詹忠根
轉(zhuǎn)錄因子調(diào)控青蒿素生物合成的作用機(jī)制研究進(jìn)展
詹忠根
浙江經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院生物制藥教研室,浙江 杭州 310018
青蒿素是從藥用植物黃花蒿中分離的一種倍半萜內(nèi)酯,廣泛應(yīng)用于瘧疾治療,野生資源含量較低。為緩解持續(xù)增加的需求,嘗試提高青蒿素含量或產(chǎn)量的研究成為熱點(diǎn)課題。轉(zhuǎn)錄因子具有調(diào)節(jié)代謝途徑中一個(gè)或多個(gè)基因表達(dá)的作用,據(jù)報(bào)道,已有多個(gè)轉(zhuǎn)錄因子家族參與調(diào)節(jié)青蒿素的生物合成和積累,干預(yù)轉(zhuǎn)錄因子表達(dá)是提高青蒿素含量或產(chǎn)量的重要手段。從轉(zhuǎn)錄因子調(diào)控黃花蒿腺毛形成與發(fā)育和轉(zhuǎn)錄因子調(diào)控青蒿素生物合成2個(gè)方面綜述青蒿素的生物合成機(jī)制,以期為青蒿素代謝的轉(zhuǎn)錄調(diào)控研究提供參考。
青蒿素;轉(zhuǎn)錄因子;生物合成;腺毛發(fā)育;激素信號(hào);光信號(hào);逆境脅迫
青蒿素是從藥用植物黃花蒿L(fēng).中分離的一種含有“過(guò)氧橋”結(jié)構(gòu)(1,2,4-三烷環(huán))的倍半萜內(nèi)酯(圖1),廣泛應(yīng)用于瘧疾治療。全球每年新增瘧疾病例連續(xù)多年超過(guò)2億,加之青蒿素及其衍生物還具有抗病毒、抗腫瘤、抗炎、抗氧化及治療糖尿病、肺結(jié)核等潛力,致使其國(guó)際需求持續(xù)增加[1-2]。但青蒿素僅分布于黃花蒿葉片、芽和花表面的分泌性腺毛(glandular secretory trichomes,GSTs),野生資源含量較低(占植物干質(zhì)量的0.1%~1.0%)且不穩(wěn)定[3]。為緩解日益突出的供需矛盾,近年來(lái)嘗試了多種方法試圖提高青蒿素的含量或產(chǎn)量,如成功培育青蒿素含量超過(guò)2%(干質(zhì)量)的高產(chǎn)品種[4],利用酵母工程菌半合成青蒿素初步達(dá)到可商業(yè)化的工藝水平[5],抑制競(jìng)爭(zhēng)代謝途徑關(guān)鍵酶(鯊烯合成酶)基因獲得青蒿素質(zhì)量分?jǐn)?shù)為31.4 mg/g的高產(chǎn)轉(zhuǎn)基因植株[6],過(guò)表達(dá)青蒿素生物合成關(guān)鍵酶基因或轉(zhuǎn)錄因子基因使青蒿素含量成倍增加[7-8],以及利用異源宿主[9]或黃花蒿自交系非GSTs細(xì)胞合成青蒿素[10]等研究為提高青蒿素產(chǎn)量做出了有益探索。
圖1 青蒿素的化學(xué)結(jié)構(gòu)
盡管上述研究未能從根本上解決青蒿素供應(yīng)不足或有效降低青蒿素生產(chǎn)成本的難題,卻為人們深入了解青蒿素生物合成及其調(diào)控機(jī)制提供了很好的幫助。目前,青蒿素生物合成途徑已基本明確[11],黃花蒿基因組測(cè)序也已完成[12],但要進(jìn)一步提高青蒿素生物合成能力仍缺乏良好的遺傳轉(zhuǎn)化體系,通過(guò)串聯(lián)表達(dá)等技術(shù)靶向生產(chǎn)青蒿素將同時(shí)面臨鑒定大量結(jié)構(gòu)基因和轉(zhuǎn)化效率低等困難。青蒿素生物合成基因的時(shí)空表達(dá)受不同轉(zhuǎn)錄因子的嚴(yán)格調(diào)控,隨著青蒿素生物合成過(guò)程的基本闡明,科學(xué)工作者更加注重青蒿素生物合成相關(guān)的轉(zhuǎn)錄因子研究并取得長(zhǎng)足進(jìn)展。因此,本文從轉(zhuǎn)錄因子調(diào)控黃花蒿腺毛形成與發(fā)育和轉(zhuǎn)錄因子調(diào)控青蒿素生物合成2個(gè)方面綜述其調(diào)控青蒿素生物合成的作用機(jī)制,以期為青蒿素代謝的轉(zhuǎn)錄調(diào)控研究提供參考。
由于基因擴(kuò)張,黃花蒿中的轉(zhuǎn)錄因子數(shù)量眾多,基因組中發(fā)現(xiàn)2717個(gè),尤其是香豆酸-3-羥化酶(p-coumarate 3-hydroxylase,C3H)、遠(yuǎn)紅色受損應(yīng)答1(far-red impaired response 1,F(xiàn)AR1)和根瘤起始類蛋白(nodule inception-like protein,NLP)3個(gè)轉(zhuǎn)錄因子家族數(shù)量遠(yuǎn)超其他物種[12],轉(zhuǎn)錄組中檢測(cè)到55個(gè)家族的1588個(gè)轉(zhuǎn)錄因子,其中乙烯響應(yīng)因子(ethylene resposive factor,ERF)家族成員最多,達(dá)123個(gè),且堿性螺旋-環(huán)-螺旋轉(zhuǎn)錄因子(basic helix-loop-helix transcription factors,bHLH)、C2H2鋅指結(jié)構(gòu)轉(zhuǎn)錄因子(Cys2/His2-type zinc finger protein,C2H2)、NAC轉(zhuǎn)錄因子(NAM-ATAF1/2-CUC2,NAC)、C3H、WRKYGQK結(jié)構(gòu)域鋅指型轉(zhuǎn)錄因子(WRKYGQK domain zincfinger motif,WRKY)、MYB轉(zhuǎn)錄因子、堿性亮氨酸拉鏈轉(zhuǎn)錄因子(basic leucine zipper,bZIP)和GRAS轉(zhuǎn)錄因子家族成員也超60個(gè)[13]。由于轉(zhuǎn)錄因子能有效調(diào)節(jié)植物次生代謝的生物合成,為厘清青蒿素生物合成轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò),近年來(lái)基于基因組數(shù)據(jù)[12]、轉(zhuǎn)錄組測(cè)序[13]、文庫(kù)篩選[14]相繼發(fā)現(xiàn)AP2/ERF、bHLH、MYB、NAC、WRKY和bZIP等多個(gè)轉(zhuǎn)錄因子家族成員參與青蒿素的生物合成調(diào)控。如Shen等[12]應(yīng)用熱力圖從黃花蒿全基因組數(shù)據(jù)中鑒定了15個(gè)調(diào)控青蒿素生物合成的轉(zhuǎn)錄因子,Hao等[13]發(fā)現(xiàn)ERF、MYB、bHLH、HD-ZIP、賴氨酸特異性組蛋白去甲基化酶(lysine specific demethylase,LSD)和E2F/DP家族成員介導(dǎo)光照下茉莉酸(jasmonate,JA)處理的青蒿素生物合成,Pan等[15]用基因芯片檢測(cè)到WRKY家族成員AaWRKY11、AaWRKY14參與UV-B輻照處理后的青蒿素生物合成,在光與赤霉素(gibberellins,GA)協(xié)同提升青蒿素生物合成的研究中發(fā)現(xiàn)、、、、等179個(gè)轉(zhuǎn)錄因子基因與紫穗槐二烯合成酶(amorpha-4,11-diene synthase,)基因共表達(dá),、、、等161轉(zhuǎn)錄因子基因與細(xì)胞色素P450依賴性羥化酶基因(cytochrome P450 monooxygenase,)共表達(dá)[16]。此外,還對(duì)AaMYB1[17]等近40個(gè)轉(zhuǎn)錄因子的調(diào)控功能進(jìn)行了較為詳盡的研究(表1),為揭示轉(zhuǎn)錄因子調(diào)控青蒿素生物合成機(jī)制及利用基因工程技術(shù)提高青蒿素含量打下了堅(jiān)實(shí)的研究基礎(chǔ)。
表1 青蒿素生物合成相關(guān)轉(zhuǎn)錄因子
Table 1 Transcription factors of artemisinin biosynthesis
類型轉(zhuǎn)錄因子名稱功能文獻(xiàn) MYBAaMYB1可激活腺毛形成必需基因GL1、GL2表達(dá)及GA4合成與降解,共同促進(jìn)GSTs形成,促進(jìn)CYP71AV1、ADS基因表達(dá)17 AaMYB2AaMYB2過(guò)表達(dá)植株中,AaHD1、AaMYB1、CYP71AV1基因表達(dá)量下降,腺毛密度降低18 AaMYB4響應(yīng)UVB輻照,正調(diào)控ADS、DBR2基因表達(dá)19 AaMYB5/AaMYB16AaMYB5響應(yīng)JA刺激,抑制腺毛形成,形成AaHD1-AaMYB5復(fù)合體調(diào)控AaGSW2轉(zhuǎn)錄因子;AaMYB16促進(jìn)腺毛形成,形成AaHD1-AaMYB16復(fù)合體調(diào)控AaGSW2轉(zhuǎn)錄因子20 AaMYB15響應(yīng)暗處理和JA刺激,負(fù)調(diào)控ADS、CYP71AV1、DBR2、ALDH1和AaORA基因表達(dá)21 AaMYB17正調(diào)控GSTs形成22 AaMIXTA1通過(guò)促進(jìn)角質(zhì)層、蠟質(zhì)形成,進(jìn)而正調(diào)控腺毛發(fā)育23
續(xù)表1
HD1-同源結(jié)構(gòu)域蛋白1 GSW2- GST-特異性WRKY轉(zhuǎn)錄因子 TLR1/TLR2-腺毛負(fù)調(diào)節(jié)因子1/2 TAR2-腺毛和青蒿素調(diào)節(jié)因子2 HY5-下胚軸伸長(zhǎng)轉(zhuǎn)錄因子 TGA-TGACG基序結(jié)合因子 PIFs-光敏色素互作因子 MYC2-骨髓細(xì)胞組織增生因子2 EIN3/EIL-乙烯不敏感因子3/乙烯不敏感樣因子3 MeJA-茉莉酸甲酯 ABA-脫落酸 SA-水楊酸
HD1-homeodomain protein 1 GSW2- GST-specific WRKY transcription factor TLR1/TLR2-trichomeless regulator 1/2 TAR2-trichome and artemisinin regulator 2 HY5-elongated hypocotyl 5 TGA-TGACG motif-binding factor PIFs-phytochrome interacting factors MYC2-myelocytomatosis 2 EIN3/EIL-ethylene-insensitive 3/EIN3-like MeJA-methyl jasmonate ABA-abscisic acid SA-salicylic acid
黃花蒿葉片、芽和花表面存在2種多細(xì)胞頭狀腺毛,即GSTs和T型非分泌性腺毛(T-shaped non-glandular trichomes,TNGs)。GSTs由10個(gè)細(xì)胞(2個(gè)基細(xì)胞、2個(gè)頸細(xì)胞、4個(gè)近頂細(xì)胞和2個(gè)頂細(xì)胞)及1個(gè)儲(chǔ)存青蒿素的皮下空間組成,是青蒿素生物合成的主要場(chǎng)所,ADS、CYP71AV1、青蒿素醛Δ11(13)還原酶2(double bond reductase 2,DBR2)和醛脫氫酶1(aldehyde dehydrogenase 1,ALDH1)等青蒿素生物合成關(guān)鍵酶及大量轉(zhuǎn)錄因子基因在GSTs的頂細(xì)胞和近頂細(xì)胞中表達(dá)[14,53]。因此,GSTs數(shù)量越多(或密度越高),生物合成能力越強(qiáng),意味著青蒿素含量越高。然而,GSTs僅占植株干質(zhì)量的2%且易于脫落,以及在GSTs中合成的其他萜類與青蒿素合成存在代謝競(jìng)爭(zhēng)等因素極大阻礙了青蒿素產(chǎn)量的提升,通過(guò)轉(zhuǎn)錄因子促進(jìn)GSTs形成、改善GSTs生長(zhǎng)發(fā)育狀態(tài)是提升藥材整體品質(zhì)的有效策略[10,54]。
研究表明,R2R3-MYB和HD-ZIP IV類轉(zhuǎn)錄因子在GSTs的形成與發(fā)育中扮演重要角色(圖2)。AaMYB1是第1個(gè)從黃花蒿腺毛特異性EST文庫(kù)中分離的腺毛形成相關(guān)轉(zhuǎn)錄因子,位于R2R3-MYB亞家族S13亞組,編碼330 aa,在黃花蒿葉片成熟時(shí)表達(dá)上調(diào)并持續(xù)到花蕾形成。過(guò)表達(dá)可激活腺毛形成必需基因表達(dá)及GA4合成與降解,共同促進(jìn)GSTs形成[17]。AaMYB2能與擬南芥腺毛調(diào)控復(fù)合體蛋白GL3直接作用,過(guò)表達(dá)的植株中、、基因表達(dá)量下降,腺毛密度降低。主要在GSTs基細(xì)胞中表達(dá)的R2R3-MYB S9亞組轉(zhuǎn)錄因子AaMIXTA1促進(jìn)黃花蒿GSTs和TNGs密度增加可能與其正調(diào)控角質(zhì)層、蠟質(zhì)形成有關(guān)。過(guò)表達(dá)AaMIXTA1、RNA干擾和雙熒光素酶報(bào)告基因檢測(cè)均顯示AaMIXTA1正調(diào)控角質(zhì)層形成基因、和蠟質(zhì)形成基因、、表達(dá)[23]。而與AaMIXTA1同源的轉(zhuǎn)錄因子AaMYB17,主要在芽尖等分生組織的GSTs特異表達(dá),其正調(diào)控GSTs形成的作用機(jī)制與AaMIXTA1有所差異,并非通過(guò)調(diào)控角質(zhì)層生物合成基因表達(dá)發(fā)揮作用[22]。研究發(fā)現(xiàn),另一R2R3-MYB轉(zhuǎn)錄因子AaTLR1在AaWOX1介導(dǎo)下與LFY轉(zhuǎn)錄因子AaTLR2結(jié)合,通過(guò)抑制GA合成,下調(diào)腺毛形成正調(diào)控轉(zhuǎn)錄因子、和基因表達(dá)等負(fù)調(diào)控GSTs形成,并下調(diào)、、、基因表達(dá)進(jìn)一步抑制青蒿素生物合成[24]。
除R2R3-MYB外,2種HD-ZIP IV轉(zhuǎn)錄因子AaHD1、AaHD8調(diào)控腺毛形成的機(jī)制研究較為詳盡,兩者既可單獨(dú)發(fā)揮作用,也可通過(guò)相互作用增強(qiáng)活性或共同調(diào)控其他轉(zhuǎn)錄因子活性,促進(jìn)腺毛形成。在外源JA刺激下,AaHD1與抑制蛋白AaJAZ8分離,釋放出的AaHD1促進(jìn)GSTs和TNGs形成,敲除基因,JA促進(jìn)腺毛形成的作用下降[26],而AaHD8可通過(guò)激活角質(zhì)層生物合成關(guān)鍵酶基因表達(dá)間接促進(jìn)腺毛形成[25]。同時(shí),位于上游的AaHD8可與AaHD1啟動(dòng)子L1-box(TAAATGC/TA)結(jié)合,增強(qiáng)AaHD1的調(diào)控活性或與AaMIXTA1形成復(fù)合體,協(xié)同增強(qiáng)對(duì)角質(zhì)層形成及AaHD1的調(diào)控效果[27],此外,AaHD1、AaHD8還可分別調(diào)控AaGSW2、AaTAR2轉(zhuǎn)錄因子的活性,促進(jìn)GSTs形成[25,33]。而2個(gè)調(diào)控作用相反且相互競(jìng)爭(zhēng)的轉(zhuǎn)錄因子AaMYB5、AaMYB16則很大程度依賴與AaHD1的START-SAD結(jié)構(gòu)域結(jié)合,才能發(fā)揮對(duì)AaGSW2轉(zhuǎn)錄因子的調(diào)控作用[20]。由于HD-ZIP轉(zhuǎn)錄因子通常以二聚體形式發(fā)揮調(diào)控作用,深入研究AaHD1/AaHD8的相互作用機(jī)制有助于揭示調(diào)控腺毛形成的特異性調(diào)節(jié)因子。
圖2 轉(zhuǎn)錄因子通過(guò)調(diào)控GSTs形成與發(fā)育對(duì)青蒿素產(chǎn)量的影響
與前述轉(zhuǎn)錄因子調(diào)控功能不同,AP2/ERF轉(zhuǎn)錄因子AaTAR1和S15亞組的MYB轉(zhuǎn)錄因子AaTAR2調(diào)控的是腺毛發(fā)育過(guò)程而不是腺毛形成。在TAR1-RNAi植株中,GSTs頂部細(xì)胞膨脹、GSTs細(xì)胞數(shù)量減少、表皮蠟質(zhì)異常沉積和角質(zhì)層滲透性發(fā)生改變[34]。抑制基因表達(dá),GSTs和TNGs 2種腺毛形態(tài)發(fā)生劇烈變化,腺毛細(xì)胞皺縮,缺乏支持,但過(guò)表達(dá)基因?qū)ο倜螒B(tài)和密度無(wú)明顯影響[25]。此外,也有報(bào)道鋅指蛋白AaSAP1和WRKY轉(zhuǎn)錄因子AaTTG1、AaGL3能響應(yīng)JA誘導(dǎo),正調(diào)控腺毛的發(fā)育,提高腺毛密度,但具體機(jī)制還有待進(jìn)一步解析[55-56]。
通常認(rèn)為,TNGs與GSTs的主要區(qū)別是其不具有分泌和貯存各種次生代謝物的能力,但隨著TNGs青蒿素合成能力的證明[10],以及多種轉(zhuǎn)錄因子(如AaHD1、AaHD8、AaMIXTA1、AaTAR2等)同時(shí)調(diào)控GSTs和TNGs的形成,表明2種腺毛的形成至少在早期階段可能具有相同或相似的分子機(jī)制,為進(jìn)一步開發(fā)非GSTs資源合成青蒿素的研究提供了有力的理論依據(jù)。
以法尼基焦磷酸(famesyl diphosphate,F(xiàn)PP)合成為分界點(diǎn),青蒿素生物合成可分為上游步驟和下游步驟2個(gè)階段(圖3)。青蒿素生物合成上游步驟已比較清楚,有較為公認(rèn)的限速酶和酶促反應(yīng)。其中,甲羥戊酸(mevalonate acid,MVA)途徑是FPP合成的主要貢獻(xiàn)者,阻斷MVA途徑青蒿素含量降低80.4%,而阻斷2-甲基赤蘚醇磷酸(methylerythritol phosphate,MEP)途徑青蒿素含量?jī)H降低14.2%[57]。進(jìn)一步研究表明,MEP途徑關(guān)鍵酶基因僅在含有葉綠體的GSTs近頂細(xì)胞中表達(dá)[58]。FPP合成時(shí),由MEP途徑提供1分子異戊烯基焦磷酸(isopentenyl diphosphate,IPP)先與MVA途徑生成的1分子二甲基烯丙基焦磷酸(dimethylallyl pyrophosphate,DMAPP)合成牻牛兒基二磷酸(geranyl diphosphate,GPP),然后轉(zhuǎn)運(yùn)至頂細(xì)胞與胞質(zhì)中MVA途徑提供的1分子IPP形成通用前體FPP[59]。在下游步驟,F(xiàn)PP先被ADS催化生成紫穗槐二烯(amorpha-4,11-diene,AD),再經(jīng)CYP71AV1催化依次生成青蒿醇、青蒿醛和青蒿酸[60-62]。值得注意的是,青蒿醛既可在DBR2、ALDH1催化下形成二氫青蒿醛、二氫青蒿酸,并最終生成青蒿素[63-64],也可被ALDH1、CYP71AV1催化生成青蒿酸而最終形成青蒿素B[62,65]??梢?jiàn),DBR2酶的活性對(duì)于青蒿醛是否被DBR2有效催化形成二氫青蒿醛至關(guān)重要,是能否得到高含量青蒿素的關(guān)鍵。另外,青蒿醇也可形成其他中間產(chǎn)物參與青蒿素合成,如青蒿醇可被催化形成二氫青蒿醇[63],再被CYP71AV1和ALDH1催化形成二氫青蒿醛[二氫青蒿醛也可被二氫青蒿醛還原酶1(dihydroartemisinic aldehyde reductase 1,RED1)還原成二氫青蒿醇],參與青蒿素合成[66-67]。但下游步驟仍存在一些爭(zhēng)議之處:如有研究認(rèn)為青蒿酸可經(jīng)青蒿素B和青蒿烯進(jìn)而形成青蒿素[68],而前體飼喂研究表明二氫青蒿酸才是青蒿素的直接前體,青蒿酸并不能轉(zhuǎn)化為二氫青蒿酸和青蒿素,其主要代謝產(chǎn)物是青蒿素B[60,65]。再如,盡管有研究證明二氫青蒿酸轉(zhuǎn)化成青蒿素及青蒿酸轉(zhuǎn)化成青蒿素B的過(guò)程是一種自發(fā)的光氧化反應(yīng),而非酶促反應(yīng)[69],但也有研究認(rèn)為,青蒿素含有過(guò)氧橋鍵,可能存在一種過(guò)氧化物酶或其他一系列氧化酶催化二氫青蒿酸轉(zhuǎn)化成青蒿素[70]?,F(xiàn)已證明,過(guò)氧化物酶在黃花蒿無(wú)細(xì)胞系系統(tǒng)中間接參與向青蒿素的生物轉(zhuǎn)化[71],并發(fā)現(xiàn)3種與青蒿素含量相關(guān)的過(guò)氧化物酶[72-74],如果能分離出相應(yīng)的酶,將極大促進(jìn)青蒿素的合成生物學(xué)研究。
圖3顯示多種限速酶控制著青蒿素的合成進(jìn)程,這些酶的基因表達(dá)水平受轉(zhuǎn)錄因子嚴(yán)格調(diào)控,迄今已報(bào)道AP2/ERF、bHLH、MYB、NAC、WRKY、bZIP、HD-ZIP IV、TCP、SPL、YABBY等家族的眾多轉(zhuǎn)錄因子具有調(diào)控青蒿素生物合成關(guān)鍵酶基因、表達(dá)的作用。由于這些基因的啟動(dòng)子區(qū)域含有多種轉(zhuǎn)錄因子結(jié)合位點(diǎn),如AP2/ERF結(jié)合位點(diǎn)RAA基序、WRKY結(jié)合位點(diǎn)W-Box、bZIP結(jié)合位點(diǎn)ABRE基序、MYB結(jié)合位點(diǎn)E-Box、bHLH結(jié)合位點(diǎn)G-box[75],因此,在已有研究中,大部分轉(zhuǎn)錄因子能與相應(yīng)位點(diǎn)特異性結(jié)合,激活基因表達(dá),直接正調(diào)控青蒿素生物合成。如最近發(fā)現(xiàn)AaWRKY17和AabZIP9能與ADS啟動(dòng)子W-box基序、“ACGT”順式作用元件結(jié)合,上調(diào)基因表達(dá),過(guò)表達(dá)植株中青蒿素、雙氫青蒿素和青蒿酸含量分別提高23.2%~67.1%、34.5%~92.8%、40.4%~121.2%[30,38]。AaSPL2能與啟動(dòng)子的GTAC-bow基序結(jié)合,調(diào)控基因轉(zhuǎn)錄,過(guò)表達(dá)植株中青蒿素含量提高33%~86%[49]。AaYABBY5能直接與、啟動(dòng)子結(jié)合,或以其他方式間接上調(diào)、基因表達(dá),過(guò)表達(dá)植株中雙氫青蒿素和青蒿素含量顯著提高[50]。同時(shí)也有部分轉(zhuǎn)錄因子通過(guò)與其他轉(zhuǎn)錄因子相互作用而間接正調(diào)控青蒿素生物合成,如AaMYB2和bHLH類轉(zhuǎn)錄因子AaPIF3對(duì)基因表達(dá)均有促進(jìn)作用,過(guò)表達(dá)AaPIF3,青蒿素含量提高55.97%~65.21%[12,42],但AaPIF3只能通過(guò)AaERF1起間接調(diào)控作用[76];乙烯信號(hào)關(guān)鍵因子AaEIN3通過(guò)促進(jìn)葉片衰老基因表達(dá),加速黃花蒿葉片衰老,進(jìn)而減弱、、和基因表達(dá),降低青蒿素積累[51]。還有一些轉(zhuǎn)錄因子(如AaMYB15)作為負(fù)調(diào)控因子參與青蒿素生物合成[21]。此外,AaWRKY40、AaPWA73483、AaPWA66309等多個(gè)轉(zhuǎn)錄因子的調(diào)控機(jī)制也在繼續(xù)研究之中[31]。
G3P-甘油醛-3-磷酸酯 HMGS-3-羥基-3-甲基戊二酸單酰輔酶A合酶 HMGR-3-羥基-3甲基-戊二酸單酰輔酶A還原酶 DXS-1-脫氧-D-木酮糖-5-磷酸合成酶 DXR-1-脫氧-D-木酮糖-5-磷酸還原酶 IDS-異戊烯基焦磷酸異構(gòu)酶 FPS-法呢基焦磷酸合酶 DBR2-雙鍵還原酶2 CPR-細(xì)胞色素P450還原酶
外源JA/MeJA、SA、ABA和GA等多種激素促進(jìn)青蒿素生物合成離不開轉(zhuǎn)錄因子的參與,如ABA可激活A(yù)abZIP1轉(zhuǎn)錄因子上調(diào)和表達(dá)[37]。JA能激活多種轉(zhuǎn)錄因子,促進(jìn)GSTs發(fā)育及激活青蒿素生物合成基因轉(zhuǎn)錄[13,77]。目前,轉(zhuǎn)錄因子參與激素信號(hào)傳導(dǎo)調(diào)控青蒿素生物合成的研究已獲得較大進(jìn)展,部分重要調(diào)控機(jī)制逐步得到揭示。
3.2.1 調(diào)控JAs信號(hào)傳導(dǎo) JAs是研究最多也是促進(jìn)青蒿素生物合成最有效的植物激素,能上調(diào)青蒿素合成酶基因、、和轉(zhuǎn)錄因子表達(dá)、促進(jìn)GSTs形成與發(fā)育,提高青蒿素及其衍生物含量[47,77]。JA信號(hào)介導(dǎo)的轉(zhuǎn)錄調(diào)控核心模型是SCFCOI1-JAZs-MYC2復(fù)合體,在JA作用下,轉(zhuǎn)錄抑制因子JAZ蛋白降解,釋放出MYC2等轉(zhuǎn)錄因子激活下游JAs應(yīng)答基因表達(dá)。研究表明,轉(zhuǎn)錄因子參與JA調(diào)控青蒿素生物合成的作用包括2個(gè)方面,一是激活JA生物合成關(guān)鍵基因,如AaTCP14上調(diào)丙二烯氧化環(huán)化酶基因(allene oxide cyclase,)和12-羰-植物二烯酸還原酶3基因(12-oxo-phytodienoic acid reductase 3,)表達(dá),促進(jìn)內(nèi)源性JA生物合成,進(jìn)而提高青蒿素產(chǎn)量[47]。二是激活JAs應(yīng)答因子,促進(jìn)JA信號(hào)傳導(dǎo),上調(diào)青蒿素生物合成基因表達(dá)。早期發(fā)現(xiàn),在MeJA作用下,AP2/ERF轉(zhuǎn)錄因子(AaTAR1、AaERF1、AaERF2)、AaWRKY1、AabHLH1表達(dá)增加,分別與、啟動(dòng)子GCC-box/RAA/CBF2、W-box、E-box結(jié)合,上調(diào)基因表達(dá)[28,34-35,43]。隨著AaORA[36]、AaGSW1[32]、AaMYC2[45]、AaTCP14[47]、AaTCP15[48]等轉(zhuǎn)錄因子功能的相繼確定,JA促進(jìn)青蒿素生物合成的轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò)逐漸被揭示。bHLH轉(zhuǎn)錄因子AaMYC2受AaJAZs負(fù)調(diào)控,既是響應(yīng)JA信號(hào)通路的核心調(diào)節(jié)因子,也是GA信號(hào)抑制子AaDELLAs調(diào)控節(jié)點(diǎn)[78],過(guò)表達(dá)AaMYC2或AaMYC2-like,可激活、啟動(dòng)子G-box基序,提高基因表達(dá)水平,顯著提高青蒿素生物合成能力[45-46]。黃花蒿轉(zhuǎn)錄因子除單獨(dú)調(diào)控青蒿素生物合成基因表達(dá)外,還與其他轉(zhuǎn)錄因子形成復(fù)合體,以級(jí)聯(lián)方式提高轉(zhuǎn)錄調(diào)控效率。如GST特異性WRKY轉(zhuǎn)錄因子AaGSW1除直接上調(diào)表達(dá)外,AaMYC2、AabZIP1(響應(yīng)ABA信號(hào))可分別與AaGSW1啟動(dòng)子G-box、ABRE基序結(jié)合,并通過(guò)AaORA間接上調(diào)、表達(dá),從而在JA信號(hào)傳導(dǎo)上游形成AaMYC2-AaGSW1-AaORA轉(zhuǎn)錄級(jí)聯(lián)調(diào)控模式[32]。AaORA是另一個(gè)在GST特異性表達(dá)的AP2/ERF轉(zhuǎn)錄因子,上調(diào)、、及轉(zhuǎn)錄因子基因表達(dá)[36]?;贏aORA與長(zhǎng)春花(L.) G. Don中調(diào)控萜類吲哚生物堿生物合成的關(guān)鍵轉(zhuǎn)錄因子CrORCAs[79]、煙草L.中調(diào)控尼古丁生物合成的NIC2-基因座關(guān)鍵轉(zhuǎn)錄因子ERFs高度同源[80]及JA信號(hào)下游轉(zhuǎn)錄因子CrORCA2/CrORCA3受CrMYC2調(diào)控[81]等研究結(jié)果,推測(cè)AaORA是JA信號(hào)傳導(dǎo)的重要調(diào)控因子,在青蒿素生物合成調(diào)控中起關(guān)鍵作用(或核心作用)。在JA信號(hào)傳導(dǎo)下游,AaORA轉(zhuǎn)錄因子對(duì)青蒿素生物合成基因的調(diào)控既部分依賴于AaTCP14(AaTCP14與AaORA的C端結(jié)合,形成AaTCP14-AaORA轉(zhuǎn)錄激活復(fù)合體,協(xié)同增強(qiáng)、轉(zhuǎn)錄活性,該復(fù)合體的形成受AaJAZ8負(fù)調(diào)控,且AaJAZ8減弱AaTCP14-AaORA對(duì)的激活作用),又能獨(dú)立行使調(diào)控作用(AaTCP14只能調(diào)控、轉(zhuǎn)錄活性,AaORA還能調(diào)控轉(zhuǎn)錄活性)[47]。與AaTCP14相似,其同源轉(zhuǎn)錄因子AaTCP15也能與AaORA的C端、N端結(jié)合,形成AaTCP15-AaORA復(fù)合體協(xié)同調(diào)控活性(與AaTCP14-AaORA不同的是AaTCP15-AaORA不能激活基因轉(zhuǎn)錄)或直接激活、轉(zhuǎn)錄,推動(dòng)代謝流從青蒿醛向二氫青蒿醛方向轉(zhuǎn)化,提高青蒿素含量[48]。AaMYC2-AaGSW1-AaORA/ AaTCP14(AaTCP15)轉(zhuǎn)錄級(jí)聯(lián)調(diào)控模式的闡明為JAs調(diào)控青蒿素生物合成的動(dòng)態(tài)調(diào)控機(jī)制研究提供了更好的研究平臺(tái)(圖4)。
圖4 JA信號(hào)調(diào)控青蒿素生物合成的AaMYC2-AaGSW1-AaORA/AaTCP14 (AaTCP15) 轉(zhuǎn)錄級(jí)聯(lián)模式
3.2.2 調(diào)控ABA信號(hào)傳導(dǎo) ABA除調(diào)節(jié)干旱、寒冷和滲透脅迫等應(yīng)激反應(yīng)外,也是植物次生代謝的關(guān)鍵調(diào)節(jié)因子。在青蒿素生物合成中,外源ABA激活合成酶基因表達(dá),提高青蒿素含量[82-83]。目前已發(fā)現(xiàn)多種轉(zhuǎn)錄因子參與ABA信號(hào)通路調(diào)控,其中bZIP家族A組能與ABA響應(yīng)元件(ABA-responsive elements,ABRE)結(jié)合,該組中ABF1、ABF2、ABF3、ABI5等是調(diào)控ABA信號(hào)的重要轉(zhuǎn)錄因子,被稱為ABI5-ABF-AREB亞家族。研究發(fā)現(xiàn)黃花蒿中有145個(gè)bZIP轉(zhuǎn)錄因子,其中64個(gè)在GSTs表達(dá),ABI5-ABF-AREB亞家族的AaABF3能激活啟動(dòng)子G-box,上調(diào)基因表達(dá)[39]。AabZIP1的N末端C1結(jié)構(gòu)域含有保守的絲氨酸和蘇氨酸殘基,是響應(yīng)ABA信號(hào)的關(guān)鍵,該結(jié)構(gòu)域變異后AabZIP1無(wú)法響應(yīng)ABA信號(hào)[37]。當(dāng)黃花蒿體內(nèi)ABA增加時(shí),ABA先與AaPYL9受體結(jié)合啟動(dòng)ABA信號(hào)傳導(dǎo),隨后該復(fù)合體與2C型蛋白磷酸酶AaPP2C1結(jié)合(AaPYL9的P89S、H116A被替換以及AaPP2C1第3磷酸化位點(diǎn)基序的G199D被替換或缺失,則兩者相互作用即消除),從而釋放在靜息狀態(tài)下被AaPP2C1抑制的SnRK2類激酶AaAPK1[84-86]。隨著AaAPK1的激活,下游AabZIP1的Ser37位點(diǎn)被AaAPK1磷酸化,繼而激活A(yù)aGSW1、AaORA、AaTCP14/AaTCP15等轉(zhuǎn)錄因子活性,以AabZIP1-AaGSW1-AaTCP14(AaTCP15)/AaORA級(jí)聯(lián)方式或直接與、啟動(dòng)子ABRE基序結(jié)合,上調(diào)青蒿素合成酶基因表達(dá),提高青蒿素及其衍生物含量[32,47-48,86]。
3.2.3 調(diào)控GAs信號(hào)傳導(dǎo) GAs是一種二萜類植物激素,參與種子萌發(fā)、植物開花、環(huán)境脅迫等過(guò)程。在植物體內(nèi),GAs與青蒿素共用萜類生物合成上游途徑,F(xiàn)PP是兩者生物合成分支點(diǎn)。目前,GAs中活性最強(qiáng)的GA3對(duì)青蒿素的調(diào)控作用仍存在一定爭(zhēng)議,有研究認(rèn)為外源GA3可能通過(guò)刺激SA合成,觸發(fā)活性氧生成,從而促進(jìn)青蒿素生物合成基因表達(dá)和/或提高青蒿素合成代謝流以增加青蒿素積累[87-89],也有研究認(rèn)為GA3并未顯著促進(jìn)青蒿素生物合成或增加GSTs數(shù)量(密度),僅促進(jìn)GSTs個(gè)體增大[56]。Chen等[90]研究也指出,真正有效促進(jìn)青蒿素生物合成的是GA4和GA1,而不是GA3。另外,過(guò)表達(dá)GA4/GA1前體GA20/GA9生物合成關(guān)鍵酶基因,促進(jìn)轉(zhuǎn)基因植物枝條數(shù)量增加,株高增長(zhǎng),GSTs個(gè)體增大、密度提高,青蒿素含量增長(zhǎng)2倍[91],該研究進(jìn)一步表明GA4/GA1可能是青蒿素生物合成的主要活性GAs。在GAs信號(hào)通路中,轉(zhuǎn)錄因子同樣發(fā)揮重要作用,當(dāng)植物感受到GA(GA4/GA1)信號(hào)時(shí),R2R3-MYB、HD-ZIP IV、C2H2鋅指蛋白和bHLH轉(zhuǎn)錄因子家族隨即參與GA信號(hào)調(diào)節(jié),AaMYB1促進(jìn)和表達(dá),提高GA9向GA4的轉(zhuǎn)化效率[17],尤其是MYB轉(zhuǎn)錄因子AaMIXTA1表達(dá)顯著上調(diào),并通過(guò)AaHD8正調(diào)控GSTs形成[27,90],或與、、和啟動(dòng)子的GA響應(yīng)元件GARE基序結(jié)合,上調(diào)青蒿素生物合成基因表達(dá)[17]。
3.2.4 調(diào)控SA信號(hào)傳導(dǎo) SA是一種調(diào)節(jié)植物生長(zhǎng)發(fā)育、光合作用、蒸騰作用以及誘導(dǎo)致病基因表達(dá)、促進(jìn)次生代謝產(chǎn)物合成的重要酚類激素。施用外源SA,可激活、等青蒿素生物合成前期基因轉(zhuǎn)錄表達(dá),刺激細(xì)胞產(chǎn)生活性氧,促進(jìn)二氫青蒿酸轉(zhuǎn)化為青蒿素,而對(duì)生物合成后期基因的表達(dá)影響不大[92-93]。在SA信號(hào)通路中,病程相關(guān)基因非表達(dá)子(non-expressor of pathogenesis-related genes,NPR)基因家族及bZIP類轉(zhuǎn)錄因子TGA起著關(guān)鍵作用。NPR包含ANK和BTB/POZ 2個(gè)結(jié)構(gòu)域,通過(guò)ANK結(jié)構(gòu)域介導(dǎo),NPR的BTB/POZ結(jié)構(gòu)域與TGA轉(zhuǎn)錄因子結(jié)合,發(fā)揮調(diào)控作用[94]。黃花蒿中檢測(cè)到6個(gè)TGA轉(zhuǎn)錄因子和5個(gè)基因,其中AaNPR1作為轉(zhuǎn)錄共激活因子與AaTGA6相互作用,增強(qiáng)AaTGA6與啟動(dòng)子TGACG基序的結(jié)合能力,進(jìn)而增加下游基因表達(dá),而AaTGA3則與AaTGA6相互作用形成異二聚體,負(fù)調(diào)控AaTGA6與的結(jié)合。AaTGA6是青蒿素生物合成的重要調(diào)控因子,在過(guò)表達(dá)植株中,mRNA水平增加11~15倍,mRNA水平增加2~3倍,、、基因表達(dá)水平提高1~7倍,青蒿素含量提高90%~120%[40]。
上述研究表明,轉(zhuǎn)錄因子調(diào)控激素信號(hào)的傳導(dǎo)是一個(gè)相當(dāng)復(fù)雜的過(guò)程,加之部分轉(zhuǎn)錄因子,如AaGSW1[32]、AabHLH1[43,95]、AaTCP15[48]等同時(shí)參與調(diào)控2種及2種以上激素信號(hào)應(yīng)答,相互形成多種交叉調(diào)控,大大增加了轉(zhuǎn)錄因子調(diào)控網(wǎng)絡(luò)的研究難度。
光是調(diào)節(jié)青蒿素生物合成的另一重要因子。研究顯示,過(guò)表達(dá)藍(lán)光受體AtCRY1促進(jìn)和轉(zhuǎn)錄,過(guò)表達(dá)光敏色素互作因子PIF3上調(diào)、、基因表達(dá),紅光、藍(lán)光顯著提高青蒿素及其衍生物含量,冷白光促進(jìn)黃花蒿毛狀根形成及青蒿素生物合成,UVB輻照激活、、、和基因表達(dá)[96],而暗處理使、、基因的mRNA水平下調(diào)10倍以上[13]。植物具有極其精細(xì)的光接收(如感受紅光和遠(yuǎn)紅光的光敏色素、感受藍(lán)光/UVA的隱花色素和趨光色素、感受UVB的紫外光受體UVR8)和信號(hào)傳系統(tǒng)將光傳遞到光調(diào)控因子(如bZIP轉(zhuǎn)錄因子HY5、光形態(tài)建成調(diào)控因子COP1)調(diào)控相關(guān)基因表達(dá)。AaHY5有3個(gè)結(jié)構(gòu)域,分別是與DNA結(jié)合的bZIP結(jié)構(gòu)域、COP1位點(diǎn)及酪蛋白激酶II磷酸化位點(diǎn)。AaHY5和AaCOP1是作用相反的2個(gè)因子,在黑暗條件下,細(xì)胞核內(nèi)AaCOP1聚集,負(fù)調(diào)控AaHY5生成;在光照條件下,細(xì)胞核內(nèi)AaCOP1降低,AaHY5的積累啟動(dòng)光形態(tài)建成,并激活表達(dá),直接或進(jìn)而激活A(yù)aORA間接正調(diào)控青蒿素生物合成(圖5)[41]。此外、、、、、等轉(zhuǎn)錄因子基因在響應(yīng)光信號(hào)時(shí)表達(dá)上調(diào),表達(dá)下調(diào),這些轉(zhuǎn)錄因子可能也參與光信號(hào)調(diào)控[15,19]。
圖5 光與GA/JA對(duì)青蒿素生物合成的協(xié)同調(diào)控模式
JA、GA等激素調(diào)控青蒿素生物合成需要光的介導(dǎo),兩者具有協(xié)同增效作用,當(dāng)激素和光組合處理時(shí),青蒿素生物合成關(guān)鍵基因、、、的表達(dá)水平顯著高于光或激素單獨(dú)處理[13,16]。研究表明,激素和光對(duì)青蒿素生物合成的協(xié)同增效作用與轉(zhuǎn)錄因子的調(diào)控作用密不可分,現(xiàn)已發(fā)現(xiàn)多種轉(zhuǎn)錄因子參與介導(dǎo)光與激素的協(xié)同增效過(guò)程,涉及bHLH、MYB、NAC、WRKY、ERF、LSD、HD-ZIP和E2F/DP等多個(gè)轉(zhuǎn)錄因子家族,推測(cè)的調(diào)控機(jī)制如圖5所示[13,16]。其中AaWRKY9、AaMYB15 2個(gè)轉(zhuǎn)錄因子的研究較為深入,AaWRKY9是一個(gè)由光或JA雙重誘導(dǎo)的腺毛特異性轉(zhuǎn)錄因子,的表達(dá)受AaHY5正調(diào)控,AaJAZ9負(fù)調(diào)控。在光下,AaHY5積累增加,AaHY5與啟動(dòng)子的G-box結(jié)合后上調(diào)表達(dá);缺乏JA時(shí),AaJAZ9抑制表達(dá)。因此,在僅有光或JA時(shí),促進(jìn)下游基因表達(dá)的能力有限,只有在光和JA同時(shí)存在時(shí),表達(dá)增加且AaJAZ9被降解,大量的AaWRKY9與啟動(dòng)子W-box基序結(jié)合,協(xié)同提升青蒿素生物合成能力[29]。而AaMYB15是一個(gè)負(fù)調(diào)控因子,暗處理和JA處理可誘導(dǎo)表達(dá),光照抑制其表達(dá)。AaMYB15能直接下調(diào)、、、等基因表達(dá),或與啟動(dòng)子結(jié)合并抑制其活性,間接下調(diào)青蒿素合成途徑關(guān)鍵酶基因表達(dá)(圖5)[21]。
在自然界,光作為一種不可或缺的環(huán)境因素與其他環(huán)境因素協(xié)同(或拮抗)調(diào)節(jié)植物次生代謝物的生物合成,其含量和產(chǎn)量與光質(zhì)、光強(qiáng)、光周期密切相關(guān)[96]。盡管已對(duì)光質(zhì)與青蒿素生物合成的調(diào)控關(guān)系有所了解,并對(duì)部分光響應(yīng)轉(zhuǎn)錄因子進(jìn)行了表征,但光強(qiáng)和光周期的調(diào)節(jié)機(jī)制尚少有涉及,完整的光信號(hào)通路仍不清楚,很有必要系統(tǒng)開展光對(duì)黃花蒿生長(zhǎng)與發(fā)育及對(duì)青蒿素含量和產(chǎn)量的調(diào)控機(jī)制研究。
除植物激素和光外,一些逆境因子,如鹽脅迫、浸水脅迫、低溫脅迫、干旱脅迫等也對(duì)青蒿素的生物合成產(chǎn)生顯著影響,一定程度的鹽脅迫、浸水脅迫、低溫脅迫能促進(jìn)青蒿素及其衍生物的積累,而干旱脅迫則減少積累[97]。逆境脅迫對(duì)青蒿素生物合成的調(diào)節(jié)作用與其促進(jìn)相關(guān)酶基因表達(dá)及特定轉(zhuǎn)錄因子的參與有關(guān),ABF1、APX、CCC1、CPK6、JAZ1、MYC2和JAZ5是潛在的響應(yīng)因子[98]。研究表明,鹽脅迫促進(jìn)和基因表達(dá)[99],24 h浸水處理后和基因表達(dá)上調(diào)[100],低溫促進(jìn)青蒿素生物合成基因(、、、和)轉(zhuǎn)錄水平顯著提高、產(chǎn)生高濃度ROS促進(jìn)青蒿素合成前體轉(zhuǎn)化、抑制競(jìng)爭(zhēng)途徑β-石竹烯合酶基因表達(dá),并通過(guò)誘導(dǎo)JA合成及提高JA信號(hào)相關(guān)轉(zhuǎn)錄因子AaERF1、AaERF2、AaORA的調(diào)控能力進(jìn)一步上調(diào)青蒿素生物合成基因表達(dá)[101-102]。最近發(fā)現(xiàn),AabHLH112是調(diào)控冷脅迫信號(hào)的重要轉(zhuǎn)錄因子,能通過(guò)轉(zhuǎn)錄因子AaERF1間接上調(diào)青蒿素生物合成基因表達(dá)[44]。而干旱脅迫下,、、、、等生物合成基因和轉(zhuǎn)錄因子基因表達(dá)下調(diào)[103],過(guò)表達(dá)干旱脅迫相關(guān)轉(zhuǎn)錄因子,、、基因表達(dá)水平上調(diào),青蒿素含量增加[52]。另?yè)?jù)轉(zhuǎn)錄組分析也表明,轉(zhuǎn)錄因子在鹽、浸水、低溫、干旱等脅迫應(yīng)激信號(hào)傳導(dǎo)中起著不可或缺的作用,有29個(gè)轉(zhuǎn)錄因子家族參與其中一種或多種脅迫,尤其是NAC和MYB/MYB相關(guān)家族的轉(zhuǎn)錄因子在上述4種脅迫中均發(fā)揮重要作用,是研究轉(zhuǎn)錄因子調(diào)控逆境脅迫信號(hào)傳導(dǎo)需要重點(diǎn)關(guān)注的家族[97]。
總體來(lái)說(shuō),目前對(duì)轉(zhuǎn)錄因子響應(yīng)黃花蒿逆境脅迫的作用機(jī)制研究還不夠深入,而且青蒿素含量與脅迫程度、光照強(qiáng)度、黃花蒿生長(zhǎng)狀態(tài)、收獲時(shí)間等多種因素有關(guān),即使脅迫類型相同,因脅迫程度等因素差異也往往得出不一致的研究結(jié)果,如Lv等[52]、Marchese等[104]認(rèn)為短期缺水有利于青蒿素積累,,基因表達(dá)提高3~7倍,而Vashisth等[97]、Yadav等[103]認(rèn)為長(zhǎng)期缺水抑制青蒿素的生物合成。
青蒿素作為治療瘧疾的特效藥,過(guò)去5年間需求量增長(zhǎng)25%。近年來(lái),化學(xué)合成、代謝工程、合成生物學(xué)、高產(chǎn)品種選育等研究為提高青蒿素產(chǎn)量提供了多種方案,但仍有不少難題尚未解決[105]。如化學(xué)合成的純青蒿素產(chǎn)品在藥效及耐藥性方面不及植物來(lái)源的青蒿素[106-107],半合成方法生產(chǎn)青蒿素的成本較高、效率較低,影響了工業(yè)化進(jìn)程[108],代謝工程或選育的新品種優(yōu)良性狀還不能穩(wěn)定遺傳[3,11]。因此,迄今仍未建立一種高效、快速、經(jīng)濟(jì)和大量生產(chǎn)青蒿素的有效方法,從植物提取依然是青蒿素生產(chǎn)的主要來(lái)源,高含量青蒿素品種的研發(fā)仍是解決當(dāng)前困境的關(guān)鍵。
轉(zhuǎn)錄因子作為青蒿素生物合成的高效調(diào)控因子,具有調(diào)控等基因表達(dá)、腺毛形成與發(fā)育和激素等信號(hào)傳導(dǎo)的作用,在提高青蒿素含量或產(chǎn)量方面擁有巨大的潛力,然而利用轉(zhuǎn)錄因子提高青蒿素含量或產(chǎn)量的研究還未達(dá)到可商業(yè)化的目標(biāo)?;谇噍锼厣锖铣上嚓P(guān)轉(zhuǎn)錄因子主要在GSTs中表達(dá),并與等基因表達(dá)模式高度一致,目前已利用激光捕獲顯微切割(laser capture microdissection,LCM)、RNA-seq及染色質(zhì)免疫共沉淀(chromatin immunoprecipitation,ChIP)技術(shù)對(duì)近40個(gè)轉(zhuǎn)錄因子進(jìn)行克隆、表達(dá)及基本功能研究。最近,單細(xì)胞測(cè)序技術(shù)應(yīng)用于構(gòu)建基因網(wǎng)絡(luò)以鑒定在植物發(fā)育分化過(guò)程中起著關(guān)鍵作用的核心轉(zhuǎn)錄因子,以及解析轉(zhuǎn)錄因子對(duì)植物組織成分、細(xì)胞特性及分化的影響等方面顯示出廣闊的發(fā)展前景[109-110],相信隨著該技術(shù)的應(yīng)用及相關(guān)數(shù)據(jù)的增多,將大大加快候選轉(zhuǎn)錄因子的篩選和功能表征速度,有效提高轉(zhuǎn)錄因子的研究精度,增加對(duì)青蒿素生物合成轉(zhuǎn)錄因子調(diào)控網(wǎng)絡(luò)的認(rèn)識(shí)。同時(shí),先前青蒿素生物合成相關(guān)轉(zhuǎn)錄因子的研究大多注重靶基因結(jié)合位點(diǎn)分析,較少涉及表觀遺傳學(xué)研究,而Pandey等[111]研究表明UVB介導(dǎo)了基因啟動(dòng)子中包括WRKY在內(nèi)的7個(gè)轉(zhuǎn)錄因子結(jié)合位點(diǎn)的去甲基化,甲基化程度的降低顯著促進(jìn)了基因上調(diào)表達(dá)和青蒿素合成。因此,注重轉(zhuǎn)錄因子/結(jié)構(gòu)基因甲基化/去甲基化等表觀遺傳研究,可能開啟轉(zhuǎn)錄因子調(diào)控青蒿素生物合成途徑研究的新領(lǐng)域。此外,植物基因組中常有一些特定的具有相似表達(dá)模式的基因簇參與次生代謝調(diào)控,而黃花蒿基因組高度復(fù)雜,是典型的大基因組(1.74 Gb)、高雜合度(1.0%~1.5%)、高重復(fù)序列(61.57%)、低GC含量(僅31.5%)基因組,其中萜類合酶基因家族顯著擴(kuò)張,是目前已測(cè)序植物物種中萜類合酶基因最多的物種之一[12]。從復(fù)雜的基因組中鑒定關(guān)鍵轉(zhuǎn)錄因子,特別是基因簇調(diào)控轉(zhuǎn)錄因子及其功能,將為尋找更有效的青蒿素生物合成相關(guān)轉(zhuǎn)錄因子提供更多機(jī)會(huì)??傊?,通過(guò)多種方法構(gòu)建青蒿素生物合成調(diào)控網(wǎng)絡(luò),將豐富青蒿素代謝調(diào)控理論,助力青蒿素含量或產(chǎn)量進(jìn)一步提高。
利益沖突 所有作者均聲明不存在利益沖突
[1] Ekiert H, ?wi?tkowska J, Klin P,.importance in traditional medicine and current state of knowledge on the chemistry, biological activity and possible applications [J]., 2021, 87(8): 584-599.
[2] Liu C X. Discovery and development of artemisinin and related compounds [J]., 2017, 9(2): 101-114.
[3] 張小波, 郭蘭萍, 黃璐琦. 我國(guó)黃花蒿中青蒿素含量的氣候適宜性等級(jí)劃分 [J]. 藥學(xué)學(xué)報(bào), 2011, 46(4): 472-478.
[4] Cockram J, Hill C, Burns C,. Screening a diverse collection ofgermplasm accessions for the antimalarial compound, artemisinin [J]., 2012, 10(2): 152-154.
[5] Paddon C J, Westfall P J, Pitera D J,. High-level semi-synthetic production of the potent antimalarial artemisinin [J]., 2013, 496(7446): 528-532.
[6] Zhang L, Jing F Y, Li F P,. Development of transgenic(Chinese wormwood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing [J]., 2009, 52(Pt 3): 199-207.
[7] Chen Y F, Shen Q, Wang Y Y,. The stacked over-expression of FPS, CYP71AV1 and CPR genes leads to the increase of artemisinin level inL. [J]., 2013, 7(3): 287-295.
[8] Shen Q, Yan T X, Fu X Q,. Transcriptional regulation of artemisinin biosynthesis inL. [J]., 2016, 61(1): 18-25.
[9] Malhotra K, Subramaniyan M, Rawat K,. Compartmentalized metabolic engineering for artemisinin biosynthesis and effective malaria treatment by oral delivery of plant cells [J]., 2016, 9(11): 1464-1477.
[10] Judd R, Bagley M C, Li M Z,. Artemisinin biosynthesis in non-glandular trichome cells of[J]., 2019, 12(5): 704-714.
[11] Xie D Y, Ma D M, Judd R,. Artemisinin biosynthesis inand metabolic engineering: Questions, challenges, and perspectives [J]., 2016, 15(6): 1093-1114.
[12] Shen Q, Zhang L D, Liao Z H,. The genome ofprovides insight into the evolution of Asteraceae family and artemisinin biosynthesis [J]., 2018, 11(6): 776-788.
[13] Hao X L, Zhong Y J, Fu X Q,. Transcriptome analysis of genes associated with the artemisinin biosynthesis by jasmonic acid treatment under the light in[J]., 2017, 8: 971.
[14] Olofsson L, Lundgren A, Brodelius P E. Trichome isolation with and without fixation using laser microdissection and pressure catapulting followed by RNA amplification: Expression of genes of terpene metabolism in apical and sub-apical trichome cells ofL [J]., 2012, 183: 9-13.
[15] Pan W S, Zheng L P, Tian H,. Transcriptome responses involved in artemisinin production inL. under UV-B radiation [J]., 2014, 140: 292-300.
[16] Ma T Y, Gao H, Zhang D,. Transcriptome analyses revealed the ultraviolet B irradiation and phytohormone gibberellins coordinately promoted the accumulation of artemisinin inL. [J]., 2020, 15: 67.
[17] Matías-Hernández L, Jiang W M, Yang K,. AaMYB1 and its orthologue AtMYB61 affect terpene metabolism and trichome development inand[J]., 2017, 90(3): 520-534.
[18] 蘇航. 青蒿MYB類轉(zhuǎn)錄因子MYB2調(diào)控腺毛發(fā)育的功能研究 [D]. 泉州: 華僑大學(xué), 2018.
[19] Li Y P, Qin W, Fu X Q,. Transcriptomic analysis reveals the parallel transcriptional regulation of UV-B-induced artemisinin and flavonoid accumulation inL. [J]., 2021, 163: 189-200.
[20] Xie L H, Yan T X, Li L,. An HD-ZIP-MYB complex regulates glandular secretory trichome initiation in[J]., 2021, 231(5): 2050-2064.
[21] Wu Z, Li L, Liu H,. AaMYB15, an R2R3-MYB TF in, acts as a negative regulator of artemisinin biosynthesis [J]., 2021, 308: 110920.
[22] Qin W, Xie L H, Li Y P,. An R2R3-MYB transcription factor positively regulates the glandular secretory trichome initiation inL. [J]., 2021, 12: 657156.
[23] Shi P, Fu X Q, Shen Q,. The roles of AaMIXTA1 in regulating the initiation of glandular trichomes and cuticle biosynthesis in[J]., 2018, 217(1): 261-276.
[24] Lv Z Y, Li J X, Qiu S,. The transcription factors TLR1 and TLR2 negatively regulate trichome density and artemisinin levels in[J]., 2022, 64(6): 1212-1228.
[25] Zhou Z, Tan H X, Li Q,. Trichome and artemisinin regulator 2 positively regulates trichome development and artemisinin biosynthesis in[J]., 2020, 228(3): 932-945.
[26] Yan T X, Chen M H, Shen Q,. HOMEODOMAIN PROTEIN 1 is required for jasmonate-mediated glandular trichome initiation in[J]., 2017, 213(3): 1145-1155.
[27] Yan T X, Li L, Xie L H,. A novel HD-ZIP IV/MIXTA complex promotes glandular trichome initiation and cuticle development in[J]., 2018, 218(2): 567-578.
[28] Ma D M, Pu G B, Lei C Y,. Isolation and characterization of AaWRKY1, antranscription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis [J]., 2009, 50(12): 2146-2161.
[29] Fu X Q, Peng B W, Hassani D,. AaWRKY9 contributes to light- and jasmonate-mediated to regulate the biosynthesis of artemisinin in[J]., 2021, 231(5): 1858-1874.
[30] Chen T T, Li Y P, Xie L H,. AaWRKY17, a positive regulator of artemisinin biosynthesis, is involved in resistance toin[J]., 2021, 8(1): 217.
[31] de Paolis A, Caretto S, Quarta A,. Genome-wide identification of WRKY genes in: Characterization of a putative ortholog of[J]., 2020, 9(12): E1669.
[32] Chen M H, Yan T X, Shen Q,. GLANDULAR TRICHOME-SPECIFIC WRKY1 promotes artemisinin biosynthesis in[J]., 2017, 214(1): 304-316.
[33] Xie L H, Yan T X, Li L,. The WRKY transcription factor AaGSW2 promotes glandular trichome initiation in[J]., 2021, 72(5): 1691-1701.
[34] Tan H X, Xiao L, Gao S H,. Trichome and artemisinin regulator 1 is required for trichome development and artemisinin biosynthesis in[J]., 2015, 8(9): 1396-1411.
[35] Yu Z X, Li J X, Yang C Q,. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis inL [J]., 2012, 5(2): 353-365.
[36] Lu X, Zhang L, Zhang F Y,. AaORA, a trichome-specific AP2/ERF transcription factor of, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to[J]., 2013, 198(4): 1191-1202.
[37] Zhang F Y, Fu X Q, Lv Z Y,. A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in[J]., 2015, 8(1): 163-175.
[38] Shen Q, Huang H Y, Zhao Y,. The transcription factor Aabzip9 positively regulates the biosynthesis of artemisinin in[J]., 2019, 10: 1294.
[39] Zhong Y J, Li L, Hao X L,. AaABF3, an abscisic acid-responsive transcription factor, positively regulates artemisinin biosynthesis in[J]., 2018, 9: 1777.
[40] Lv Z Y, Guo Z Y, Zhang L D,. Interaction of bZIP transcription factor TGA6 with salicylic acid signaling modulates artemisinin biosynthesis in[J]., 2019, 70(15): 3969-3979.
[41] Hao X L, Zhong Y J, N? Tzmann H W,. Light-induced artemisinin biosynthesis is regulated by the bZIP transcription factor AaHY5 in[J]., 2019, 60(8): 1747-1760.
[42] Zhang Q Z, Wu N Y, Jian D Q,. Overexpression of AaPIF3 promotes artemisinin production in[J]., 2019, 138: 111476.
[43] Li L, Hao X L, Liu H,. Jasmonic acid-responsive AabHLH1 positively regulates artemisinin biosynthesis in[J]., 2019, 66(3): 369-375.
[44] Xiang L E, Jian D Q, Zhang F Y,. The cold-induced transcription factor bHLH112 promotes artemisinin biosynthesis indirectly via ERF1 in[J]., 2019, 70(18): 4835-4848.
[45] Shen Q, Lu X, Yan T X,. The jasmonate-responsive AaMYC2 transcription factor positively regulates artemisinin biosynthesis in[J]., 2016, 210(4): 1269-1281.
[46] Majid I, Kumar A, Abbas N. A basic helix loop helix transcription factor, AaMYC2-Like positively regulates artemisinin biosynthesis inL [J]., 2019, 128: 115-125.
[47] Ma Y N, Xu D B, Li L,. Jasmonate promotes artemisinin biosynthesis by activating the TCP14-ORA complex in[J]., 2018, 4(11): eaas9357.
[48] Ma Y N, Xu D B, Yan X,. Jasmonate- and abscisic acid-activated AaGSW1-AaTCP15/AaORA transcriptional cascade promotes artemisinin biosynthesis in[J]., 2021, 19(7): 1412-1428.
[49] Lv Z Y, Wang Y, Liu Y,. The SPB-box transcription factor AaSPL2 positively regulates artemisinin biosynthesis inL [J]., 2019, 10: 409.
[50] Kayani S I, Shen Q, Ma Y N,. The YABBY family transcription factor AaYABBY5 directly targets cytochrome P450 monooxygenase (CYP71AV1) and double-bond reductase 2 (DBR2) involved in artemisinin biosynthesis in[J]., 2019, 10: 1084.
[51] Tang Y L, Li L, Yan T X,. AaEIN3 mediates the downregulation of artemisinin biosynthesis by ethylene signaling through promoting leaf senescence in[J]., 2018, 9: 413.
[52] Lv Z Y, Wang S, Zhang F Y,. Overexpression of a noveldomain-containing transcription factor gene (AaNAC1) enhances the content of artemisinin and increases tolerance to drought andin[J]., 2016, 57(9): 1961-1971.
[53] Soetaert S S, van Neste C M, Vandewoestyne M L,. Differential transcriptome analysis of glandular and filamentous trichomes in[J]., 2013, 13: 220.
[54] Pulice G, Pelaz S, Matías-Hernández L. Molecular farming in, a promising approach to improve anti-malarial drug production [J]., 2016, 7: 329.
[55] Wang Y T, Fu X Q, Xie L H,. Stress associated protein 1 regulates the development of glandular trichomes in[J]., 2019, 139(2): 249-259.
[56] Liu S Q, Tian N, Li J,. Isolation and identification of novel genes involved in artemisinin production from flowers ofusing suppression subtractive hybridization and metabolite analysis [J]., 2009, 75(14): 1542-1547.
[57] Ram M, Khan M A, Jha P,. HMG-CoA reductase limits artemisinin biosynthesis and accumulation inL. plants [J]., 2010, 32(5): 859-866.
[58] Olsson M E, Olofsson L M, Lindahl A L,. Localization of enzymes of artemisinin biosynthesis to the apical cells of glandular secretory trichomes ofL [J]., 2009, 70(9): 1123-1128.
[59] Schramek N, Wang H H, R?misch-Margl W,. Artemisinin biosynthesis in growing plants of. A13CO2study [J]., 2010, 71(2/3): 179-187.
[60] Wang H Z, Han J L, Kanagarajan S,. Trichome-specific expression of the-4, 11-diene 12-hydroxylase (cyp71av1) gene, encoding a key enzyme of artemisinin biosynthesis in, as reported by a promoter-fusion [J]., 2013, 81(1/2): 119-138.
[61] Wang Y Y, Yang K, Jing F Y,. Cloning and characterization of trichome-specific promoter of cpr71av1 gene involved in artemisinin biosynthesis inL [J]., 2011, 45(5): 817-824.
[62] Teoh K H, Polichuk D R, Reed D W,.L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin [J]., 2006, 580(5): 1411-1416.
[63] Wu T, Wang Y J, Guo D J. Investigation of glandular trichome proteins inL. using comparative proteomics [J]., 2012, 7(8): e41822.
[64] Teoh K H, Polichuk D R, Reed D W, et al. Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in[J]., 2009, 87(6): 635-642.
[65] Brown G D, Sy L K.transformations of artemisinic acid inplants [J]., 2007, 63(38): 9548-9566.
[66] Rydén A M, Ruyter-Spira C, Quax W J,. The molecular cloning of dihydroartemisinic aldehyde reductase and its implication in artemisinin biosynthesis in[J]., 2010, 76(15): 1778-1783.
[67] Suberu J, Gromski P S, Nordon A,. Multivariate data analysis and metabolic profiling of artemisinin and related compounds in high yielding varieties offield-grown in Madagascar [J]., 2016, 117: 522-531.
[68] Alejos-Gonzalez F, Qu G S, Zhou L L,. Characterization of development and artemisinin biosynthesis in self-pollinatedplants [J]., 2011, 234(4): 685-697.
[69] Czechowski T, Larson T R, Catania T M,.mutant impaired in artemisinin synthesis demonstrates importance of nonenzymatic conversion in terpenoid metabolism [J]., 2016, 113(52): 15150-15155.
[70] Bryant L, Flatley B, Patole C,. Proteomic analysis of: Towards elucidating the biosynthetic pathways of the antimalarial pro-drug artemisinin [J]., 2015, 15: 175.
[71] Zhang Y S, Liu B Y, Li Z Q,. Molecular cloning of a classical plant peroxidase fromand its effect on the biosynthesis of artemisinin[J]., 2004, 46: 1338-1346.
[72] Nair P, Misra A, Singh A,. Differentially expressed genes during contrasting growth stages offor artemisinin content [J]., 2013, 8(4): e60375.
[73] Nair P, Shasany A K, Khan F,. Differentially expressed peroxidases fromand their responses to various abiotic stresses [J]., 2018, 36(2): 295-309.
[74] Nair P, Mall M, Sharma P,. Characterization of a class III peroxidase from: Relevance to artemisinin metabolism and beyond [J]., 2019, 100(4/5): 527-541.
[75] Hassani D, Fu X Q, Shen Q,. Parallel transcriptional regulation of artemisinin and flavonoid biosynthesis [J]., 2020, 25(5): 466-476.
[76] 扎西次仁, 張巧卓, 楊春賢, 等. AaPIF3對(duì)青蒿素生物合成基因及AaERF1的轉(zhuǎn)錄調(diào)控研究 [J]. 西南大學(xué)學(xué)報(bào): 自然科學(xué)版, 2020, 42(10): 65-73.
[77] Maes L, van Nieuwerburgh F C, Zhang Y S,. Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin inplants [J]., 2011, 189(1): 176-189.
[78] Shen Q, Cui J, Fu X Q,. Cloning and characterization of DELLA genes in[J]., 2015, 14(3): 10037-10049.
[79] van der Fits L, Memelink J. ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism [J]., 2000, 289(5477): 295-297.
[80] Shoji T, Kajikawa M, Hashimoto T. Clustered transcription factor genes regulate nicotine biosynthesis in tobacco [J]., 2010, 22(10): 3390-3409.
[81] Zhang H T, Hedhili S, Montiel G,. The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in[J]., 2011, 67(1): 61-71.
[82] Jing F Y, Zhang L, Li M Y,. Abscisic acid (ABA) treatment increases artemisinin content inby enhancing the expression of genes in artemisinin biosynthetic pathway [J]., 2009, 64(2): 319-323.
[83] Zebarjadi A, Dianatkhah S, Pour Mohammadi P,. Influence of abiotic elicitors on improvement production of artemisinin in cell culture ofL. [J].(), 2018, 64(9): 1-5.
[84] Zhang F Y, Lu X, Lv Z Y,. Overexpression of theorthologue of ABA receptor, AaPYL9, enhances ABA sensitivity and improves artemisinin content inL [J]., 2013, 8(2): e56697.
[85] Zhang F Y, Fu X Q, Lv Z Y,. Type 2C phosphatase 1 ofL. is a negative regulator of ABA signaling [J]., 2014, 2014: 521794.
[86] Zhang F Y, Xiang L E, Yu Q,. Artemisinin biosynthesis promoting kinase 1 positively regulates artemisinin biosynthesis through phosphorylating aabzip1 [J]., 2018, 69(5): 1109-1123.
[87] Zhang Y S, Ye H C, Liu B Y,. Exogenous GA3 and flowering induce the conversion of artemisinic acid to artemisinin inplants [J]., 2005, 52(1): 58-62.
[88] Banyai W, Mii M, Supaibulwatana K. Enhancement of artemisinin content and biomass inby exogenous GA3 treatment [J]., 2011, 63(1): 45-54.
[89] Guo X X, Yang X Q, Yang R Y,. Salicylic acid and methyl jasmonate but not Rose Bengal enhance artemisinin production through invoking burst of endogenous singlet oxygen [J]., 2010, 178(4): 390-397.
[90] Chen R B, Bu Y J, Ren J Z,. Discovery and modulation of diterpenoid metabolism improves glandular trichome formation, artemisinin production and stress resilience in[J]., 2021, 230(6): 2387-2403.
[91] Inthima P, Nakano M, Otani M,. Overexpression of the gibberellin 20-oxidase gene fromresulted in modified trichome formation and terpenoid metabolities ofL [J].2017, 129(2): 223-236.
[92] Pu G B, Ma D M, Chen J L,. Salicylic acid activates artemisinin biosynthesis inL. [J]., 2009, 28(7): 1127-1135.
[93] Yin H, Kjaer A, Fretté X C,. Chitosan oligosaccharide and salicylic acid up-regulate gene expression differently in relation to the biosynthesis of artemisinin inL [J]., 2012, 47(11): 1559-1562.
[94] Wang W, Withers J, Li H,. Structural basis of salicylic acid perception byNPR proteins [J]., 2020, 586(7828): 311-316.
[95] Ji Y P, Xiao J W, Shen Y L,. Cloning and characterization of AabHLH1, abHLH transcription factor that positively regulates artemisinin biosynthesis in[J]., 2014, 55(9): 1592-1604.
[96] Zhang S C, Zhang L, Zou H Y,. Effects of light on secondary metabolite biosynthesis in medicinal plants [J]., 2021, 12: 781236.
[97] Vashisth D, Kumar R, Rastogi S,. Transcriptome changes induced by abiotic stresses in[J]., 2018, 8(1): 3423.
[98] Alam P, Balawi T A.identification of-regulatory elements and their functional annotations from assembled ESTs ofL. involved in abiotic stress signaling [J]., 2021, 26(2): 2384-2395.
[99] Yadav R K, Sangwan R S, Srivastava A K,. Prolonged exposure to salt stress affects specialized metabolites-artemisinin and essential oil accumulation inL.: Metabolic acclimation in preferential favour of enhanced terpenoid accumulation accompanying vegetative to reproductive phase transition [J]., 2017, 254(1): 505-522.
[100] Yang R Y, Zeng X M, Lu Y Y,. Senescent leaves ofare one of the most active organs for overexpression of artemisinin biosynthesis responsible genes upon burst of singlet oxygen [J]., 2010, 76(7): 734-742.
[101] 楊瑞儀, 盧元媛, 楊雪芹, 等. 低溫誘導(dǎo)黃花蒿中青蒿素的生物合成及其機(jī)制研究 [J]. 中草藥, 2012, 43(2): 350-354.
[102] Liu W H, Wang H Y, Chen Y P,. Cold stress improves the production of artemisinin depending on the increase in endogenous jasmonate [J]., 2017, 64(3): 305-314.
[103] Yadav R K, Sangwan R S, Sabir F,. Effect of prolonged water stress on specialized secondary metabolites, peltate glandular trichomes, and pathway gene expression inL. [J]., 2014, 74: 70-83.
[104] Marchese J A, Ferreira J F S, Rehder V L G,. Water deficit effect on the accumulation of biomass and artemisinin in annual wormwood (L., Asteraceae) [J]., 2010, 22(1): 1-9.
[105] Wani K I, Choudhary S, Zehra A,. Enhancing artemisinin content in and delivery from: A review of alternative, classical, and transgenic approaches [J]., 2021, 254(2): 29.
[106] Elfawal M A, Towler M J, Reich N G,. Dried whole-plantslows evolution of malaria drug resistance and overcomes resistance to artemisinin [J]., 2015, 112(3): 821-826.
[107] Desrosiers M R, Mittelman A, Weathers P J. Dried leafimproves bioavailability of artemisinin via cytochrome P450 inhibition and enhances artemisinin efficacy downstream [J]., 2020, 10(2): 254.
[108] Turconi J, Griolet F, Guevel R,. Semisynthetic artemisinin, the chemical path to industrial production [J]., 2014, 18(3): 417-422.
[109] Liu Z X, Zhou Y P, Guo J G,. Global dynamic molecular profiling of stomatal lineage cell development by single-cell RNA sequencing [J]., 2020, 13(8): 1178-1193.
[110] Shahan R, Hsu C W, Nolan T M,. A single-cellroot atlas reveals developmental trajectories in wild-type and cell identity mutants [J]., 2022, 57(4): 543-560.
[111] Pandey N, Pandey-Rai S. Deciphering UV-B-induced variation in DNA methylation pattern and its influence on regulation of DBR2 expression inL. [J]., 2015, 242(4): 869-879.
Research progress on transcriptional regulation mechanism of artemisinin biosynthesis
ZHAN Zhong-gen
Biopharmaceutical Laboratory, Zhejiang Institute of Economics and Trade, Hangzhou 310018, China
Artemisinin is an unusual novel endoperoxide sesquiterpene lactone isolated from medicinal plant, has been widely used to treat falciparum malaria. Due to increasing international demand and low content in wildplants, trying to enhance the content or yield of artemisinin become a hotspot. Transcription factors play important roles in regulating a series of genes in the metabolic pathway, and several families of transcription factors have been reported to participate in regulating the biosynthesis and accumulation of artemisinin, and the intervention of transcription factor by genetic engineering is an important method in enhancing the content or yield of artemisinin. Therefore, biosynthesis mechanism of artemisinin from regulating the initiation and development of glandular trichomes and regulating the biosynthesis of artemisinin by transcription factors were reviewed in this paper, in order to provide reference for the transcriptional regulation of artemisinin metabolism.
artemisinin; transcription factor; biosynthesis; trichomes initiation; hormone signal; light signal; adversity stress
R282.1
A
0253 - 2670(2022)19 - 6258 - 15
10.7501/j.issn.0253-2670.2022.19.031
2022-06-09
浙江省自然科學(xué)基金資助項(xiàng)目(LGN18C200026);浙江省省屬高?;究蒲袠I(yè)務(wù)費(fèi)項(xiàng)目(21SBYB08)
詹忠根(1971—),男,教授,碩士,研究方向?yàn)樗幱弥参锷锛夹g(shù)。E-mail: zhzg9321@163.com
[責(zé)任編輯 崔艷麗]