• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress

    2022-09-24 08:01:30ChenkaiZhu朱晨凱LinnaZhao趙琳娜ZhuoYang楊卓andXiaofengGu顧曉峰
    Chinese Physics B 2022年9期
    關(guān)鍵詞:琳娜

    Chenkai Zhu(朱晨凱) Linna Zhao(趙琳娜) Zhuo Yang(楊卓) and Xiaofeng Gu(顧曉峰)

    1Engineering Research Center of IoT Technology Applications(Ministry of Education),Department of Electronic Engineering,Jiangnan University,Wuxi 214122,China

    2Wuxi NCE Power Company,Ltd.,Wuxi 214028,China

    Keywords: shield gate trench MOSFET, repetitive unclamped inductive switching stress, degradation, static and dynamic parameters

    1. Introduction

    Benefitting from high current handle capability and low Miller capacitance (CGD), shield gate trench (SGT) MOSFETs have shown great potential in automotive and industrial applications.[1,2]Unfortunately, when incorporated in power systems, the SGT MOSFETs suffer from unclamped inductive switching (UIS) stress, owing to the parasitic inductance or inductive load. This avalanche shock may lead to electrical degradation or severe failure to the Si-based power devices. So far,several constructive mechanisms have been proposed to explain the UIS degradation and failure behaviors.Kim and Nget al.suggested that the degradation could be attributed to triggering the parasitic bipolar junction transistor(BJT).[3,4]Pawelet al. performed experiment and simulation,revealing that the inhomogeneous switching phenomenon may lead to degradation of avalanche current.[5]Chenet al.suggested that suppressing the channel conduction could improve UIS ruggedness.[6]Tianet al. investigated on failure mechanism caused by non-uniform potential distribution of the shield gate.[7]However, previous researches mainly focus on the single-pulse avalanche shock. In order to verify the long-term reliability of SGT MOSFETs, an in-depth investigation on the repetitive UIS avalanche degradation and breakdown behaviors is necessary, which could contribute to the improvement of UIS ruggedness.

    In this work, the degradation of conventional SGT (CSGT) MOSFETs and P-ring SGT (P-SGT) MOSFETs under repetitive avalanche stress is investigated. The static and dynamic parameters of the devices including drain leakage current (IDSS), breakdown voltage (BV), threshold voltage (Vth),output capacitance (COSS) and reverse transfer capacitance(CRSS) are monitored until breakdown. The degradation and failure mechanisms of the devices are discussed with the help of technology computer-aided design(TCAD)simulations and device failure photographs.

    2. Device structure and experimental details

    Figure 1 shows the cross-section views of the C-SGT and P-SGT fabricated by 0.5 μm PowerMOS manufacturing process in this work.

    Fig.1. Cross-section views of(a)C-SGT and(b)P-SGT.

    The key process flow of P-SGT is shown in Fig.2.Firstly,the N-epi layer is grown on Si substrate.Then,the trench etching,boron ion implantation,thermal oxidation and polysilicon deposition are performed respectively. Next, the polysilicon is etched back to form the shield gate,followed by etching of oxide. After the formation of thin gate oxide, a polysilicon layer is deposited into the gate trenches and etched back to form the gate electrode. Finally,the formation of the P-body,N+source region and the contacts can be realized by utilizing standard steps of a conventional trench MOSFET. Compared with C-SGT, an extra P-ring region is obtained by the boron ion implantation after trench etching. The introduction of Pring decreases the electric field(EF)crowding taking place at the bottom of trench,resulting in the increase ofBV.The main parameters of C-SGT and P-SGT are listed in Table 1.

    Fig.2. The key process flow of P-SGT.

    Table 1. Main parameters of C-SGT and P-SGT.

    Fig.3. (a)Schematic of UIS test equivalent circuit and(b)the schematic diagram of VGS,VDS,and IDS versus time of single-pulse UIS test.

    The schematic of UIS test equivalent circuit is shown in Fig. 3. In the circuit, a 10 V pulse generator is adopted to switch the device under test (DUT) between ON-state and OFF-state, accompanied with a 25 Ω gate resistor. Meanwhile,a direct current(DC)voltage source of 50 V for C-SGT and 60 V for P-SGT is applied, according to theBVlevel of the DUT.A 0.5 mH inductance is used as an inductive load,which stores energy when the DUT turns on, and discharges the avalanche current through the device from drain to source when the DUT turns off. Figure 3(b) shows the schematic diagram of gate-source voltage (VGS), drain-source voltage(VDS), and drain-source current (IDS) versus time of singlepulse UIS test. According to the equation

    the avalanche energy(EAV)is 1.056 J for C-SGT and 1.156 J for P-SGT,respectively.To avoid the instantaneous failure,the selectedEAVis less than the single-pulse avalanche breakdown energy. Moreover,since Joule heating is the main cause of device breakdown,[8]a small air cooling equipment and copper heat sink are used to dissipate heat and decrease the influence of thermal accumulation.[9]

    3. Results and discussion

    Firstly,the impact of repetitive UIS stress on static parameters of DUTs are analyzed. In order to clarify the discharge path of UIS avalanche current,the mixed-mode simulation under the same UIS experiment condition is carried out by Sentaurus TCAD tools. Apart from some essential models (e.g.,doping dependency, high field velocity saturation, Shockley-Read-Hall recombination and Auger recombination),bandgap narrowing and UNIBO avalanche model are considered.[10]Figure 4 shows the simulated avalanche current flow path and impact ionization (I.I.) distribution of C-SGT and P-SGT. It can be seen that the body diode and conductive channel are the discharge paths of avalanche current for both devices.

    Fig.4. Simulated avalanche current flow path of(a)C-SGT and(b)P-SGT and impact ionization distribution of(c)C-SGT and(d)P-SGT.

    Fig. 5. Variation of IDSS and BV for (a) CSGT and (b) P-SGT under repetitive UIS tests.

    For the purpose of investigating the degradation of body diode and gate oxide,the static parameters includingIDSS,BVandVthare monitored after every 5-k UIS tests until breakdown. In addition, theIDSSis measured atVGS=0 V andVDS=BV,theVthis tested atVGS=VDSandIDS=250μA by Keysight B1506A at room temperature. As shown in Fig. 5,theIDSSof C-SGT and P-SGT increase by 45.8 nA (2604%)and 21.9 nA(41.3%)from initial values after 30-k UIS tests,respectively. Meanwhile, theBVgradually increases before device breakdown as the number of UIS tests increases. Figure 6 depicts the variation ofVthfor C-SGT and P-SGT under repetitive UIS tests. The measured results exhibit a slight decrease inVthof C-SGT, but almost no degradation in that of P-SGT.

    Fig.6. Variation of Vth for C-SGT and P-SGT under repetitive UIS tests.

    Combining above experimental and simulation results,theIDSSdegradation for both devices can be explained as following: due to the high I.I. along the gate oxide (shown in Fig. 4), the generated hot holes trapped into the Si/SiO2interface. To verify the influences of these trapped holes, the interface-trapped charges with uniform distribution are placed along the Si/SiO2interface of the devices in TCAD simulations. Figures 7(a),7(b)and 7(d),7(e)show the 2-D EF distribution in the fresh device and stressed device of C-SGT(with hole concentration of 7.9×1011cm-2)and P-SGT(with hole concentration of 7.1×1011cm-2)atVDS=100 V,respectively.The hole concentration is estimated according to theIDSSof the 30000thUIS test. Figures 7(c) and 7(f) show the vertical EF curves along AA'and BB'cutline,respectively. As can be seen, compared with the fresh device, the holes injected into the gate oxide widen the boundary of depletion layer toward the surface of stressed device for both devices. Correspondingly,the EF at the P-body/N-drift junction is enhanced,leading to an increase ofIDSS.

    Fig.7. The 2D EF distribution in the(a)fresh device and(b)stressed device of C-SGT,(c)vertical EF curves along AA',and EF distribution in the(d)fresh device and(e)stressed device of P-SGT,(f)vertical EF curves along BB'.

    Besides,it worth noting that theBVof both devices shows an increasing trend before breakdown(shown in Fig.5). In order to explain this interesting phenomenon, the degradation process under repetitive UIS tests is simulated by increasing the trapped hole concentration of both devices.In Fig.8,as the trapped holes concentration increases,theBVof both devices rise initially and then start to drop rapidly when the trapped holes concentration exceeds 8.3×1011cm-2.[11]It implies that if the number of UIS tests exceeds a certain value, the DUTs are facing extreme high EF at the gate oxide,a rapid increase of trapped hole concentration and instantaneous breakdown,which is in good agreement of preceding experiment results.

    Fig.8. The BV of C-SGT and P-SGT with different trapped hole concentration.

    To prove the mechanism of the holes trapping,theBVof C-SGT and P-SGT are monitored under the ambient temperature of 450 K after the repetitive avalanche. As shown in Fig. 9, theBVof both devices recover with the time increasing,because of the detrapping of holes from the SiO2dielectric layer under high temperature.[11]

    Further, considering the switching applications of power devices, the degradation of dynamic characteristics for CSGT and P-SGT are investigated. In SGT MOSFETs, the shield gate is introduced to alleviate the EF non-uniformity in N-type epitaxial layer and reduce gate-to-drain capacitance(CGD). However, the output capacitance (COSS) is several times greater than the single-gate trench MOSFET,causing a reduction in the switching frequency.[12]Therefore, we focus on the dynamic parameter ofCOSSin this work.

    Fig.9. The BV variations of(a)C-SGT and(b)P-SGT under the ambient temperature of 450 K after the repetitive avalanche.

    Figure 10 shows theCOSSandCRSSof C-SGT and PSGT after every 10-k UIS tests until breakdown. In theCVmeasurement, the frequency used is 1 MHz. As shown in Fig.10(a),theCOSSof C-SGT significantly increases when the drain voltage is in the range of 35 V to 60 V, while theCRSSshows no degradation.Since theCOSSis composed of the gatedrain capacitance(CGD,also calledCRSS)and the drain-source capacitance (CDS), the variation ofCOSSis mainly caused by the increase ofCDS. The increase ofCDSis owing to the reduction of depletion layer of P-body/N-drift junction (shown in Fig. 7), caused by the hot holes injected into the field oxide during repetitive UIS stress. In P-SGT,theCOSSandCRSSalmost remain unchanged, benefitting from the decreasing of the impact ionization rate at bottom of field oxide caused by the existence of P-ring.[13]

    Fig. 10. The COSS and CRSS of (a) C-SGT and (b) P-SGT measured after every 10-k UIS tests.

    After repetitive avalanche breakdown,the de-capsulation of DUTs are carried out. The source metal on the surface of the DUTs are removed using hydrochloric acid. Figure 11 shows the failure photographs of C-SGT and P-SGT, respectively. In both devices, the failure points are located in the cell region instead of the termination region, illustrating that the termination plays an important protective role in repetitive UIS avalanche stress. Based on the above analysis, two reasons may account for repetitive avalanche breakdown. Firstly,the high I.I.arouses a raised electron-hole combination in the P-body/N-drift junction. Since the energy released by combination is absorbed by the crystal lattice of silicon material, it leads to an increase of lattice temperature. When the temperature approaches the intrinsic temperature,the device thermal breakdown. Secondly,the injection of holes into the gate oxide layer increases the EF near the gate oxide. When the EF near the gate oxide exceeds the EF near the field oxide, the device breakdown.

    Fig.11. The failure photographs of(a)C-SGT and(b)P-SGT.

    4. Conclusion and perspectives

    The degradation and breakdown behaviors of C-SGT and P-SGT under repetitive avalanche stress is investigated in detail.As the hot holes are continuously injected into the Si/SiO2interface and the lattice temperature increases, both devices feather different degrees of degradation on static and dynamic parameters. Furthermore, compared with C-SGT, the P-SGT suffer from limited damage of body diode and oxide layer,benefitting from the grounded shield gate and floating P-ring.In term of the long-term reliability of SGT-MOSFETs in practical applications,the degradation ofIDSS,BVandCOSSshould be carefully considered.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant No.61504049),Jiangsu Province Postdoctoral Science Foundation (Grant No. 2018K057B), and the Fundamental Research Funds for the Central Universities,China(Grant No.JUSRP51510).

    猜你喜歡
    琳娜
    Students’ Feedback on Integrating Engineering Practice Cases into Lecture Task in Course of Built Environment
    會講故事的花籽
    音苑名家 卡琳娜·波波娃(Galyna Popova)
    NEW TW IST ON OLD STYLE
    漢語世界(2016年4期)2016-09-07 07:44:58
    New twist on Old Style
    艾琳娜和她的狼伙伴
    大嗓門爸爸
    永遠(yuǎn)的秘密
    故事林(2013年18期)2013-05-14 17:30:18
    世界第一!Scarra手中的不詳之刃
    應(yīng)該怎樣去愛
    国产成人午夜福利电影在线观看| 成人国产麻豆网| 高清av免费在线| 丝袜美足系列| www.自偷自拍.com| 精品人妻熟女毛片av久久网站| 亚洲欧美一区二区三区黑人 | 高清不卡的av网站| 水蜜桃什么品种好| 久久精品熟女亚洲av麻豆精品| 99国产综合亚洲精品| 久久99精品国语久久久| 在线观看美女被高潮喷水网站| 国产精品熟女久久久久浪| 女人高潮潮喷娇喘18禁视频| 国产精品av久久久久免费| av福利片在线| 91久久精品国产一区二区三区| 亚洲国产最新在线播放| 亚洲少妇的诱惑av| 黄频高清免费视频| 日韩av免费高清视频| 美国免费a级毛片| 国产爽快片一区二区三区| 精品一品国产午夜福利视频| 天天操日日干夜夜撸| 精品久久蜜臀av无| 国产精品99久久99久久久不卡 | 不卡视频在线观看欧美| 美女主播在线视频| 一二三四中文在线观看免费高清| 久久久久久人人人人人| 美女高潮到喷水免费观看| 黄片无遮挡物在线观看| 人人澡人人妻人| 在线 av 中文字幕| 赤兔流量卡办理| 电影成人av| 一级片'在线观看视频| 亚洲av免费高清在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产在线一区二区三区精| 七月丁香在线播放| √禁漫天堂资源中文www| 亚洲综合色网址| 欧美精品国产亚洲| 我的亚洲天堂| 我要看黄色一级片免费的| 亚洲av免费高清在线观看| 国产日韩欧美视频二区| 亚洲精品成人av观看孕妇| 少妇 在线观看| 999精品在线视频| 精品人妻一区二区三区麻豆| 少妇的逼水好多| 国产av码专区亚洲av| 日韩av在线免费看完整版不卡| 26uuu在线亚洲综合色| 亚洲av福利一区| 色视频在线一区二区三区| 夜夜骑夜夜射夜夜干| 一边摸一边做爽爽视频免费| 熟妇人妻不卡中文字幕| 精品国产乱码久久久久久小说| 人人澡人人妻人| 亚洲成人一二三区av| 亚洲成av片中文字幕在线观看 | 啦啦啦在线免费观看视频4| 少妇的逼水好多| 久久免费观看电影| 欧美精品av麻豆av| 久久午夜福利片| 国产精品99久久99久久久不卡 | 赤兔流量卡办理| 亚洲精品日韩在线中文字幕| xxxhd国产人妻xxx| 国产精品久久久久久久久免| 天天影视国产精品| 午夜免费观看性视频| 国产成人免费无遮挡视频| 一二三四在线观看免费中文在| 自线自在国产av| 亚洲视频免费观看视频| 久久久久国产网址| 日韩熟女老妇一区二区性免费视频| 欧美最新免费一区二区三区| 免费观看在线日韩| 中文欧美无线码| 视频区图区小说| 国产人伦9x9x在线观看 | 男人舔女人的私密视频| 一区二区日韩欧美中文字幕| 伦理电影大哥的女人| 视频在线观看一区二区三区| 七月丁香在线播放| 青青草视频在线视频观看| 超碰成人久久| 国产欧美日韩一区二区三区在线| 人妻 亚洲 视频| 免费高清在线观看日韩| 久久99精品国语久久久| 免费久久久久久久精品成人欧美视频| 精品久久久精品久久久| 亚洲国产欧美日韩在线播放| 80岁老熟妇乱子伦牲交| 欧美bdsm另类| 欧美国产精品va在线观看不卡| 久久狼人影院| 制服诱惑二区| 热re99久久国产66热| 十八禁高潮呻吟视频| av.在线天堂| 久久久国产一区二区| 侵犯人妻中文字幕一二三四区| 国产精品不卡视频一区二区| 亚洲av成人精品一二三区| 午夜老司机福利剧场| 一级爰片在线观看| 最新的欧美精品一区二区| 欧美日韩视频高清一区二区三区二| 老汉色∧v一级毛片| 美女高潮到喷水免费观看| 七月丁香在线播放| 三级国产精品片| 老汉色av国产亚洲站长工具| 极品人妻少妇av视频| 老司机亚洲免费影院| 一区二区日韩欧美中文字幕| 日韩中字成人| 一本大道久久a久久精品| 精品亚洲成国产av| 久久精品人人爽人人爽视色| 欧美 日韩 精品 国产| 在线观看www视频免费| 精品一品国产午夜福利视频| 国产精品av久久久久免费| 最新的欧美精品一区二区| 国产精品成人在线| 一本色道久久久久久精品综合| √禁漫天堂资源中文www| 久久97久久精品| 一二三四在线观看免费中文在| 老女人水多毛片| 99国产精品免费福利视频| 国产成人精品福利久久| 母亲3免费完整高清在线观看 | 男女国产视频网站| av不卡在线播放| 99久久人妻综合| 欧美日本中文国产一区发布| 亚洲精品自拍成人| 中文精品一卡2卡3卡4更新| 99九九在线精品视频| 亚洲国产成人一精品久久久| kizo精华| 交换朋友夫妻互换小说| 久久久久视频综合| 日韩欧美精品免费久久| 国产精品国产av在线观看| 如日韩欧美国产精品一区二区三区| 久久午夜福利片| 久久婷婷青草| 国产极品粉嫩免费观看在线| a 毛片基地| 亚洲精华国产精华液的使用体验| 视频区图区小说| 亚洲精品日本国产第一区| kizo精华| 成人黄色视频免费在线看| 少妇人妻久久综合中文| 91精品三级在线观看| 欧美日韩综合久久久久久| 只有这里有精品99| 国产精品欧美亚洲77777| 777久久人妻少妇嫩草av网站| 亚洲国产精品国产精品| h视频一区二区三区| 纵有疾风起免费观看全集完整版| 亚洲国产av新网站| 午夜免费鲁丝| 在线 av 中文字幕| 丁香六月天网| 中文乱码字字幕精品一区二区三区| 熟妇人妻不卡中文字幕| 亚洲在久久综合| 香蕉国产在线看| 成人18禁高潮啪啪吃奶动态图| 97精品久久久久久久久久精品| 亚洲精品久久成人aⅴ小说| 制服丝袜香蕉在线| 欧美日韩亚洲国产一区二区在线观看 | 中文天堂在线官网| av国产久精品久网站免费入址| 秋霞伦理黄片| 久久久久久伊人网av| 97人妻天天添夜夜摸| 黄色一级大片看看| 成人影院久久| 国产xxxxx性猛交| 成人黄色视频免费在线看| 又黄又粗又硬又大视频| 国产成人一区二区在线| 色哟哟·www| 婷婷色av中文字幕| 1024视频免费在线观看| 欧美国产精品va在线观看不卡| 亚洲成av片中文字幕在线观看 | 欧美成人午夜免费资源| 大香蕉久久成人网| 精品久久久精品久久久| 黄色一级大片看看| 黑人欧美特级aaaaaa片| 精品人妻在线不人妻| 日韩伦理黄色片| 亚洲精品日本国产第一区| 亚洲国产日韩一区二区| av一本久久久久| 丝袜在线中文字幕| 视频在线观看一区二区三区| 婷婷色综合www| 欧美人与善性xxx| 少妇的丰满在线观看| 麻豆乱淫一区二区| 国产在线免费精品| 人人澡人人妻人| 日韩视频在线欧美| 国产 一区精品| 老司机影院成人| 欧美日本中文国产一区发布| www.精华液| 日韩制服丝袜自拍偷拍| 在线观看免费日韩欧美大片| 九色亚洲精品在线播放| 美女脱内裤让男人舔精品视频| 丰满迷人的少妇在线观看| 女人高潮潮喷娇喘18禁视频| 视频在线观看一区二区三区| 亚洲欧美清纯卡通| 久久久久国产网址| 在线观看国产h片| 欧美av亚洲av综合av国产av | 欧美日韩视频高清一区二区三区二| 一个人免费看片子| 日韩制服骚丝袜av| 欧美日韩亚洲高清精品| 边亲边吃奶的免费视频| 不卡av一区二区三区| 捣出白浆h1v1| 国产日韩一区二区三区精品不卡| 久久婷婷青草| 亚洲伊人久久精品综合| 国产精品蜜桃在线观看| 91aial.com中文字幕在线观看| 老司机亚洲免费影院| 深夜精品福利| 国产精品秋霞免费鲁丝片| 制服人妻中文乱码| 天天躁夜夜躁狠狠久久av| 国产男人的电影天堂91| 亚洲精品第二区| 免费在线观看完整版高清| 午夜av观看不卡| 久久韩国三级中文字幕| 久久久国产欧美日韩av| 国产女主播在线喷水免费视频网站| 国产精品一区二区在线不卡| 999久久久国产精品视频| 中文字幕人妻丝袜一区二区 | 99精国产麻豆久久婷婷| xxxhd国产人妻xxx| 国产精品麻豆人妻色哟哟久久| 国产精品成人在线| 日韩一区二区三区影片| 一级片免费观看大全| 王馨瑶露胸无遮挡在线观看| 中文字幕人妻丝袜一区二区 | 国产成人aa在线观看| 色网站视频免费| 亚洲av电影在线观看一区二区三区| 国产免费又黄又爽又色| 日日撸夜夜添| 丝瓜视频免费看黄片| 日本av免费视频播放| 亚洲一区中文字幕在线| 国产精品av久久久久免费| 一区二区三区四区激情视频| 国产午夜精品一二区理论片| 国产精品 欧美亚洲| 新久久久久国产一级毛片| 波多野结衣一区麻豆| 九色亚洲精品在线播放| 母亲3免费完整高清在线观看 | 女人久久www免费人成看片| 欧美少妇被猛烈插入视频| 国产亚洲av片在线观看秒播厂| av免费观看日本| 少妇人妻精品综合一区二区| 制服丝袜香蕉在线| av不卡在线播放| 看十八女毛片水多多多| 久久青草综合色| 少妇的逼水好多| 高清av免费在线| 精品人妻一区二区三区麻豆| 日韩不卡一区二区三区视频在线| 熟妇人妻不卡中文字幕| 看非洲黑人一级黄片| 久久人人爽人人片av| 久久99一区二区三区| 午夜老司机福利剧场| 黄色一级大片看看| av国产精品久久久久影院| 国产av一区二区精品久久| 亚洲av福利一区| 97在线人人人人妻| 久久久久精品久久久久真实原创| 久久久久久久大尺度免费视频| 丝袜人妻中文字幕| 国产黄色视频一区二区在线观看| 午夜福利网站1000一区二区三区| 夜夜骑夜夜射夜夜干| 久久久久久久久久久免费av| 国产成人免费无遮挡视频| 熟女av电影| 97在线视频观看| 亚洲国产毛片av蜜桃av| 亚洲av男天堂| 精品人妻一区二区三区麻豆| 最近最新中文字幕免费大全7| 中文字幕亚洲精品专区| 波多野结衣一区麻豆| av女优亚洲男人天堂| 国产在线视频一区二区| 少妇精品久久久久久久| 精品视频人人做人人爽| 日本免费在线观看一区| 久久久久人妻精品一区果冻| 国产欧美日韩一区二区三区在线| 午夜福利网站1000一区二区三区| 热re99久久国产66热| 亚洲三级黄色毛片| 一区二区三区精品91| av国产久精品久网站免费入址| 日日啪夜夜爽| 在线看a的网站| 久久久久人妻精品一区果冻| 亚洲国产欧美日韩在线播放| 国产成人精品在线电影| 精品午夜福利在线看| 久久久精品区二区三区| 国产精品一区二区在线观看99| 一级片'在线观看视频| 啦啦啦啦在线视频资源| 90打野战视频偷拍视频| 国产精品欧美亚洲77777| 天天躁夜夜躁狠狠躁躁| 黄频高清免费视频| 国产精品一区二区在线不卡| 国产野战对白在线观看| 2022亚洲国产成人精品| 久久韩国三级中文字幕| 日韩视频在线欧美| 亚洲欧美一区二区三区黑人 | 久久人人爽人人片av| 国产精品香港三级国产av潘金莲 | 精品国产一区二区三区久久久樱花| 国产1区2区3区精品| 日韩,欧美,国产一区二区三区| 成人18禁高潮啪啪吃奶动态图| 人妻 亚洲 视频| 国产激情久久老熟女| 亚洲国产看品久久| 高清av免费在线| 欧美av亚洲av综合av国产av | 好男人视频免费观看在线| 日韩,欧美,国产一区二区三区| av在线播放精品| 深夜精品福利| 搡老乐熟女国产| h视频一区二区三区| 熟女少妇亚洲综合色aaa.| 国产色婷婷99| 又粗又硬又长又爽又黄的视频| 在线观看一区二区三区激情| 精品久久蜜臀av无| 久久久精品免费免费高清| 日韩三级伦理在线观看| 免费少妇av软件| 久久久久国产一级毛片高清牌| 一级爰片在线观看| 中文字幕色久视频| 天天躁狠狠躁夜夜躁狠狠躁| 啦啦啦在线观看免费高清www| 成年动漫av网址| 中文字幕色久视频| 日韩视频在线欧美| 国产精品欧美亚洲77777| 国产成人午夜福利电影在线观看| 国产精品 欧美亚洲| 一区二区日韩欧美中文字幕| 9色porny在线观看| 久久鲁丝午夜福利片| 国精品久久久久久国模美| 大香蕉久久网| 9191精品国产免费久久| 肉色欧美久久久久久久蜜桃| 久久久久网色| 男女啪啪激烈高潮av片| 老汉色∧v一级毛片| 日韩精品有码人妻一区| 涩涩av久久男人的天堂| 2018国产大陆天天弄谢| tube8黄色片| 久久久国产一区二区| 成人午夜精彩视频在线观看| 国产成人av激情在线播放| 欧美日本中文国产一区发布| 日日摸夜夜添夜夜爱| 亚洲成色77777| 精品国产国语对白av| 中文字幕另类日韩欧美亚洲嫩草| 一本大道久久a久久精品| 成人毛片60女人毛片免费| 国产 精品1| 亚洲精品久久久久久婷婷小说| 日韩中文字幕欧美一区二区 | 天天影视国产精品| 日本色播在线视频| 国产男人的电影天堂91| 久久精品夜色国产| 日韩免费高清中文字幕av| 夫妻性生交免费视频一级片| 男男h啪啪无遮挡| 1024香蕉在线观看| 91久久精品国产一区二区三区| 新久久久久国产一级毛片| 国产女主播在线喷水免费视频网站| 99久国产av精品国产电影| 精品酒店卫生间| 免费观看性生交大片5| 国产一区二区三区综合在线观看| 国产高清国产精品国产三级| 精品一品国产午夜福利视频| 久久久精品94久久精品| 人妻 亚洲 视频| 丰满乱子伦码专区| 考比视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲少妇的诱惑av| 久久这里只有精品19| 蜜桃国产av成人99| 国产精品偷伦视频观看了| 亚洲欧美日韩另类电影网站| 高清黄色对白视频在线免费看| www日本在线高清视频| 精品国产一区二区三区久久久樱花| av国产久精品久网站免费入址| 免费高清在线观看日韩| 王馨瑶露胸无遮挡在线观看| 99re6热这里在线精品视频| 90打野战视频偷拍视频| 亚洲精品乱久久久久久| 国产亚洲一区二区精品| 1024视频免费在线观看| 亚洲一区中文字幕在线| 国产成人精品久久二区二区91 | 国产欧美日韩综合在线一区二区| 97精品久久久久久久久久精品| 免费女性裸体啪啪无遮挡网站| 国产在视频线精品| 午夜福利在线免费观看网站| 国产成人a∨麻豆精品| www.av在线官网国产| 国产成人免费无遮挡视频| 91精品三级在线观看| 久久午夜综合久久蜜桃| 18+在线观看网站| 欧美精品av麻豆av| 成人午夜精彩视频在线观看| 国产精品人妻久久久影院| 亚洲伊人色综图| 国产 一区精品| 狂野欧美激情性bbbbbb| 国产福利在线免费观看视频| 欧美 亚洲 国产 日韩一| 成人亚洲欧美一区二区av| 91在线精品国自产拍蜜月| 欧美老熟妇乱子伦牲交| 有码 亚洲区| 欧美在线黄色| 777米奇影视久久| 国产亚洲av片在线观看秒播厂| 成人国产麻豆网| 一本久久精品| 久久久久精品人妻al黑| 国产一区二区 视频在线| 亚洲精华国产精华液的使用体验| 亚洲,一卡二卡三卡| 成年美女黄网站色视频大全免费| 亚洲欧美精品综合一区二区三区 | 亚洲国产精品成人久久小说| 黄片无遮挡物在线观看| 久久久a久久爽久久v久久| √禁漫天堂资源中文www| 看免费成人av毛片| 亚洲综合精品二区| 大香蕉久久成人网| 国产乱人偷精品视频| 欧美中文综合在线视频| 捣出白浆h1v1| 精品卡一卡二卡四卡免费| 亚洲精品美女久久久久99蜜臀 | 日日摸夜夜添夜夜爱| 狠狠婷婷综合久久久久久88av| 九色亚洲精品在线播放| 69精品国产乱码久久久| 一个人免费看片子| 久久久久久久久免费视频了| 夫妻性生交免费视频一级片| 精品少妇一区二区三区视频日本电影 | 亚洲国产精品一区二区三区在线| 久久精品久久久久久久性| 十分钟在线观看高清视频www| 赤兔流量卡办理| 大片免费播放器 马上看| 亚洲国产精品一区二区三区在线| 国产成人欧美| 成年女人毛片免费观看观看9 | 免费看av在线观看网站| 美女国产视频在线观看| 一区二区日韩欧美中文字幕| 男男h啪啪无遮挡| 交换朋友夫妻互换小说| 久久久久久久大尺度免费视频| 又粗又硬又长又爽又黄的视频| 伦精品一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 日韩大片免费观看网站| 久久毛片免费看一区二区三区| 91精品国产国语对白视频| 制服丝袜香蕉在线| 亚洲精品中文字幕在线视频| 各种免费的搞黄视频| 1024香蕉在线观看| 亚洲精品国产av成人精品| 这个男人来自地球电影免费观看 | 精品国产一区二区三区久久久樱花| 最近的中文字幕免费完整| 日本wwww免费看| 久热这里只有精品99| 国产免费视频播放在线视频| 男女边摸边吃奶| 亚洲美女搞黄在线观看| 亚洲欧洲精品一区二区精品久久久 | 久久精品熟女亚洲av麻豆精品| 看免费av毛片| 亚洲第一区二区三区不卡| 免费看av在线观看网站| 日韩中文字幕视频在线看片| 欧美+日韩+精品| 女性被躁到高潮视频| 欧美日韩精品成人综合77777| h视频一区二区三区| 中文字幕av电影在线播放| 国产精品 国内视频| 自线自在国产av| 亚洲欧洲精品一区二区精品久久久 | 黄片小视频在线播放| 国产精品久久久久久av不卡| 麻豆av在线久日| 自线自在国产av| 久久午夜综合久久蜜桃| 国产av码专区亚洲av| 韩国高清视频一区二区三区| 亚洲精品乱久久久久久| 看免费成人av毛片| a 毛片基地| 搡女人真爽免费视频火全软件| 秋霞伦理黄片| 日日摸夜夜添夜夜爱| 精品人妻偷拍中文字幕| 18禁动态无遮挡网站| www.熟女人妻精品国产| 波野结衣二区三区在线| 国产乱来视频区| 成人国语在线视频| 国产探花极品一区二区| 日韩 亚洲 欧美在线| 极品人妻少妇av视频| 久久亚洲国产成人精品v| 免费日韩欧美在线观看| 少妇被粗大猛烈的视频| 国产av一区二区精品久久| 毛片一级片免费看久久久久| 亚洲精品,欧美精品| 一个人免费看片子| 两个人看的免费小视频| 满18在线观看网站| 999久久久国产精品视频| 成人影院久久| 日本免费在线观看一区| 亚洲精品国产av蜜桃| 青春草亚洲视频在线观看| 亚洲av电影在线进入| 国产精品一二三区在线看| 大码成人一级视频| 人人妻人人澡人人爽人人夜夜| 三级国产精品片| 七月丁香在线播放| 免费大片黄手机在线观看| 人妻少妇偷人精品九色| 色吧在线观看| 日韩,欧美,国产一区二区三区| 午夜激情av网站| 亚洲综合色惰|