuán)隊(duì)在全鈣鈦礦疊層太陽(yáng)能電池方向的積極探索為這一領(lǐng)域打下了基礎(chǔ)[83],作者認(rèn)為進(jìn)一步改善空穴的選擇性接觸、降低薄膜的微米級(jí)缺陷等方式可進(jìn)一步促進(jìn)該領(lǐng)域的發(fā)展。
文中對(duì)制備大面積鈣鈦礦薄膜的印刷制造技術(shù)進(jìn)行了系統(tǒng)的綜述,目前鈣鈦礦太陽(yáng)能電池當(dāng)前正處于邁向產(chǎn)業(yè)化的重要階段。制備技術(shù)的升級(jí)與材料體系的創(chuàng)新都對(duì)其形核結(jié)晶過(guò)程起著積極的作用,大大改善了鈣鈦礦薄膜的形貌,但大面積器件的效率與水氧穩(wěn)定性仍有一定提升空間。期待能夠開(kāi)發(fā)出更高效的印刷工藝與更穩(wěn)定的油墨體系,助力鈣鈦礦太陽(yáng)電池技術(shù)的規(guī)?;瘧?yīng)用。
[1] ZHANG Chun-yang, LIANG Su-xia, LIU Wei, et al. Ti1-Graphene Single-Atom Material for Improved Energy Level Alignment in Perovskite Solar Cells[J]. Nature Energy, 2021, 6(12): 1154-1163.
[2] LIN R, XU J, WEI M, et al. All-Perovskite Tandem Solar Cells with Improved Grain Surface Passivation[J]. Nature, 2022, 603(7899): 73-78.
[3] LEE J W, TAN S, SEOK S I, et al. Rethinking the a Cation in Halide Perovskites[J]. Science, 2022, 375(6583): 1186.
[4] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
[5] National Renewable Energy Laboratory. Best Research-Cell Efficiencies[EB/OL].(1976-01-01) [2022-07-31] https:// www. nrel.gov/ pv/cell- efficiency.html
[6] WANG L, SONG Q, PEI F, et al. Strain Modulation for Light-Stable N-I-p Perovskite/Silicon Tandem Solar Cells[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(26): 2201315.
[7] HAN J, KIM K, NAM J S, et al. Genetic Manipulation of M13 Bacteriophage for Enhancing the Efficiency of Virus‐Inoculated Perovskite Solar Cells with a Certified Efficiency of 22.3%[J]. Advanced Energy Materials, 2021, 11(38): 2101221.
[8] GUO Jun-jun, SUN Jian-guo, HU Long, et al. Indigo: A Natural Molecular Passivator for Efficient Perovskite Solar Cells[J]. Advanced Energy Materials, 2022, 12(22): 2200537.
[9] WANG Hao-xin, CHENG Ming, YANG Xi-chuan, et al. Natural Chlorophyll Derivative Assisted Defect Passivation and Hole Extraction for MAPbI3 Perovskite Solar Cells with Efficiency Exceeding 20%[J]. ACS Applied Energy Materials, 2022, 5(2): 1390-1396.
[10] SVANE K L, FORSE A C, GREY C P, et al. How Strong is the Hydrogen Bond in Hybrid Perovskites? [J]. The Journal of Physical Chemistry Letters, 2017, 8(24): 6154-6159.
[11] KIM G, MIN H, LEE K S, et al. Impact of Strain Relaxation on Performance of Α-Formamidinium Lead Iodide Perovskite Solar Cells[J]. Science, 2020, 370(6512): 108-112.
[12] QIU Long-bin, ONO L K, QI Ya-bing. Advances and Challenges to the Commercialization of Organic-Inorganic Halide Perovskite Solar Cell Technology[J]. Materials Today Energy, 2018, 7: 169-189.
[13] NORRMAN K, GHANBARI-SIAHKALI A, LARSEN N B. 6 Studies of Spin-Coated Polymer Films[J]. Annual Reports Section "C" (Physical Chemistry), 2005, 101: 174-201.
[14] SHI Li-fu, MENG Ling-hai, JIANG Feng, et al. In Situ Inkjet Printing Strategy for Fabricating Perovskite Quantum Dot Patterns[J]. Advanced Functional Materials, 2019, 29(37): 1903648.
[15] GU Zhen-kun, WANG Kang, LI Hui-zeng, et al. Direct-writing Multifunctional Perovskite Single Crystal Arrays by Inkjet Printing[J]. Small, 2017, 13(8): 1603217.
[16] BAE S H, ZHAO Hong-xiang, HSIEH Y T, et al. Printable Solar Cells from Advanced Solution-processible Materials[J]. Chem, 2016, 1(2): 197-219.
[17] WU Cong-cong, WANG Kai, JIANG Yuan-yuan, et al. All Electrospray Printing of Carbon-based Cost- effective Perovskite Solar Cells[J]. Advanced Functional Materials, 2021, 31(6): 2006803.
[18] XING Zhi, LIN Su-yu, MENG Xiang-chuan, et al. A Highly Tolerant Printing for Scalable and Flexible Perovskite Solar Cells[J]. Advanced Functional Materials, 2021, 31(50): 2107726.
[19] ZHANG Jun-wen, BU Tong-le, LI Jing, et al. Two-Step Sequential Blade-Coating of High Quality Perovskite Layers for Efficient Solar Cells and Modules[J]. Journal of Materials Chemistry A, 2020, 8(17): 8447-8454.
[20] YANG Jin-xin, LIM E L, TAN Li, et al. Ink Engineering in Blade-Coating Large-Area Perovskite Solar Cells[J]. Advanced Energy Materials, 2022: 2200975.
[21] WANG Kang, DU Yu-xiang, LIANG Jie, et al. Wettability‐guided Screen Printing of Perovskite Microlaser Arrays for Current‐driven Displays[J]. Advanced Materials, 2020, 32(29): 2001999.
[22] HEO Y J, KIM J E, WEERASINGHE H, et al. Printing-Friendly Sequential Deposition via Intra-Additive Approach for Roll-to-Roll Process of Perovskite Solar Cells[J]. Nano Energy, 2017, 41: 443-451.
[23] WEI Zi, ZHIWEN Jin, SHENGZHONG Liu, et al. Flexible perovskite solar cells based on green, continuous roll-to-roll printing technology[J]. Journal of Energy Chemistry, 2018(4): 971-989.
[24] LIANG Chao, LI Peng-wei, GU Hao, et al. One-Step Inkjet Printed Perovskite in Air for Efficient Light Harvesting[J]. Solar RRL, 2018, 2(2): 1700217.
[25] MULLIN J W. Crystallization[M]. 4th ed. Oxford: Butterworth-Heinemann, 2001: 182-201.
[26] JUNG M, JI S G, KIM G, et al. Perovskite Precursor Solution Chemistry: From Fundamentals to Photovoltaic Applications[J]. Chemical Society Reviews, 2019, 48(7): 2011-2038.
[27] LIU Yang, LI Fu-shan, QIU Li-chun, et al. Fluorescent Microarrays of in Situ Crystallized Perovskite Nanocomposites Fabricated for Patterned Applications by Using Inkjet Printing[J]. ACS Nano, 2019, 13(2): 2042-2049.
[28] MATHIES F, LIST-KRATOCHVIL E J W, UNGER E L. Advances in Inkjet‐printed Metal Halide Perovskite Photovoltaic and Optoelectronic Devices[J]. Energy Technology, 2020, 8(4): 1900991.
[29] CHENG Ya-jie, WU Hang-juan, MA Jun-jie, et al. Droplet Manipulation and Crystallization Regulation in Inkjet-Printed Perovskite Film Formation[J]. CCS Chemistry, 2022, 4(5): 1465-1485.
[30] WEI Z, CHEN H, YAN K, et al. Inkjet Printing and Instant Chemical Transformation of a CH3NH3PbI3/ Nanocarbon Electrode and Interface for Planar Perovskite Solar Cells[J]. Angewandte Chemie (International Ed in English), 2014, 53(48): 13239-13243.
[31] New Energy and Industrial Technology Developent Organization. New Energy Technology Department [EB/OL]. (2021-05-12) [2022-07-31] https://www.nedo.go.jp/english/ (accessed February 2020)
[32] ZHOU Lu, YANG Lei, YU Meng-jie, et al. Inkjet-Printed Small-Molecule Organic Light-Emitting Diodes: Halogen-Free Inks, Printing Optimization, and Large-Area Patterning[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40533-40540.
[33] EGGERS H, GHARIBZADEH S, KOCH S, et al. Perovskite Solar Cells with Vivid, Angle-Invariant, and Customizable Inkjet-Printed Colorization for Building-Integrated Photovoltaics[J]. Solar RRL, 2022, 6(4): 2100897.
[34] LI Ze-hua, LI Peng-wei, CHEN Gang-shu, et al. Ink Engineering of Inkjet Printing Perovskite[J]. ACS Applied Materials & Interfaces, 2020, 12(35): 39082-39091.
[35] ZHANG Li-hua, CHEN Shi, WANG Xing-zhu, et al. Ambient Inkjet-printed High-Efficiency Perovskite Solar Cells: Manipulating the Spreading and Crystallization Behaviors of Picoliter Perovskite Droplets[J]. Solar RRL, 2021, 5(5): 2100106.
[36] FAIRFIELD D J, SAI H, NARAYANAN A, et al. Structure and Chemical Stability in Perovskite-Polymer Hybrid Photovoltaic Materials[J]. Journal of Materials Chemistry A, 2019, 7(4): 1687-1699.
[37] PATHAK C S, PARAMASIVAM G, MATHIES F, et al. PTB7 as an Ink-Additive for Spin-Coated Versus Inkjet-Printed Perovskite Solar Cells[J]. ACS Applied Energy Materials, 2022, 5(4): 4085-4095.
[38] LAN Shu-qiong, ZHONG Jian-feng, WANG Xiao-yan. Impact of Inkjet Printing Parameters on the Morphology and Device Performance of Organic Photovoltaics[J]. Journal of Physics D: Applied Physics, 2021, 54(46): 465105.
[39] WANG Gang, LIAO Li-ping, NIU Lian-bin, et al. Nuclei Position-Control and Crystal Growth-Guidance on Frozen Substrates for High-Performance Perovskite Solar Cells[J]. Nanoscale, 2019, 11(25): 12108-12115.
[40] EGGERS H, SCHACKMAR F, ABZIEHER T, et al. Inkjet‐printed Micrometer-thick Perovskite Solar Cells with Large Columnar Grains[J]. Advanced Energy Materials, 2020, 10(6): 1903184.
[41] LIANG Q, LIU K, SUN M, et al. Manipulating Crystallization Kinetics in High-Performance Blade-Coated Perovskite Solar Cells via Cosolvent-Assisted Phase Transition[J]. Adv Mater, 2022, 34(16): 2200276.
[42] CHEN S, DAI X, XU S, et al. Stabilizing Perovskite-Substrate Interfaces for High-Performance Perovskite Modules[J]. Science, 2021, 373(6557): 902-907.
[43] BRABEC C J, DURRANT J R. Solution-processed Organic Solar Cells[J]. MRS Bulletin, 2008, 33(7): 670-675.
[44] THI KIM C M, ATOURKI L, OUAFI M, et al. A Synopsis of Progressive Transition in Precursor Inks Development for Metal Halide Perovskites-Based Photovoltaic Technology[J]. Journal of Materials Chemistry A, 2021, 9(47): 26650-26668.
[45] AYDIN E, DE B M, DE W S. Defect and contact passivation for perovskite solar cells[J]. Advanced Materials, 2019, 31(25): 1900428.
[46] PHAM N D, TIONG V T, CHEN Peng, et al. Enhanced Perovskite Electronic Propertiesa Modified Lead(Ii) Chloride Lewis Acid-Base Adduct and Their Effect in High-Efficiency Perovskite Solar Cells[J]. Journal of Materials Chemistry A, 2017, 5(10): 5195-5203.
[47] DENG Y, VAN BRACKLE C H, DAI X, et al. Tailoring Solvent Coordination for High-Speed, Room- Temperature Blading of Perovskite Photovoltaic Films[J]. Sci Adv, 2019, 5(12): 7537.
[48] LIANG Q, LIU K, SUN M, et al. Manipulating Crystallization Kinetics in High-Performance Blade-Coated Perovskite Solar Cells via Cosolvent-Assisted Phase Transition[J]. Adv Mater, 2022, 34(16): 2200276.
[49] LI H, BU T, LI J, et al. Ink Engineering for Blade Coating FA-Dominated Perovskites in Ambient Air for Efficient Solar Cells and Modules[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 18724-18732.
[50] ABBAS M, CAI B, HU J, et al. Improving the Photovoltage of Blade-Coated MAPbI3Perovskite Solar Cells via Surface and Grain Boundary Passivation with Π-Conjugated Phenyl Boronic Acids[J]. ACS Appl Mater Interfaces, 2021, 13(39): 46566-46576.
[51] BARROWS A T, PEARSON A J, KWAK C K, et al. Efficient Planar Heterojunction Mixed-Halide Perovskite Solar Cells DepositedSpray-Deposition[J]. Energy & Environmental Science, 2014, 7(9): 2944-2950.
[52] GAMLIEL S, DYMSHITS A, AHARON S, et al. Micrometer Sized Perovskite Crystals in Planar Hole Conductor Free Solar Cells[J]. The Journal of Physical Chemistry C, 2015, 119(34): 19722-19728.
[53] CHEN Y, HE M, PENG J, et al. Structure and Growth Control of Organic-Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2016, 3(4): 1500392.
[54] MAJUMDER M, RENDALL C, LI M, et al. Insights into the Physics of Spray Coating of SWNT Films[J]. Chemical Engineering Science, 2009, 65(6): 2000-2008.
[55] HONG S C, LEE G, HA K, et al. Precise Morphology Control and Continuous Fabrication of Perovskite Solar Cells Using Droplet-Controllable Electrospray Coating System[J]. ACS Applied Materials & Interfaces, 2017, 9(9): 7879-7884.
[56] YANG Zhi, WANG Min-qiang, LI Jun-jie, et al. Spray-Coated CsPbBr3Quantum Dot Films for Perovskite Photodiodes[J]. ACS Applied Materials & Interfaces, 2018, 10(31): 26387-26395.
[57] SMITH J A, GAME O S, BISHOP J E, et al. Rapid Scalable Processing of Tin Oxide Transport Layers for Perovskite Solar Cells[J]. ACS Applied Energy Materials, 2020, 3(6): 5552-5562.
[58] BISHOP J E, READ C D, SMITH J A, et al. Fully Spray-Coated Triple-Cation Perovskite Solar Cells[J]. Scientific Reports, 2020, 10(1): 6610.
[59] HUANG Fu-zhi, DKHISSI Y, HUANG Wen-chao, et al. Gas-Assisted Preparation of Lead Iodide Perovskite Films Consisting of a Monolayer of Single Crystalline Grains for High Efficiency Planar Solar Cells[J]. Nano Energy, 2014, 10: 10-18.
[60] LI H, CAO K, CUI J, et al. 14.7% Efficient Mesoscopic Perovskite Solar Cells Using Single Walled Carbon Nanotubes/Carbon Composite Counter Electrodes[J]. Nanoscale, 2016, 8(12): 6379-6385.
[61] LIU Z, ZHANG M, XU X, et al. P-Type Mesoscopic NiO as an Active Interfacial Layer for Carbon Counter Electrode Based Perovskite Solar Cells[J]. Dalton Transactions (Cambridge, England, 2015, 44(9): 3967-3973.
[62] GIACOMO F D, ZARDETTO V, D'EPIFANIO A, et al. Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV-Irradiated TiO2Scaffolds on Plastic Substrates[J]. Advanced Energy Materials, 2015, 5(8): 1401808.
[63] HOWARD I A, ABZIEHER T, HOSSAIN I M, et al. Coated and Printed Perovskites for Photovoltaic Applications[J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(26): 1806702.
[64] WANG Hong-yu, HUANG Zeng-qi, XIAO Shu-qin, et al. AnBifacial Passivation Strategy for Flexible Perovskite Solar Module with Mechanical Robustness by Roll-to-Roll Fabrication[J]. Journal of Materials Chemistry A, 2021, 9(9): 5759-5768.
[65] BI Cheng, CHEN Bo, WEI Hao-tong, et al. Efficient Flexible Solar Cell Based on Composition-Tailored Hybrid Perovskite[J]. Advanced Materials (Deerfield Beach, Fla), 2017, 29(30): 1605900.
[66] KIM Y Y, YANG T Y, SUHONEN R, et al. Gravure-Printed Flexible Perovskite Solar Cells: Toward Roll-to-Roll Manufacturing[J]. Advanced Science (Weinheim, Baden- Wurttemberg, Germany), 2019, 6(7): 1802094.
[67] ZUO Chuan-tian, VAK D, ANGMO D, et al. One-step Roll-to-roll Air Processed High Efficiency Perovskite Solar Cells[J]. Nano Energy, 2018, 46: 185-192.
[68] ZUO C, DING L. An 80.11% FF Record Achieved for Perovskite Solar Cells by Using the NH4Cl Additive[J]. Nanoscale, 2014, 6(17): 9935-9938.
[69] DONG Liu-bing, LIANG Ge-meng, XU Cheng-jun, et al. Multi Hierarchical Construction-Induced Superior Capacitive Performances of Flexible Electrodes for Wearable Energy Storage[J]. Nano Energy, 2017, 34: 242-248.
[70] MOSTAFA O, FEI Zheng, AARON S, et al. Millimeter-Sized Clusters of Triple Cation Perovskite Enables Highly Efficient and Reproducible Roll-to-Roll Fabricated Inverted Perovskite Solar Cells[J]. Advanced Functional Materials, 2021, 32(12): 2110700.
[71] YUSOFF A R, KIM J, JANG J, et al. New Horizons for Perovskite Solar Cells Employing DNA-CTMA as the Hole-Transporting Material[J]. ChemSusChem, 2016, 9(13): 1736-1742.
[72] HOU J, WANG Z, CHEN P, et al. Intermarriage of Halide Perovskites and Metal-Organic Framework Crystals[J]. Angewandte Chemie (International Ed in English), 2020, 59(44): 19434-19449.
[73] KANG Yi-fei, LI Rong, WANG An-ran, et al. Ionogel-Perovskite Matrix Enabling Highly Efficient and Stable Flexible Solar Cells towards Fully-R2R Fabrication[J]. Energy & Environmental Science, 2022, 15(8): 3439-3448.
[74] SWARTWOUT R, PATIDAR R, BELLIVEAU E, et al. Predicting Low Toxicity and Scalable Solvent Systems for High-Speed Roll-to-Roll Perovskite Manufacturing[J]. Solar RRL, 2022, 6(3): 2100567.
[75] BABAYIGIT A, ETHIRAJAN A, MULLER M, et al. Toxicity of Organometal Halide Perovskite Solar Cells[J]. Nature Materials, 2016, 15(3): 247-251.
[76] YANG Chen-chen, LIU Dian-yi, BATES M, et al. How to Accurately Report Transparent Solar Cells[J]. Joule, 2019, 3(8): 1803-1809.
[77] ZHANG Fei, XIAO Chuan-xiao, CHEN Xi-han, et al. Self-seeding Growth for Perovskite Solar Cells with Enhanced Stability[J]. Joule, 2019, 3(6): 1452-1463.
[78] ALHARBI E A, BAUMELER T P, KRISHNA A, et al. Formation of High-performance Multi-cation Halide Perovskites Photovoltaics by δ-CsPbI3/δ-RbPbI3Seed-assisted Heterogeneous Nucleation[J]. Advanced Energy Materials, 2021, 11(16): 2003785.
[79] SHEN Zhi-chao, HAN Qi-feng, LUO Xin-hui, et al. Crystal-Array-Assisted Growth of a Perovskite Absorption Layer for Efficient and Stable Solar Cells[J]. Energy & Environmental Science, 2022, 15(3): 1078-1085.
[80] WANG S, SHEN W, CHU Y, et al. Mesoporous-Carbon- Based Fully-Printable All-Inorganic Monoclinic CsPbBr3Perovskite Solar Cells with Ultrastability under High Temperature and High Humidity[J]. The Journal of Physical Chemistry Letters, 2020, 11(22): 9689-9695.
[81] Li Dai-yu, JIANG Pei, ZHANG Wen-hao, et al. Series Resistance Modulation for Large-Area Fully Printable Mesoscopic Perovskite Solar Cells[J]. Solar RRL, 2022, 6(3): 2100554.
[82] LI Feng, GONG Chen-xiang, FAN Bao-jin, et al. 3D Network-Assisted Crystallization for Fully Printed Perovskite Solar Cells with Superior Irradiation Stability[J]. Advanced Functional Materials, 2022: 2206412.
[83] LI Zong-cai, XING Zhi, PENG Hai-bin, et al. Reactive Inhibition Strategy for Triple-cation Mixed-halide Perovskite Ink with Prolonged Shelf-life[J]. Advanced Energy Materials, 2022, 12(28): 2200650.
Printing Manufacturing of Perovskite Solar Cells Based on Regulation of Nucleation and Crystallization
ZHANG Jia-hao1a, DING Yi-hao1b, LEI Ying1a, XU Zi-han1b, SHI Jian-tao1a, ZHANG Yi-qiang1a, SONG Yan-lin2
(1. a. College of Chemistry b. International College, Zhengzhou University, Zhengzhou 450001, China; 2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China)
Organic-inorganic hybrid perovskite solar cells (PSCs) have attracted great attentions from both the researchers and industrial professionals due to the excellent photoelectric conversion performance and low-cost solution processing. The work aims to solve the direct challenge of converting the laboratory spin coating process into a process of large-scale repeated production. Printing manufacturing technology was an effective means to cope with the challenge due to advantages of low cost, large scale, high yield, suitability for flexible substrates, etc. The nucleation and crystallization process of perovskite films was thoroughly sorted out and summarized, which was the prerequisite for printing high-quality perovskite films and fabricating large-area high-performance PSCs. The basic theories of thermodynamics and kinetics of perovskite nucleation and crystallization are analyzed. From the perspective of perovskite nucleation and crystallization regulation, the research status of various printing processes to manufacture large-area perovskite films and photovoltaic devices is evaluated accordingly. It is considered that the three steps of “upgrading preparation technology, innovating material system and improving stability” will set off a new wave of perovskite industrialization.
nucleation and crystallization; photoelectric conversion; perovskite solar cell; printing technology
TM914.4
A
1001-3563(2022)19-0056-12
10.19554/j.cnki.1001-3563.2022.19.006
2022–07–31
國(guó)家自然科學(xué)基金(51803217,51773206,91963212,51961145102);國(guó)家重點(diǎn)研發(fā)計(jì)劃(2018YFA0208501);河南省大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃(202210459173)
張家浩(2002—),男,本科生,主攻鈣鈦礦光伏材料。
宋延林(1969—),男,博士,研究員,主要研究方向?yàn)樾畔⒐δ懿牧?、光子晶體、印刷電子和綠色印刷材料與技術(shù);張懿強(qiáng)(1985—),男,博士,教授,主要研究方向?yàn)橛∷⒉牧吓c技術(shù)、低維鈣鈦礦和光電器件制造。
責(zé)任編輯:曾鈺嬋