• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals

    2022-09-24 08:02:10JiaMingZhao趙佳銘andZhiHeWang王智河
    Chinese Physics B 2022年9期

    Jia-Ming Zhao(趙佳銘) and Zhi-He Wang(王智河)

    1School of Physics,Nanjing University,Nanjing 210093,China

    2Center for Superconducting Physics and Materials,Collaborative Innovation Center of Advanced Microstructures and National Laboratory of Solid State Microstructures,Nanjing University,Nanjing 210093,China

    Keywords: FeSe1-xTex single crystal,anisotropy,resistivity,magnetization

    1. Introduction

    The discovery of superconductivity at 8 K in FeSe with a PbO-type structure[1]has attracted great interest because of its simple crystal structure. The superconducting transition temperatureTcof FeSe has been enhanced to 14 K through the partial substitution of Te for Se,[2]to 38 K under high hydrostatic pressure[3]and to above 100 K in monolayer thin film.[4]In bulk Fe1+yTe1-xSexcrystals the optimal Te content to achieve the highestTcis considered to bex ≈0.5, and phase separation occurs in the region of 0.1≤x ≤0.4.[5]Although Fe1+yTe1-xSexcrystals have a layered structure, they have an anisotropy smaller than that of cuprate superconductors.[6,7]Maoet al.reported an anisotropy of 2.8 nearTcfor FeSe0.5Te0.5,[8]close to the 2.6 reported by Yadavet al.[9]and 3.17 reported by Daset al.[10]For the applications of superconducting wires/tapes,the anisotropy ofJc, which also reflects its intrinsic crystallographic anisotropy,is an important parameter. The small superconducting anisotropy may facilitate fabrication of a dense superconducting wire/tape with a high critical current density.Therefore,detailed knowledge of the anisotropic properties of iron-based superconductors is important for potential applications.

    2. Experimental method

    The single crystals of FeSe0.5Te0.5used in this experiment were grown by the self-flux method. Starting materials were powders of Fe (purity 3N), Se (purity 3N) and Te(purity 4N). The powders in the nominal composition were thoroughly mixed in an argon-filled glove box. The mixed powders were sealed in an evacuated quartz tube. The sealed quartz ampoule was placed in a furnace so that single crystals were grown from the bottom of an alumina crucible. The ampoule was heated at 650°C for 24 h and then at 1110°C for 72 h, then cooled down to 420°C at a rate of 6°C/h and kept there for 70 h, followed by quenching in water.The as-grown single crystal with a shiny flat surface is easily cleaved. Recently, Uhriget al.[11]reported the effect of annealing FeSe0.35Te0.65single crystals in different atmospheres on the surface chemistry, the superconducting transition temperatureTcand the critical current densityJc. Their experimental results indicate that the improvement in the superconducting properties is strongly correlated with the formation of a thin iron oxide surface layer. To avoid possible oxidation of the surface layer and uncertain consequences for the intrinsic superconducting properties,we chose unannealed FeSe0.5Te0.5single crystal to study its anisotropy.

    The x-ray diffraction (XRD) pattern of FeSe0.5Te0.5single crystal was detected by a standard Cu-anode powder diffractometer (Siemens D5000) at room temperature. The electric transport measurements were performed on a commercial physical properties measurement system (PPMS-9 T,Quantum Design) using a standard four-probe configuration.Gold wires of diameter 0.05 mm were pasted on the sample surface with silver paste. To obtain the resistivity along thec-axis, we used symmetrical current and voltage electrodes on the top and bottom surfaces using indium metal to decrease the contact resistance. The area of the current electrode was larger than that of the voltage electrode to keep the current along thec-axis. The magnetization measurements were also carried out on the PPMS with a vibrating sample magnetometer (VSM). The magnetic field was applied along thec-axis and/or theab-plane. The sample sizes used in transport measurements forI//ab-plane andI//c-axis and magnetization measurements forH//c-axis andH//ab-plane were about 2.8 mm×2 mm×0.4 mm and 2 mm×1.4 mm×0.4 mm,respectively. The smaller sample was cut from the larger size single crystal.

    3. Results and discussion

    Figure 1 shows the XRD pattern of FeSe0.5Te0.5single crystal tested at room temperature. Compared with the standard card,we see tetragonal symmetryP4/nmmfor the main FeSe0.5Te0.5phase and hexagonal symmetryP63/mmcfor the impurity phase Fe7Se8. This impurity also appears in other papers.[12,13]What is more, the appearance of the(104)peak may come from the twin boundaries.[14,15]The strong (00l)peaks indicate that thec-axis of the crystal is perpendicular to the cleaved surface. The lattice parameters obtained from different peaks were averaged by the Bragg formula, for example,c=0.60165 nm,which agrees with the data from previous papers.[16-18]

    Fig.1. XRD pattern for FeSe0.5Te0.5 single crystals.

    Fig.2. (a)Temperature dependence of reduced resistance near Tc for I//abplane and I//c-axis. The inset is for temperature from 300 K to 10 K. (b)Temperature dependence of magnetic susceptibility from 15 K to 4 K at 0.01 T for H//c-axis and H//ab-plane. The inset shows enlarged plots in the vicinity of Tc.

    The angular dependences of in-plane resistanceRaband out-of-plane resistanceRcmeasured at 13.5 K for several fixed fieldsH0up to 9 T are shown in the inset of Figs.3(a)and 3(b),respectively. AllR(θ)curves show a periodic change. The resistance is maximum at 0°and/or 180°(H//c-axis)and minimum at 90°(H//ab-plane),indicating there is a field-induced anisotropy of resistance. In additionRcis smaller than 1 mΩ and the signal of thermal fluctuation,especially at large angles,is not negligible and results in an unsmooth curve, as seen in inset of Fig. 3(b). Based on the anisotropic G-L theory, an anisotropic material can be transformed into an isotropic material by means of a scaling approach[23]in the following form:

    whereγis the anisotropy parameter of the single crystal andθis the angle between the applied magnetic field and thecaxis of the crystal. However,the scaling approach is based on a simple rescaling of the coordinate axes (i.e.,x=x',y=y',γz=z'),which is incomplete for a complex system.Therefore,in order to have a reference curve for scaling,we measured the field dependence of resistance at 13.5 K forH//c-axis(empty squares in Fig. 3(a) forI//ab-plane and Fig. 3(b) forI//caxis). For the best value of the anisotropic parameter,R(θ)curves (orR(Heff)) were fitted to the experimentalR(H) to ensure the best possible agreement in a range of angles starting from zero. The best fitting results are plotted in Fig.3(a)for in-plane resistance and in Fig.3(b)for out-of-plane resistance. From Figs.3(a)and 3(b),it is no surprise to see that the best fit lies near 0°and/or 180°(H//c-axis)and meanwhile the biggest deviation fromR(H)is at angles approaching theabplane.The deviant angle appears with increasing applied field,meanwhile the anisotropy parameterγHdecreases with it. The field dependence of the anisotropy parameterγHis shown in Fig.3(c). As seen in the inset of Fig.3(c),the twoγHcurves agree reasonably well with each other and both show a power law behavior,

    whereα=0.76 forI//ab-plane andα=0.64 forI//c-axis.This result shows that the anisotropy parameterγin G-L theory is not a constant and depends on the applied magnetic field and the temperature.

    Fig.3. (a)Field dependence of resistance at 13.5 K(a)for I//ab-plane and(b)I//c-axis,and the scaled result of R(θ)in the inset. (c)Field dependence of anisotropic parameter for both I//ab-plane and I//c-axis with a double logarithmic plot.

    Fig. 4. Temperature dependence of resistance in the vicinity of Tc at several fixed fields: (a) I//ab, H//ab; (b) I//ab, H//c; (c) I//c, H//ab;(d)I//c,H//c.

    Figure 4 gives the temperature dependence of in-plane and out-of-plane resistivity measured at several fixed applied magnetic fields up to 9 T forH//ab-plane andH//c-axis,respectively. With increasing field,the low-resistance part of theR(T)curve gets broader towards low temperatures. The fieldinduced broadening forH//cis larger than that forH//ab,indicating that the single crystal has an anisotropic upper critical field. If we define the temperature where the resistance is 10%of the normal state resistanceRnas the critical temperatureTc,the temperature dependence of the upper critical fieldHc2(T)can be obtained as shown in Fig.5(a). AllHc2(T)curves are upward,indicating that they should follow the expression

    The relationship betweenHc2and 1-(Tc/Tc0) is plotted in the inset of Fig.5(a)and it is linear with differentn. For current parallel to theabplane,nis 1.23 forH//c-axis and 1.30 forH//ab-plane; while for current parallel to thec-axis,nis 1.36 and 1.25, respectively. From theHc2(T) expression we can get the temperature dependence of the anisotropic upper critical field parameterγHc2=Habc2/Hcc2as shown in Fig.5(b).γHc2increases slightly with decreased temperature, and the anisotropyγHc2forI//ab-plane is bigger than that forI//caxis. This result implies that the anisotropyγHc2relates to the direction of the applied current and the effective flux pinning energy. The electric field along thec-axis may promote the coupling of electrons between superconducting layers and weaken the anisotropy of the sample.

    It is well known that theR(T)curve in applied fields nearTccontains the dynamics of magnetic flux motion. In thermally activated flux flow models,the resistivity below 1%ρncan be described by the Arrhenius relation[24]

    whereUis the thermally activated energy or effective pinning energy. From Fig. 4, the effective pinning energy can be extracted from the in-planeR(T)data.We transfer theR-Tcurve into a lnρ-1/Tplot. The slope of the lnρ-1/Tcurve is the effective pinning energyU. The field dependence of the effective pinning energyU(H) is depicted in Fig. 5(c). TheUvalues forH//abare much higher than those forH//c, indicating that an intrinsic-like flux pinning originating from the layered structure plays an important role in the single crystal.This result is often reported for high-Tcsuperconductors[25,26]and iron-based superconductors.[27,28]The field dependence of the effective pinning energyU(H)follows with a crossover at about 2 T.In low-field region,theβvalue is 0.17 forH//c-axis and 0.09 forH//ab-plane. In the higherfield region, theβvalue is 0.28 forH//c-axis and 0.29 forH//ab-plane. For the low-field region flux pinning is considered to be dominated by a single magnetic flux line,while for the higher field region collective flux pinning plays an important role.[27]β ≈0.3 implies that the flux lines are collectively pinned by the planar dislocations and columnar defects.[8]In addition,we take the ratioγUofUabtoUcas the anisotropy parameter of effective pinning energy,as shown in the inset of Fig. 5(c).γUincreases quickly forH <2 T and then becomes constant forH >2 T. This result may support the crossover from single flux pinning to collective flux pinning in the crystal.

    Fig.5. (a)Field dependence of the upper critical field Hc2(T)determined by certain criteria of R=10%Rn. The inset is a log-log logarithmic plot. (b)Temperature dependence of Habc2/Hcc2 for I//ab-plane and I//c-axis.(c)Field dependence of the effective pinning energy with I//ab-plane for H//ab-plane and H//c-axis. The inset is the field dependence of the anisotropic effective pinning energy.

    Fig. 6. Isothermal magnetization loops at several temperatures from 4 K to 13 K at intervals of 1 K and a sweep rate of 100 Oe·s-1: (a)H//c-axis,(b)H//ab-plane.

    Figure 6 shows the isothermal magnetization loops measured at several temperatures from 4 K to 13 K in intervals of 1 K forH//c-axis andH//ab-plane. In order to avoid the influence of the residual magnetic moment,the isothermal magnetization loop from-9 T to 9 T at 14 K is measured as a background magnetization and deducted from the other loops.The isothermal magnetization loops forH//c-axis is different from that forH//ab-plane. TheM(H) curve forH//c-axis has a significant peak,and the peak moves towards a low field as the temperature increases. The peak disappears nearTc. A similar peak effect also exists in FeSe0.5Te0.5single crystal,[10]YBa2Cu3O7-δsingle crystal[29]and Ba0.6K0.4Fe2As2.[30]The peak effect is considered to be related to the transition from an elastic to a plastic deformation regime in the vortex lattice,in which the strong pinning centers exist from correlated disorder such as twin boundaries, planar dislocations and/or columnar defects.[14]However,forH//ab-plane,none of the isothermal

    Fig.7. [(a),(b)]The field dependence of critical current density Jca band Jcc,respectively, at several temperatures from 4 K to 13 K.(c)Temperature dependence of critical current density at 0 T for Jca band Jcc. The inset shows the temperature dependence of anisotropic critical current density.

    According to the Bean critical state model,[31]the field dependence of critical current densityJc(H) can be obtained from the following equations:

    wheremis 1.23 forH//c-axis and 1.11 forH//ab-plane.

    Fig. 8. (a) Field dependence of magnetic moments at a sweep rate of 10 Oe·s-1. (b) Temperature dependence of the dip field for H//c-axis and H//ab-plane.The inset shows the temperature dependence of the anisotropic dip field. (c)The magnetic penetration depth and coherence length resulting from (b) and Fig. 5(a). The inset shows the temperature dependence of the anisotropic parameter of penetration depth and coherence length.

    The magnetic penetration depthλand coherence lengthξare important parameters for superconductors. They are estimated from the following basic relations:[33]

    For the FeSe0.5Te0.5single crystal, the temperature dependences of the magnetic penetration depth (λabandλc) and the coherence length (ξabandξc) are obtained from theHabc2,Hcc2,Habc1, andHcc1shown in Figs.5(a)and 8(b), and given in Fig. 8(c). From Fig. 8(c),λabis larger thanλc. This result shows that the flux lines forH//c-axis enter more easily into the sample than those forH//ab-plane.This is consistent with our above result originating from the layered structure. Meanwhile,ξabis larger thanξc,indicating that the coupling of superconducting electrons in theab-plane is stronger than along thec-axis. This is consistent with the anisotropic critical current density. Extrapolating toT=0 K,we haveλab=74 nm,ξab(0)=1.9 nm,λc=78 nm andξc(0)=0.64 nm. The extrapolated coherence lengthξab(0)is close to that reported in the literature,[34]but the penetration depth is an order of magnitude smaller than previously reported,[6]which is ascribed to our larger dip fieldHdipthanHc1that deviates from the linearM(H). Furthermore, the anisotropy of penetration depth and coherence length,γλandγξ,is shown in the inset of Fig.8(c).They decrease monotonously with decreasing temperature.

    4. Conclusion

    By combining measurements of electric transport forI//ab-plane andI//c-axis and magnetization forH//c-axis andH//ab-plane we obtain detailed anisotropic superconducting properties of FeSe0.5Te0.5single crystal. The in-plane resistivity shows a metallic-like temperature dependence,while the out-of-plane resistivity shows a broad hump with a maximum at around 64 K.The scaling ofR(θ)gives a field-induced anisotropic parameter. The electric transport measurements imply that the anisotropy of the upper critical fieldγHc2may relate to the direction of the applied current and the effective flux pinning energy. The magnetization measurement shows an anisotropic critical current density. Decreasing temperature can enhance the critical current density and suppress the coupling between the superconducting FeSe(Te) layers. The coherence length and penetration depth estimated by the GL theory are consistent with the electric transport and magnetization data. The anisotropic superconducting properties are related to its layered structure.

    Acknowledgments

    The authors acknowledge National Laboratory for Solid State Microstructures and Center for Superconductivity Physics and Materials, Nanjing University for sample preparation and physical property measurements.

    Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300401)and the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB25000000).

    国产精品久久久av美女十八| 欧美中文综合在线视频| 大片免费播放器 马上看| 成人特级黄色片久久久久久久 | 久久久久久人人人人人| 欧美老熟妇乱子伦牲交| 69av精品久久久久久 | 国产又爽黄色视频| 亚洲国产精品一区二区三区在线| 日本wwww免费看| 久久99热这里只频精品6学生| 亚洲一区中文字幕在线| 丝袜喷水一区| 视频区欧美日本亚洲| 如日韩欧美国产精品一区二区三区| 一区二区av电影网| 亚洲午夜理论影院| 男女午夜视频在线观看| 久久人妻福利社区极品人妻图片| 十分钟在线观看高清视频www| 亚洲国产欧美网| 久久久久久久大尺度免费视频| 欧美老熟妇乱子伦牲交| 国产精品偷伦视频观看了| 丰满人妻熟妇乱又伦精品不卡| 手机成人av网站| 欧美av亚洲av综合av国产av| 亚洲精品中文字幕一二三四区 | 在线观看免费视频网站a站| 女人久久www免费人成看片| 中国美女看黄片| 亚洲精品国产一区二区精华液| 美国免费a级毛片| 亚洲av成人不卡在线观看播放网| 丝袜美腿诱惑在线| 国产成人免费观看mmmm| 欧美性长视频在线观看| 国产不卡一卡二| 国产伦人伦偷精品视频| 大码成人一级视频| 欧美精品亚洲一区二区| 热99久久久久精品小说推荐| 后天国语完整版免费观看| 久久影院123| 亚洲专区国产一区二区| 欧美黑人精品巨大| 十八禁人妻一区二区| 欧美国产精品一级二级三级| 精品福利观看| 欧美黄色片欧美黄色片| 中文欧美无线码| 最新美女视频免费是黄的| 午夜两性在线视频| 十八禁网站网址无遮挡| 黄色片一级片一级黄色片| av国产精品久久久久影院| 亚洲精品在线美女| 美女高潮到喷水免费观看| 69精品国产乱码久久久| 天堂8中文在线网| 亚洲五月色婷婷综合| 欧美黑人精品巨大| 一级片免费观看大全| 美女扒开内裤让男人捅视频| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利乱码中文字幕| 两性夫妻黄色片| 国产日韩一区二区三区精品不卡| 亚洲国产欧美日韩在线播放| 成在线人永久免费视频| 色综合欧美亚洲国产小说| av不卡在线播放| 国产精品麻豆人妻色哟哟久久| 香蕉丝袜av| 国产区一区二久久| 在线十欧美十亚洲十日本专区| 天天躁狠狠躁夜夜躁狠狠躁| 日韩人妻精品一区2区三区| 国产片内射在线| 国产亚洲av高清不卡| 国产欧美日韩一区二区三| 午夜福利在线观看吧| av天堂久久9| 亚洲精品成人av观看孕妇| 少妇被粗大的猛进出69影院| 久久九九热精品免费| 91老司机精品| 亚洲国产成人一精品久久久| 丝袜美腿诱惑在线| 久久ye,这里只有精品| 又紧又爽又黄一区二区| 国产不卡av网站在线观看| 欧美精品人与动牲交sv欧美| 国产麻豆69| 人妻久久中文字幕网| 中文字幕色久视频| 亚洲国产欧美在线一区| 国产精品欧美亚洲77777| 一级毛片女人18水好多| 老司机靠b影院| 天堂动漫精品| 18禁裸乳无遮挡动漫免费视频| 老司机亚洲免费影院| 日韩精品免费视频一区二区三区| 久久精品亚洲av国产电影网| 热re99久久国产66热| 丁香六月天网| 一边摸一边抽搐一进一小说 | 亚洲欧美精品综合一区二区三区| 久久久久精品人妻al黑| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美一区二区三区久久| 人妻 亚洲 视频| 视频在线观看一区二区三区| 天堂8中文在线网| 狠狠精品人妻久久久久久综合| 色94色欧美一区二区| 在线av久久热| 97人妻天天添夜夜摸| 91麻豆精品激情在线观看国产 | 满18在线观看网站| 国产在线精品亚洲第一网站| 97在线人人人人妻| 纵有疾风起免费观看全集完整版| 色视频在线一区二区三区| 91字幕亚洲| 国产男女超爽视频在线观看| 男女高潮啪啪啪动态图| 飞空精品影院首页| 亚洲一码二码三码区别大吗| 高潮久久久久久久久久久不卡| 少妇粗大呻吟视频| 日本a在线网址| 欧美国产精品一级二级三级| 亚洲精品中文字幕在线视频| 99国产综合亚洲精品| 三级毛片av免费| 日韩免费高清中文字幕av| 美女午夜性视频免费| 一边摸一边抽搐一进一小说 | 欧美日韩亚洲高清精品| 国产免费福利视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 女人高潮潮喷娇喘18禁视频| 十八禁人妻一区二区| 亚洲精品av麻豆狂野| 男女午夜视频在线观看| 亚洲精品自拍成人| netflix在线观看网站| 女人高潮潮喷娇喘18禁视频| 这个男人来自地球电影免费观看| 国产成人精品久久二区二区免费| 国产不卡一卡二| 国产精品偷伦视频观看了| 在线观看免费高清a一片| 91成人精品电影| 精品福利永久在线观看| 黄色毛片三级朝国网站| 日韩欧美一区视频在线观看| 国产精品秋霞免费鲁丝片| 国产老妇伦熟女老妇高清| 国产免费av片在线观看野外av| 免费人妻精品一区二区三区视频| 一本久久精品| 亚洲av美国av| 国产区一区二久久| 亚洲精品国产区一区二| 日韩欧美免费精品| 天堂8中文在线网| 97在线人人人人妻| 欧美精品一区二区免费开放| 一区二区三区乱码不卡18| 精品一品国产午夜福利视频| 99热国产这里只有精品6| 一本综合久久免费| 人人妻人人爽人人添夜夜欢视频| 免费不卡黄色视频| 亚洲欧美激情在线| 18禁美女被吸乳视频| 亚洲精品国产色婷婷电影| 天天躁夜夜躁狠狠躁躁| 这个男人来自地球电影免费观看| 久久精品亚洲精品国产色婷小说| 亚洲,欧美精品.| 无人区码免费观看不卡 | 欧美精品一区二区免费开放| 色婷婷久久久亚洲欧美| 亚洲男人天堂网一区| 操出白浆在线播放| 国产老妇伦熟女老妇高清| 精品人妻熟女毛片av久久网站| 成人国语在线视频| 欧美日韩黄片免| 中文字幕另类日韩欧美亚洲嫩草| 91老司机精品| 久热这里只有精品99| 欧美人与性动交α欧美精品济南到| 天天躁日日躁夜夜躁夜夜| 国产精品久久久人人做人人爽| 波多野结衣一区麻豆| 午夜福利影视在线免费观看| 99re6热这里在线精品视频| 十分钟在线观看高清视频www| 女同久久另类99精品国产91| 91av网站免费观看| 真人做人爱边吃奶动态| 国产伦理片在线播放av一区| 夜夜夜夜夜久久久久| 午夜激情av网站| 岛国毛片在线播放| 久久久久精品国产欧美久久久| 亚洲 国产 在线| 纵有疾风起免费观看全集完整版| 大片免费播放器 马上看| 国产av一区二区精品久久| 亚洲人成电影免费在线| 国产亚洲av高清不卡| 天天添夜夜摸| 国产精品一区二区免费欧美| 国产主播在线观看一区二区| 国产精品亚洲av一区麻豆| 亚洲欧美激情在线| 69av精品久久久久久 | 亚洲一码二码三码区别大吗| 亚洲av片天天在线观看| 人人妻人人爽人人添夜夜欢视频| 国产成人啪精品午夜网站| 欧美 日韩 精品 国产| 天堂中文最新版在线下载| 久久热在线av| 午夜福利欧美成人| 十分钟在线观看高清视频www| 动漫黄色视频在线观看| 色精品久久人妻99蜜桃| 一本大道久久a久久精品| 深夜精品福利| www.熟女人妻精品国产| 国产xxxxx性猛交| 一区在线观看完整版| 欧美性长视频在线观看| 亚洲性夜色夜夜综合| 久久国产精品人妻蜜桃| av欧美777| 三级毛片av免费| 一边摸一边做爽爽视频免费| 最近最新中文字幕大全免费视频| 色综合婷婷激情| 少妇被粗大的猛进出69影院| 老司机福利观看| 欧美+亚洲+日韩+国产| 亚洲av国产av综合av卡| 亚洲一区中文字幕在线| 天天添夜夜摸| 午夜免费鲁丝| 国产精品久久久人人做人人爽| 国产成人免费观看mmmm| 黑人巨大精品欧美一区二区蜜桃| 亚洲七黄色美女视频| www.精华液| 变态另类成人亚洲欧美熟女 | 69av精品久久久久久 | 国产一区有黄有色的免费视频| 久久精品国产亚洲av高清一级| 亚洲成a人片在线一区二区| 91老司机精品| 国产成人欧美| 欧美激情 高清一区二区三区| 亚洲国产欧美一区二区综合| 国产精品 欧美亚洲| 午夜日韩欧美国产| 成人av一区二区三区在线看| 欧美变态另类bdsm刘玥| 精品国产乱码久久久久久男人| 桃红色精品国产亚洲av| 日韩中文字幕视频在线看片| 在线 av 中文字幕| 91成年电影在线观看| 久久午夜综合久久蜜桃| 欧美av亚洲av综合av国产av| e午夜精品久久久久久久| 妹子高潮喷水视频| 夜夜爽天天搞| 99九九在线精品视频| 午夜福利,免费看| 欧美成人免费av一区二区三区 | 欧美av亚洲av综合av国产av| 午夜老司机福利片| 在线亚洲精品国产二区图片欧美| 国产成人一区二区三区免费视频网站| 国产高清视频在线播放一区| tocl精华| 在线观看66精品国产| 久久精品国产亚洲av高清一级| 亚洲av片天天在线观看| 亚洲精品国产精品久久久不卡| 免费av中文字幕在线| 在线观看人妻少妇| 久久这里只有精品19| 999精品在线视频| 母亲3免费完整高清在线观看| 99九九在线精品视频| 日韩三级视频一区二区三区| 青青草视频在线视频观看| 国产精品久久久人人做人人爽| 老司机午夜福利在线观看视频 | 欧美日韩成人在线一区二区| 一边摸一边做爽爽视频免费| 久久久久久久精品吃奶| 色婷婷久久久亚洲欧美| 亚洲av第一区精品v没综合| 亚洲国产欧美网| 亚洲精品粉嫩美女一区| 国产精品电影一区二区三区 | 高清毛片免费观看视频网站 | 色尼玛亚洲综合影院| 新久久久久国产一级毛片| 18禁黄网站禁片午夜丰满| 不卡一级毛片| 国产精品偷伦视频观看了| 黄色成人免费大全| 夜夜爽天天搞| 国产精品1区2区在线观看. | 香蕉国产在线看| 女同久久另类99精品国产91| 又大又爽又粗| 一级黄色大片毛片| 日韩大码丰满熟妇| 老熟妇乱子伦视频在线观看| 99国产精品一区二区蜜桃av | 丁香欧美五月| 欧美成人免费av一区二区三区 | 久久久欧美国产精品| 精品午夜福利视频在线观看一区 | av福利片在线| 国产精品久久久久久精品古装| 一级,二级,三级黄色视频| 免费在线观看视频国产中文字幕亚洲| 国产精品av久久久久免费| 国产免费视频播放在线视频| 色94色欧美一区二区| 黄色毛片三级朝国网站| 国产免费现黄频在线看| 大片免费播放器 马上看| av有码第一页| 亚洲中文日韩欧美视频| 亚洲av日韩精品久久久久久密| 午夜免费鲁丝| 亚洲精品美女久久久久99蜜臀| 国产一区二区 视频在线| 午夜福利一区二区在线看| 亚洲精品国产一区二区精华液| 免费少妇av软件| 亚洲免费av在线视频| 99久久人妻综合| bbb黄色大片| 日韩免费av在线播放| 后天国语完整版免费观看| 妹子高潮喷水视频| 69精品国产乱码久久久| 亚洲专区中文字幕在线| 菩萨蛮人人尽说江南好唐韦庄| 韩国精品一区二区三区| 夜夜夜夜夜久久久久| 精品人妻1区二区| 精品一区二区三区四区五区乱码| 亚洲少妇的诱惑av| 久久久久视频综合| av在线播放免费不卡| 自拍欧美九色日韩亚洲蝌蚪91| 久久久国产欧美日韩av| 久久精品国产99精品国产亚洲性色 | 热99久久久久精品小说推荐| 国产一区二区 视频在线| 欧美激情 高清一区二区三区| 最新美女视频免费是黄的| 亚洲成人国产一区在线观看| 色视频在线一区二区三区| 日本精品一区二区三区蜜桃| xxxhd国产人妻xxx| videosex国产| 美国免费a级毛片| 香蕉丝袜av| 亚洲自偷自拍图片 自拍| 国产有黄有色有爽视频| 无限看片的www在线观看| 国产精品 国内视频| 国产一区二区在线观看av| av天堂在线播放| 亚洲国产av新网站| 波多野结衣av一区二区av| 十分钟在线观看高清视频www| 国产野战对白在线观看| 可以免费在线观看a视频的电影网站| 国产一区有黄有色的免费视频| 老司机午夜福利在线观看视频 | 一区二区av电影网| 免费黄频网站在线观看国产| 老司机午夜福利在线观看视频 | 亚洲国产av影院在线观看| 日本五十路高清| 日韩大片免费观看网站| 日韩视频在线欧美| 黑人猛操日本美女一级片| 久久天堂一区二区三区四区| 高潮久久久久久久久久久不卡| 日韩三级视频一区二区三区| 欧美日韩国产mv在线观看视频| 精品国产一区二区三区久久久樱花| 亚洲欧美一区二区三区久久| 满18在线观看网站| 亚洲精品成人av观看孕妇| 大香蕉久久成人网| 亚洲专区中文字幕在线| 成人国语在线视频| 久久精品aⅴ一区二区三区四区| 男女高潮啪啪啪动态图| 91精品三级在线观看| 国精品久久久久久国模美| 午夜福利免费观看在线| 国产成+人综合+亚洲专区| 男女免费视频国产| 国产视频一区二区在线看| 国产色视频综合| 久久久久久人人人人人| 桃花免费在线播放| 久久国产精品男人的天堂亚洲| 在线av久久热| 久久精品国产a三级三级三级| 成人手机av| 中文字幕精品免费在线观看视频| 久久天堂一区二区三区四区| 午夜老司机福利片| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品自拍成人| 热99国产精品久久久久久7| 精品国产乱码久久久久久男人| 在线观看免费高清a一片| 国产av一区二区精品久久| 欧美乱妇无乱码| 无限看片的www在线观看| 久久精品国产亚洲av高清一级| 下体分泌物呈黄色| 久久精品亚洲av国产电影网| 好男人电影高清在线观看| 国产区一区二久久| www.精华液| 一进一出好大好爽视频| 在线av久久热| 一区二区日韩欧美中文字幕| 色视频在线一区二区三区| 老汉色av国产亚洲站长工具| 亚洲av片天天在线观看| 大型av网站在线播放| 一级a爱视频在线免费观看| 免费人妻精品一区二区三区视频| 亚洲全国av大片| av片东京热男人的天堂| 久久精品熟女亚洲av麻豆精品| 在线播放国产精品三级| 亚洲精品美女久久av网站| 99九九在线精品视频| 亚洲一码二码三码区别大吗| 久久久精品区二区三区| 亚洲伊人久久精品综合| 亚洲国产看品久久| 黑人欧美特级aaaaaa片| 黑丝袜美女国产一区| 夜夜骑夜夜射夜夜干| 国产精品久久久久久人妻精品电影 | 国产精品九九99| 国产成+人综合+亚洲专区| av超薄肉色丝袜交足视频| 蜜桃国产av成人99| 别揉我奶头~嗯~啊~动态视频| 国产男靠女视频免费网站| 欧美另类亚洲清纯唯美| 精品少妇黑人巨大在线播放| 久久精品国产综合久久久| 人成视频在线观看免费观看| 激情视频va一区二区三区| 久久这里只有精品19| 久久狼人影院| 亚洲情色 制服丝袜| 国产精品.久久久| 国产成+人综合+亚洲专区| 一级,二级,三级黄色视频| 每晚都被弄得嗷嗷叫到高潮| 中文字幕色久视频| 欧美黄色片欧美黄色片| 天天躁日日躁夜夜躁夜夜| 一级片免费观看大全| 12—13女人毛片做爰片一| 一本—道久久a久久精品蜜桃钙片| 午夜福利一区二区在线看| av国产精品久久久久影院| 中文字幕另类日韩欧美亚洲嫩草| 国产日韩欧美视频二区| 亚洲国产av新网站| 80岁老熟妇乱子伦牲交| 久久国产亚洲av麻豆专区| 在线看a的网站| 亚洲精品在线美女| 日韩大片免费观看网站| 亚洲第一青青草原| netflix在线观看网站| 老鸭窝网址在线观看| 亚洲精品中文字幕在线视频| 久久久久视频综合| 99精品欧美一区二区三区四区| 在线观看舔阴道视频| 午夜福利在线观看吧| 天天躁夜夜躁狠狠躁躁| www.精华液| 啦啦啦 在线观看视频| 欧美国产精品va在线观看不卡| 成人手机av| 精品亚洲成国产av| 亚洲精品国产色婷婷电影| 国产免费现黄频在线看| 国产精品1区2区在线观看. | 午夜激情久久久久久久| 欧美黑人欧美精品刺激| 国产精品久久久久成人av| 亚洲五月婷婷丁香| 无遮挡黄片免费观看| 精品第一国产精品| 日韩欧美免费精品| 精品国产亚洲在线| 十分钟在线观看高清视频www| 蜜桃在线观看..| 99久久99久久久精品蜜桃| 午夜福利在线观看吧| www.自偷自拍.com| 黄色丝袜av网址大全| 亚洲av电影在线进入| 少妇 在线观看| 国产成人一区二区三区免费视频网站| 久久精品国产亚洲av香蕉五月 | 99久久人妻综合| 丰满人妻熟妇乱又伦精品不卡| 日韩熟女老妇一区二区性免费视频| 老司机亚洲免费影院| 亚洲天堂av无毛| 精品人妻1区二区| 搡老乐熟女国产| 国产av精品麻豆| 亚洲成人免费电影在线观看| 欧美黄色淫秽网站| 人人妻人人爽人人添夜夜欢视频| 两性午夜刺激爽爽歪歪视频在线观看 | 一区二区日韩欧美中文字幕| 在线观看免费高清a一片| 久久免费观看电影| 老熟妇仑乱视频hdxx| 精品午夜福利视频在线观看一区 | 国产片内射在线| 天天添夜夜摸| 丰满饥渴人妻一区二区三| 热99re8久久精品国产| 日韩欧美一区二区三区在线观看 | 下体分泌物呈黄色| 三级毛片av免费| 热99久久久久精品小说推荐| 一区二区三区乱码不卡18| 国产色视频综合| 欧美在线黄色| 少妇猛男粗大的猛烈进出视频| a级毛片在线看网站| 99国产极品粉嫩在线观看| 成人影院久久| 国产一区二区激情短视频| 女性被躁到高潮视频| 成人黄色视频免费在线看| 国产在线观看jvid| 啦啦啦在线免费观看视频4| 亚洲精华国产精华精| 日本五十路高清| 91老司机精品| cao死你这个sao货| av线在线观看网站| 久久午夜综合久久蜜桃| 性色av乱码一区二区三区2| 黄色 视频免费看| 国产男女内射视频| 老司机影院毛片| 妹子高潮喷水视频| 国产亚洲欧美精品永久| 大香蕉久久网| 老司机在亚洲福利影院| 日本wwww免费看| 午夜福利,免费看| 成年人午夜在线观看视频| 精品国产乱码久久久久久小说| 日韩欧美一区二区三区在线观看 | 久热爱精品视频在线9| 国产区一区二久久| 亚洲熟妇熟女久久| 侵犯人妻中文字幕一二三四区| 国产精品亚洲av一区麻豆| 成年人免费黄色播放视频| 一二三四在线观看免费中文在| 亚洲伊人久久精品综合| 天堂动漫精品| 97人妻天天添夜夜摸| 十分钟在线观看高清视频www| 亚洲精品美女久久av网站| 久热爱精品视频在线9| 18禁裸乳无遮挡动漫免费视频| 国产午夜精品久久久久久| 国产亚洲av高清不卡| 精品欧美一区二区三区在线| av有码第一页| 日韩中文字幕欧美一区二区| 国产亚洲欧美精品永久| 成在线人永久免费视频|