• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Measurement of CO,HCN,and NO productions in atmospheric reaction induced by femtosecond laser filament

    2022-09-24 08:03:42XiaoDongHuang黃曉東MengZhang張夢(mèng)LunHuaDeng鄧倫華ShanBiaoPang龐山彪KeLiu劉珂andHuaiLiangXu徐淮良
    Chinese Physics B 2022年9期

    Xiao-Dong Huang(黃曉東) Meng Zhang(張夢(mèng)) Lun-Hua Deng(鄧倫華)Shan-Biao Pang(龐山彪) Ke Liu(劉珂) and Huai-Liang Xu(徐淮良)

    1State Key Laboratory of Precision Spectroscopy,East China Normal University(ECNU),Shanghai 200062,China

    2State Key Laboratory of Integrated Optoelectronics,College of Electronic Science and Engineering,Jilin University,Changchun 130012,China

    3Chinese Academy of Sciences Center for Excellence in Ultra-Intense Laser Science,Shanghai 201800,China

    Keywords: femtosecond laser filament,atmospheric reaction,CO,HCN,NO

    1. Introduction

    When the ultrashort laser pulses focus on the air, a plasma channel called filament is formed due to Kerr’s selffocusing and plasma defocusing effect. Filament provides a unique environment with high intensity. The atmospheric molecules present in the filament are ionized or dissociated into transient species,followed by chemical reactions,changing the atmospheric compositions and even forming aerosols and particles.[1]Filament-induced gaseous chemical reactions facilitate complex molecular synthesis. In humid air,the filament plasma promotes the production of nitric acid precursors and assists the synthesis of biopolymers thought essential for the emergence of life, providing further molecular complexity. On the other hand,the high-intensity filament can be generated in the atmosphere in the kilometer range and hundreds of meters long. These remote modifications to the air via filaments are ideal for atmospheric applications.[2-6]Therefore,the generation and evolution of the precursor species during filaments are essential to reveal the laser-induced molecular synthesis relating to atmospheric chemistry and filament application. Previous studies were mainly devoted to the discussion about the filament-induced atmospheric nitrogen chemistry. The nitrogen-containing products NOxin atmospheric filaments, acting as the precursors for nitric acid and helping the nucleation of H2O-HNO3in humid air,were monitored by analyzers and cavity-enhanced absorption spectroscopy.[7,8]However, the other stable molecules, such as CO and HCN,also crucial in atmospheric chemistry, especially in prebiotic chemistry,[9]have not been considered in filaments generated reactions. In this work the generation and evolution of NO,CO, and HCN generated by filaments in air are reported, involving the H, C, N, and O transformations of atmospheric molecules.

    2. Experimental setup

    Figure 1 shows the schematic diagram of the experimental setup. A Ti:sapphire laser supplying 35-fs,1-kHz pulses at the central wavelength of 808 nm was adopted, and the laser pulse energy was 7 mJ. Unless otherwise specified, the laser pulse energy used in this experiment is maintained at 1.2 mJ.A lens with focal lengthf=75 cm formed a filament in a quartz glass cylindrical absorption cell with 5 cm in diameter and 60 cm in length, which provides a volume for sufficient reactions. The laser beams of three mid-infrared tunable diode lasers (Nanoplus GmbH), operating at 4844 nm,5298 nm,and 3060 nm,passed through the absorption cell to measure the spectra of CO,NO,and HCN.The beams of the three lasers were switched through optical components. The sealed absorption cell sustained stable air-from lower pressure to an atmosphere. The sinusoidal signal provided by the lockin amplifier and the triangular signal provided by the function generator were first combined in an adder. Then the combined signal was sent to the laser controller to realize laser wavelength scanning and modulation. The power of the laser changes with the operating current, with a maximum power value being 6 mW. Several cooled IR detectors (VIGO system)were switched through optical components to receive the specific laser beam passed through the absorption cell. The received signals were sent to the lock-in amplifier for demodulation to obtain the wavelength modulated spectrum.

    Fig. 1. Experimental setup for femtosecond laser filament-induced atmospheric reaction and absorption spectra measurement. DL:diode lasers,and BD:beam dump.

    3. Experimental results and discussion

    The production and evolution of CO, NO, and HCN are monitored by using laser absorption spectroscopy. The stronger absorption line intensities in the mid-infrared region provide high detection sensitivity for the generated products. Figure 2 shows the spectra measured by direct absorption spectroscopy for determining the absolute concentration and the supplemented wavelength modulation absorption spectroscopy with enhanced sensitivity for trace products monitoring. The P19transition of CO fundamental vibration band (υ'= 1)←(υ''= 0) at 2064.3969 cm-1is used to measure CO. The P13transition in (υ'= 1 000)←(υ''=0 000) vibration band at 3271.443160 cm-1is used to measure HCN. The isolated molecular absorption peaks for CO and HCN measurements are shown in Figs.2(a)and 2(b),respectively. The frequency intervals of the absorption lines are too close to be resolved and the mixed absorption peaks of NO molecules are shown in Fig. 2(c). The transitions of NO are assigned to the fundamental vibration bands in X2Π1/2(υ'=1)←X2Π1/2(υ'=0)and X2Π3/2(υ'=1)←X2Π3/2(υ''=0)systems. The generated products gradually accumulate and evolve with reaction time in the absorption cell. The spectral intensities of CO,HCN,and NO,defined as the peak values of wavelength modulation absorption spectra illustrated in Fig.2 are continuously monitored with the reaction time at varying air pressures.

    Fig.2. Measured direct absorption(DA)spectra(red lines)and wavelength modulation absorption spectra(black lines)of(a)CO,(b)HCN,and(c)NO produced from filaments-induced atmospheric reaction.

    Figure 3(a)shows that the CO spectral intensity increases gradually with reaction time increasing in 10-Pa air. In contrast, the spectral intensities first increase, then decrease slowly in 150-Pa and 250-Pa airs, reaching their corresponding maximum values at 10 min and 5 min. A decrease of the time to reach the maximum spectral intensity of CO with increasing air pressure is observed. The phenomena in Fig.3(a)can be explained below. The generated CO molecules suffer the rotation excitation induced by filaments that enhance the population at the lower level,resulting in the enhancement of absorption spectra. However,the continuous excitation by the filaments may also depopulate the low level,causing the spectral intensity to decrease with time going by. Another reason for the spectral intensity decreasing with time going by is that the consumption of CO due to its reacting with other products surpasses the generation of CO,which will be further described below. Therefore, we use the spectral intensities to represent the CO accumulation because the rotation excitation enhanced absorption spectra do not accurately describe the CO number density. The maximum spectral intensities of CO at other air pressures are normalized to the maximum value at 10 Pa as shown in Fig. 3(b). The CO spectral intensity decreases dramatically with air pressure increasing.

    Fig.3. Reaction-time-dependent wavelength modulation absorption spectral intensities at different air pressures for(a)CO,(c)HCN,and(e)NO.Pressuredependent maximum spectral intensities for(b)CO,(d)HCN,and(f)NO.

    The generated HCN also suffers rotation excitation by filaments. Like the case of CO, the relative spectral intensity other than absolute number density is adopted to represent the accumulation process of HCN.Figure 3(c)shows that the HCN spectral intensity increases with reaction time increasing under different air pressures. The spectral intensities of HCN after 30-min reaction at different air pressures are normalized as indicated in Fig. 3(d). Like the case of CO, the generated HCN decreases sharply with air pressure increasing. The spectral intensity of HCN will still increase with a reaction time, longer than 30 min. Then the lower level will suffer a depopulation by the filament,resulting in the spectral intensity decreasing with time increasing, which is similar to the scenario of CO in Fig.3(a).

    The generations of CO and HCN are related to the CO2conversion since CO2is the dominant carbon-containing molecule in the air. Figures 3(b)and 3(d)reveal that the spectral intensity of CO and HCN decrease with air pressure increasing,consistent with the CO2decomposition in sealed-off CO2laser.[10]The number density of CO and HCN can be determined from their absorption spectra to deduce the conversion ratios from CO2. However, the obtained density of CO and HCN are close to or even higher than that of CO2due to the filament-induced rotation excitation. The deduced conversion ratio from CO2to HCN and from CO2to CO are much overestimated in the reduced pressure air. When CO and HCN are produced in the reactor and the laser is blocked,the spectral intensity of HCN and CO remain stable within tens of hours of continuous observation. This spectral stability means that the de-excitation and reaction of the excited HCN molecules and CO molecules are negligible without the continuously inducing the laser filaments.

    On the other hand, the generation and evolution of NO are entirely different from that of CO and HCN. The inset in Fig.3(e)shows that the NO accumulates to a maximum value after 15-min reaction and remains stable in 100-Pa air. When in 104-Pa air,it takes much longer time for NO to reach the stable concentration,and the spectral intensity increases linearly with reaction time increasing within 30 min. The spectral intensity of NO increases with reaction time increasing within longer than 30 min untill a stable value is reached,but the obvious depopulation by the filament is not observed for CO and HCN. Figure 3(f) shows the NO number density determined from the direct absorption spectra after one-hour reaction at different air pressures. The NO density shows good linearity in reduced pressure air with pressure less than 104Pa, corresponding to a mixed concentration of 445 ppm. However, it takes more time to reach a comparable concentration at the higher air pressure.

    The ambient air is sealed in the absorption cell, and the chemical reaction induced by laser filament lasts for 5 h to estimate the concentration of stable products. The accumulated number density of NO is 3.62×1015cm-3,corresponding to a mixed concentration of 134 ppm. The concentration of CO and HCN are 80 ppm and 1.6 ppm,corresponding to 20%and 0.4%of CO2conversion ratio,respectively. However,the deduced conversion ratio of CO2to CO and CO2to HCN may still be overestimated due to the rotation excitation induced by laser filament.

    Figure 4 shows the schematic diagram of the decomposition of CO2and the generation of CO, HCN, and NO in air. The CO generated in air filaments comes from the decomposition of CO2. The CO2can be converted into the more reactive species, CO and O in filaments through direct electrons impact dissociation,i.e.,e+CO2→CO+O+e. In addition, the filament plasma transfers its energy to the vibrationally excited states of CO2. The electron impact causes CO2to dissociate from the excited states and promote the CO generation. This mechanism is called excitation dissociation through the pathway e+CO2→e+CO?2→CO+O.[11,12]Besides, the electrically excited states of N2molecules, such as the A3Σ+umetastable state, are generated through collisions between energetic electrons and neutral N2by ultrashort laser pulses. The collision between metastable N2molecules and excited CO2molecules also promotes the dissociation of CO2molecules and increases the formation of CO through N2(A3Σ+u)+CO2→CO+O+N2.[13]We do find that the CO2in the reduced pressure air is dramatically vibrationally excited by filaments, by monitoring its absorption spectra. The enhanced dissociation from the excited states of CO2should significantly contribute to the CO formation,especially in the reduced pressure air with less than 1000 Pa.

    Fig.4. Schematic diagram of decomposition of CO2 and generation of CO,HCN,and NO in air.

    The HCN formation involves the reactions between the molecular fragments coming from H2O,CO2,and N2.The CN radicals, mainly coming from the reactions between N atoms and CO molecules,act as the precursor and react with H,H2O,H2, and OH to form HCN as shown in Fig. 4. The available hydrogen atoms,mainly from H2O decomposition,are essential for HCN generation. The relative humidity of the ambient air is 29%.We observed that the filaments in humid air greatly enhance the HCN generation. The H and N atoms are abundant in the humid-reduced pressure air plasma benefiting from the collisions between the higher energetic electrons and the neutral molecules,promoting the HCN generation.

    The formations of CO and HCN in air filament plasma are accompanied by consumption due to reactions. The consumption is more significant at higher pressure,resulting in a minor cumulative concentration with the same reaction time as at lower pressure. As shown in Fig. 4, one consumption pathway of CO is transformed into that of HCN through the CN radicals by reacting with N atoms. Other consumption of CO is the reaction with other free radicals or collision-induced recombination to produce CO2.

    The OH radicals, mainly generated by dissociating H2O molecules in the air filaments,consume many CO molecules.Figure 5 shows the CO spectral intensity in 200-Pa air mixed with different quantities of water vapors. The accumulation time to reach the maximum is shortened, and the maximum spectral intensity is reduced with the increase of water vapor added. Besides, the survival time of CO is also significantly shortened due to the enhanced OH concentration coming from the added water vapor. The CO generated by filaments in the mixed gases is almost entirely consumed in 4 min when 100-Pa water vapor is mixed in 200-Pa air. As a comparison,adding the same amount of N2and O2to 200-Pa air has no such significant effects as adding H2O on the formation and evolution of CO.

    Fig. 5. Wavelength modulation absorption spectral intensities versus reaction time of CO generated by filaments in 200-Pa air mixed with different amounts of water vapor.

    Fig. 6. Influence of O2 on generated HCN in ultrashort laser filamentinduced atmospheric reaction.

    Reactions with O dominate the consumption of HCN in the filament-induced reactor.[14]Figure 6 shows the HCN generation and evolution by filaments in 50-Pa humid air influenced by adding O2. First,the HCN accumulate for 10 min to obtain sufficient concentration in the reactor. Then, the laser is blocked, and 10-Pa O2is added for mixing. The spectral intensity of HCN shows a slight increase within 100 min during oxygen mixing, meaning that the generated HCN is not consumed by the added O2and other molecules in the reactor. When the laser functions again, the spectral intensity decreases rapidly due to the reactions between HCN and the products, mainly the O atoms, induced by laser filament. As shown in Fig. 4, the HCN can also react with OH to form HNCO,the isocyanic acid related to prebiotic chemistry.[14]

    The CO2is the primary carbon-containing molecule in the air,dominating the atmospheric carbon chemistry,providing the carbon for CO and HCN generations by filaments. In reduced pressure air,the collision between high energetic electrons and the ground state CO2improves the vibration excitation of CO2, promoting the conversion of CO2into CO and HCN via the excited states of CO2. The N2is the primary nitrogen-containing molecule in the air,dominating the nitrogen chemistry initialized by ultrashort laser filaments. The N2provides N atoms for forming nitrogen oxides and promotes the dissociation of CO2in filament plasma. The highconcentration NO is produced under various air pressures,which is the precursor of other nitrogen oxides.The very complex chemistry occurring in ultrashort laser-induced reactions limits the entire understanding of the generation and synthesis of the products. We quantitatively measure the generation and evolution of CO, HCN, and NO in the reactor by utilizing mid-infrared absorption spectroscopy. Many other stable products generated in the filaments,such as O3and other NOx,need to be included in the filament-induced atmospheric chemistry.On the other hand,filament-produced atoms and radicals play significant roles because they facilitate complex molecular synthesis to provide the precursors for synthesizing more complicated molecules,such as biopolymers.[15]

    4. Conclusions

    In this work,we experimentally demonstrate that the laser filament initializes the chemical reactions and generates CO,HCN, and NO directly from the air. The vibration excitation of CO2and rotation excitation of the generated CO and HCN induced by laser pulses are observed in the reduced pressure air. The mechanisms and paths of chemical reactions induced by ultrashort laser pulse still need further studying. By optimizing the power consumption and increasing the net conversion rate of carbon dioxide, the ultra-short laser-induced atmospheric reaction may transform atmospheric carbon dioxide into commercially valuable products while maintaining environmental benefits.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.1625501 and 62027822)and the Research Funds of Happiness Flower ECNU, China (Grant No.2021ST2110).

    国产亚洲av嫩草精品影院| 身体一侧抽搐| 最新美女视频免费是黄的| 天堂影院成人在线观看| 欧美黄色淫秽网站| 亚洲成av人片免费观看| 99国产精品一区二区蜜桃av| 亚洲无线在线观看| 国产国拍精品亚洲av在线观看 | 在线十欧美十亚洲十日本专区| 国内精品久久久久精免费| 国产精品 欧美亚洲| 99久久精品国产亚洲精品| 午夜精品在线福利| 久久亚洲真实| 制服丝袜大香蕉在线| 国产精品日韩av在线免费观看| 久久久成人免费电影| 久久精品夜夜夜夜夜久久蜜豆| 欧美日本亚洲视频在线播放| 村上凉子中文字幕在线| 亚洲 国产 在线| 日韩免费av在线播放| 夜夜看夜夜爽夜夜摸| 日本成人三级电影网站| 少妇高潮的动态图| 成人国产综合亚洲| 欧美不卡视频在线免费观看| 日本熟妇午夜| 国产毛片a区久久久久| 熟妇人妻久久中文字幕3abv| 国产伦一二天堂av在线观看| 亚洲午夜理论影院| netflix在线观看网站| 在线观看舔阴道视频| 国产伦一二天堂av在线观看| 搞女人的毛片| 岛国在线观看网站| 99久久九九国产精品国产免费| 欧美最新免费一区二区三区 | svipshipincom国产片| 精品人妻一区二区三区麻豆 | 午夜激情欧美在线| 国产美女午夜福利| 狂野欧美白嫩少妇大欣赏| 久久久久性生活片| 日本撒尿小便嘘嘘汇集6| 国产日本99.免费观看| 1024手机看黄色片| 在线看三级毛片| 国产精品久久久久久久久免 | 成人无遮挡网站| 午夜精品在线福利| 最近在线观看免费完整版| 在线观看免费午夜福利视频| 欧美日韩福利视频一区二区| 久久性视频一级片| 给我免费播放毛片高清在线观看| 精品久久久久久久末码| 母亲3免费完整高清在线观看| 99国产精品一区二区蜜桃av| 色精品久久人妻99蜜桃| 日韩av在线大香蕉| 最近最新免费中文字幕在线| 中亚洲国语对白在线视频| 18美女黄网站色大片免费观看| 男人的好看免费观看在线视频| 亚洲精华国产精华精| 国产aⅴ精品一区二区三区波| 最近最新中文字幕大全电影3| 国产在视频线在精品| av专区在线播放| 搡老熟女国产l中国老女人| 91九色精品人成在线观看| 99久久99久久久精品蜜桃| 国产亚洲精品一区二区www| 亚洲最大成人中文| 欧美+日韩+精品| 国产亚洲精品一区二区www| 免费看光身美女| 国内精品一区二区在线观看| 伊人久久精品亚洲午夜| 中文亚洲av片在线观看爽| 精品久久久久久久久久久久久| 久久性视频一级片| 岛国在线免费视频观看| 日本a在线网址| 老鸭窝网址在线观看| 男人的好看免费观看在线视频| 18禁黄网站禁片午夜丰满| 三级毛片av免费| 99久国产av精品| 国产成人啪精品午夜网站| 精品99又大又爽又粗少妇毛片 | 亚洲美女视频黄频| 一进一出好大好爽视频| 99精品欧美一区二区三区四区| 哪里可以看免费的av片| 国产精品一区二区三区四区久久| 19禁男女啪啪无遮挡网站| 国产一区二区在线av高清观看| 亚洲精品国产精品久久久不卡| 久久久久久国产a免费观看| 免费看美女性在线毛片视频| 18禁美女被吸乳视频| 国产精品久久久久久人妻精品电影| 中亚洲国语对白在线视频| 午夜精品久久久久久毛片777| 很黄的视频免费| tocl精华| 97超级碰碰碰精品色视频在线观看| 亚洲av免费高清在线观看| 成人性生交大片免费视频hd| 美女高潮的动态| 欧美丝袜亚洲另类 | 成人av一区二区三区在线看| 九九在线视频观看精品| 国产午夜福利久久久久久| 在线观看av片永久免费下载| 国产真实伦视频高清在线观看 | 久久伊人香网站| 观看免费一级毛片| 亚洲中文日韩欧美视频| 国产伦一二天堂av在线观看| 欧美激情久久久久久爽电影| 精品国产亚洲在线| 亚洲专区中文字幕在线| 亚洲欧美日韩无卡精品| 国产成人系列免费观看| 男女做爰动态图高潮gif福利片| 色吧在线观看| 久久精品影院6| 99国产综合亚洲精品| 啪啪无遮挡十八禁网站| 禁无遮挡网站| 国产成人aa在线观看| 亚洲欧美精品综合久久99| 精品一区二区三区av网在线观看| 日日摸夜夜添夜夜添小说| 欧美+日韩+精品| 中文亚洲av片在线观看爽| 大型黄色视频在线免费观看| 一a级毛片在线观看| 99热只有精品国产| 国产黄a三级三级三级人| 少妇裸体淫交视频免费看高清| 亚洲五月天丁香| 中文字幕精品亚洲无线码一区| 精品久久久久久久久久久久久| 中文字幕高清在线视频| 亚洲va日本ⅴa欧美va伊人久久| 久久香蕉精品热| 97碰自拍视频| 免费av毛片视频| 19禁男女啪啪无遮挡网站| 日本免费a在线| 午夜福利在线观看吧| 黄色片一级片一级黄色片| 成人亚洲精品av一区二区| 淫妇啪啪啪对白视频| 中文资源天堂在线| 国产亚洲精品一区二区www| 又紧又爽又黄一区二区| 1000部很黄的大片| 精品国产三级普通话版| 成年女人永久免费观看视频| 女人十人毛片免费观看3o分钟| 国内精品一区二区在线观看| 午夜两性在线视频| 国产男靠女视频免费网站| 国产精品久久久久久精品电影| 女生性感内裤真人,穿戴方法视频| 亚洲欧美日韩卡通动漫| 亚洲人与动物交配视频| 国产久久久一区二区三区| 一级毛片高清免费大全| 国产黄片美女视频| 91字幕亚洲| 色吧在线观看| 日韩欧美免费精品| 午夜老司机福利剧场| 三级毛片av免费| svipshipincom国产片| 亚洲在线自拍视频| 色老头精品视频在线观看| 欧美日韩黄片免| 男人舔奶头视频| 午夜a级毛片| 国产黄a三级三级三级人| 中亚洲国语对白在线视频| 国内精品久久久久久久电影| 淫妇啪啪啪对白视频| 成人永久免费在线观看视频| 成年女人看的毛片在线观看| 无遮挡黄片免费观看| 精品国产美女av久久久久小说| 国产成人福利小说| 岛国在线免费视频观看| 男人和女人高潮做爰伦理| 精品午夜福利视频在线观看一区| 日韩大尺度精品在线看网址| 亚洲欧美日韩东京热| 亚洲人成网站在线播放欧美日韩| eeuss影院久久| 久久久久久久午夜电影| 黄片大片在线免费观看| 精品午夜福利视频在线观看一区| 在线国产一区二区在线| 国产高清视频在线播放一区| 草草在线视频免费看| 欧美一区二区亚洲| 男人和女人高潮做爰伦理| 熟女少妇亚洲综合色aaa.| 日本一本二区三区精品| 婷婷亚洲欧美| 亚洲av成人不卡在线观看播放网| 日本精品一区二区三区蜜桃| 天天躁日日操中文字幕| 国内精品久久久久久久电影| 夜夜躁狠狠躁天天躁| av天堂中文字幕网| 亚洲成人精品中文字幕电影| 亚洲av美国av| 午夜亚洲福利在线播放| 1024手机看黄色片| 亚洲第一电影网av| 伊人久久精品亚洲午夜| 欧美一区二区精品小视频在线| 18禁国产床啪视频网站| а√天堂www在线а√下载| 亚洲人成伊人成综合网2020| 国产综合懂色| 久久人妻av系列| 国产精品99久久99久久久不卡| 国产乱人视频| 男女床上黄色一级片免费看| 最近最新中文字幕大全免费视频| 国产中年淑女户外野战色| 国内精品久久久久精免费| 岛国在线观看网站| 精品国产亚洲在线| 九九久久精品国产亚洲av麻豆| 久久久久久久午夜电影| 日本一二三区视频观看| 欧洲精品卡2卡3卡4卡5卡区| 91在线观看av| 在线天堂最新版资源| 草草在线视频免费看| 国产精品女同一区二区软件 | 欧美日韩综合久久久久久 | 女人十人毛片免费观看3o分钟| 久久久久性生活片| 免费一级毛片在线播放高清视频| 不卡一级毛片| 高清日韩中文字幕在线| 日韩欧美免费精品| x7x7x7水蜜桃| 久久久久久久久中文| 12—13女人毛片做爰片一| 色吧在线观看| 免费看十八禁软件| 亚洲男人的天堂狠狠| 一个人看的www免费观看视频| 久久精品人妻少妇| avwww免费| 嫩草影院入口| 欧美日韩亚洲国产一区二区在线观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美av亚洲av综合av国产av| 亚洲无线在线观看| 久久久久国内视频| 欧美国产日韩亚洲一区| 亚洲一区二区三区不卡视频| 99视频精品全部免费 在线| 久久这里只有精品中国| 日韩av在线大香蕉| 老司机福利观看| 国产伦在线观看视频一区| 久久久久久九九精品二区国产| 国产精品一区二区三区四区久久| 欧美色视频一区免费| 99热这里只有精品一区| 在线观看美女被高潮喷水网站 | 日韩精品青青久久久久久| 国产欧美日韩一区二区三| 男女视频在线观看网站免费| 热99re8久久精品国产| 99热这里只有是精品50| 婷婷精品国产亚洲av| 国产男靠女视频免费网站| 国产高清视频在线观看网站| 国产亚洲av嫩草精品影院| 国产 一区 欧美 日韩| h日本视频在线播放| 少妇人妻一区二区三区视频| 亚洲av日韩精品久久久久久密| 国产精华一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 欧美高清成人免费视频www| 日本与韩国留学比较| 琪琪午夜伦伦电影理论片6080| 俺也久久电影网| 成熟少妇高潮喷水视频| netflix在线观看网站| 大型黄色视频在线免费观看| 国产国拍精品亚洲av在线观看 | 国产精品一区二区免费欧美| 午夜两性在线视频| 九九久久精品国产亚洲av麻豆| 最近最新免费中文字幕在线| 精品日产1卡2卡| 日韩欧美在线乱码| 在线观看av片永久免费下载| 欧美性猛交黑人性爽| 久久性视频一级片| 国产久久久一区二区三区| 日韩精品中文字幕看吧| 国产真实伦视频高清在线观看 | 好看av亚洲va欧美ⅴa在| 亚洲自拍偷在线| 欧美成人性av电影在线观看| 亚洲精品456在线播放app | 嫩草影院精品99| 久久草成人影院| 免费看光身美女| 久久精品夜夜夜夜夜久久蜜豆| 变态另类丝袜制服| 国产黄色小视频在线观看| 久久久久久大精品| 欧美三级亚洲精品| 校园春色视频在线观看| 国产精品久久久久久人妻精品电影| av国产免费在线观看| 精品人妻偷拍中文字幕| 国产精品一及| 久久久国产精品麻豆| 麻豆成人午夜福利视频| 波多野结衣巨乳人妻| 日韩人妻高清精品专区| 久久久久久久午夜电影| aaaaa片日本免费| 老司机深夜福利视频在线观看| 午夜a级毛片| 日本 欧美在线| 国内精品久久久久精免费| 国产三级中文精品| 日韩欧美免费精品| 久久久国产成人精品二区| 欧美日韩精品网址| 日本精品一区二区三区蜜桃| 热99re8久久精品国产| 免费av观看视频| 日韩欧美精品v在线| 亚洲黑人精品在线| 午夜久久久久精精品| 久久精品91蜜桃| 久久精品综合一区二区三区| 久久精品国产99精品国产亚洲性色| 免费看光身美女| 五月玫瑰六月丁香| 黄色片一级片一级黄色片| 成人国产综合亚洲| 精品国产美女av久久久久小说| 欧美日韩一级在线毛片| 18+在线观看网站| 亚洲精品成人久久久久久| 亚洲精品久久国产高清桃花| 国产色婷婷99| 国产av在哪里看| 老鸭窝网址在线观看| 真实男女啪啪啪动态图| 久久久久久九九精品二区国产| 色综合站精品国产| 欧美3d第一页| 在线十欧美十亚洲十日本专区| 高清日韩中文字幕在线| 成人性生交大片免费视频hd| 又黄又粗又硬又大视频| 在线观看一区二区三区| a在线观看视频网站| 色综合婷婷激情| 色噜噜av男人的天堂激情| 高清毛片免费观看视频网站| 国产伦精品一区二区三区四那| 欧美av亚洲av综合av国产av| 亚洲精华国产精华精| 真人做人爱边吃奶动态| 久久国产乱子伦精品免费另类| 亚洲精华国产精华精| 国产av麻豆久久久久久久| 日本与韩国留学比较| 最近最新中文字幕大全免费视频| 欧美大码av| 伊人久久大香线蕉亚洲五| 欧美一区二区亚洲| 尤物成人国产欧美一区二区三区| 一区二区三区高清视频在线| 少妇裸体淫交视频免费看高清| 淫妇啪啪啪对白视频| av国产免费在线观看| 禁无遮挡网站| 成人高潮视频无遮挡免费网站| 国产野战对白在线观看| 欧美成人一区二区免费高清观看| 真人做人爱边吃奶动态| 一区福利在线观看| 好男人在线观看高清免费视频| 国产欧美日韩一区二区三| 一进一出好大好爽视频| 国产淫片久久久久久久久 | 桃红色精品国产亚洲av| 中文字幕高清在线视频| 亚洲片人在线观看| 国产真实乱freesex| 免费看光身美女| 搡女人真爽免费视频火全软件 | 国产高清有码在线观看视频| 国产色爽女视频免费观看| 嫩草影视91久久| 一区二区三区免费毛片| 在线播放无遮挡| 18禁国产床啪视频网站| 黄色片一级片一级黄色片| 激情在线观看视频在线高清| 在线免费观看的www视频| 麻豆成人午夜福利视频| 日本在线视频免费播放| 1000部很黄的大片| 丰满人妻一区二区三区视频av | 蜜桃久久精品国产亚洲av| 91字幕亚洲| 国产精品久久久久久人妻精品电影| 国产精品永久免费网站| 国内少妇人妻偷人精品xxx网站| 丝袜美腿在线中文| 色综合婷婷激情| 午夜a级毛片| 午夜激情福利司机影院| 黄色成人免费大全| 最近视频中文字幕2019在线8| 国产高清videossex| 欧美又色又爽又黄视频| 在线观看午夜福利视频| 国产亚洲精品综合一区在线观看| 国产精品久久久人人做人人爽| 亚洲成人久久爱视频| 日本成人三级电影网站| 国内毛片毛片毛片毛片毛片| 亚洲人成网站高清观看| 一级a爱片免费观看的视频| 真人一进一出gif抽搐免费| 成人三级黄色视频| 亚洲欧美一区二区三区黑人| 日本一本二区三区精品| 欧美bdsm另类| 成年免费大片在线观看| 日韩人妻高清精品专区| 国产精品久久视频播放| 一个人看视频在线观看www免费 | 观看免费一级毛片| av国产免费在线观看| 老司机午夜十八禁免费视频| 国产一级毛片七仙女欲春2| 99久久无色码亚洲精品果冻| 久久久久免费精品人妻一区二区| 国产欧美日韩精品亚洲av| 亚洲天堂国产精品一区在线| 亚洲成人中文字幕在线播放| 国产精品美女特级片免费视频播放器| 波野结衣二区三区在线 | 欧美中文日本在线观看视频| 中文字幕av成人在线电影| 亚洲av免费高清在线观看| 久久久久久久久久黄片| 热99re8久久精品国产| 精品一区二区三区人妻视频| 欧美成人一区二区免费高清观看| 国内精品一区二区在线观看| 免费看美女性在线毛片视频| 亚洲国产欧美网| 亚洲精品国产精品久久久不卡| 国内精品久久久久精免费| 日韩欧美三级三区| 99久久成人亚洲精品观看| 国产高清激情床上av| 国产精品久久久久久久久免 | 日本熟妇午夜| 叶爱在线成人免费视频播放| 可以在线观看毛片的网站| 深夜精品福利| svipshipincom国产片| 中文字幕人成人乱码亚洲影| 首页视频小说图片口味搜索| 此物有八面人人有两片| 精品熟女少妇八av免费久了| 夜夜看夜夜爽夜夜摸| 午夜福利在线观看吧| 国产精品国产高清国产av| 少妇裸体淫交视频免费看高清| 99久久99久久久精品蜜桃| 少妇的逼好多水| 天堂网av新在线| 亚洲av美国av| 成人18禁在线播放| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美精品综合久久99| 在线视频色国产色| 国产97色在线日韩免费| 国产av在哪里看| 亚洲人成伊人成综合网2020| 嫩草影视91久久| 少妇人妻精品综合一区二区 | 午夜精品久久久久久毛片777| 不卡一级毛片| 亚洲成av人片免费观看| 一区二区三区激情视频| 高清毛片免费观看视频网站| 在线观看免费视频日本深夜| 久久精品91无色码中文字幕| 一个人看的www免费观看视频| 色播亚洲综合网| 岛国在线观看网站| 69av精品久久久久久| 少妇高潮的动态图| 最近最新中文字幕大全免费视频| 老司机深夜福利视频在线观看| 少妇裸体淫交视频免费看高清| 91九色精品人成在线观看| 黄色视频,在线免费观看| 国产亚洲精品综合一区在线观看| 亚洲无线在线观看| 日韩欧美在线乱码| 听说在线观看完整版免费高清| 18+在线观看网站| 国产亚洲欧美在线一区二区| 99久久精品一区二区三区| 久久久久久国产a免费观看| 国产激情偷乱视频一区二区| 99在线视频只有这里精品首页| 小说图片视频综合网站| 亚洲精华国产精华精| 麻豆成人av在线观看| 亚洲精品影视一区二区三区av| 又黄又爽又免费观看的视频| 两个人视频免费观看高清| 欧美绝顶高潮抽搐喷水| 制服丝袜大香蕉在线| 在线十欧美十亚洲十日本专区| 日日干狠狠操夜夜爽| 熟妇人妻久久中文字幕3abv| 国内毛片毛片毛片毛片毛片| 欧美乱码精品一区二区三区| 国产精品爽爽va在线观看网站| 久久久久久久久中文| 一个人免费在线观看的高清视频| 中文字幕av在线有码专区| 久久精品综合一区二区三区| 脱女人内裤的视频| 国产国拍精品亚洲av在线观看 | 中文亚洲av片在线观看爽| 啪啪无遮挡十八禁网站| 黄色成人免费大全| 日韩欧美精品免费久久 | av天堂中文字幕网| 亚洲五月婷婷丁香| 精品一区二区三区人妻视频| a在线观看视频网站| 在线a可以看的网站| 嫩草影院入口| 少妇熟女aⅴ在线视频| 夜夜爽天天搞| 岛国在线观看网站| 国产精品 国内视频| 中文亚洲av片在线观看爽| 欧美xxxx黑人xx丫x性爽| 精品国产亚洲在线| 成年人黄色毛片网站| 1000部很黄的大片| 国产成人aa在线观看| 欧美一区二区精品小视频在线| 久久久国产成人免费| 日韩欧美国产一区二区入口| 精品无人区乱码1区二区| 国产午夜福利久久久久久| 亚洲欧美日韩高清专用| 国内精品美女久久久久久| 国产真实乱freesex| 97碰自拍视频| www国产在线视频色| 亚洲精品成人久久久久久| 日本在线视频免费播放| 在线免费观看的www视频| 欧美最黄视频在线播放免费| 久久精品综合一区二区三区| 久久精品亚洲精品国产色婷小说| 欧美成人性av电影在线观看| av福利片在线观看| 性色avwww在线观看| 欧美三级亚洲精品| 一级作爱视频免费观看| 久久久久亚洲av毛片大全| 99久久综合精品五月天人人| eeuss影院久久| 国产精品 欧美亚洲| 久久久久久久久大av| 亚洲av成人精品一区久久| 国产一区二区在线av高清观看| 午夜日韩欧美国产| 51午夜福利影视在线观看| 欧美日韩综合久久久久久 | 中文在线观看免费www的网站| 午夜免费观看网址| 国产精品电影一区二区三区| 国产高清激情床上av| 日本黄色片子视频|