• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Current carrying states in the disordered quantum anomalous Hall effect

    2022-09-24 08:01:28YiMingDai戴鎰明SiSiWang王思思YanYu禹言JiHuanGuan關(guān)濟(jì)寰HuiHuiWang王慧慧andYanYangZhang張艷陽
    Chinese Physics B 2022年9期
    關(guān)鍵詞:艷陽思思

    Yi-Ming Dai(戴鎰明) Si-Si Wang(王思思) Yan Yu(禹言) Ji-Huan Guan(關(guān)濟(jì)寰)Hui-Hui Wang(王慧慧) and Yan-Yang Zhang(張艷陽)

    1School of Physics and Materials Science,Guangzhou University,Guangzhou 510006,China

    2Research Center for Advanced Information Materials,Guangzhou University,Guangzhou 510006,China

    3School of Mathematics and Information Science,Guangzhou University,Guangzhou 510006,China

    4SKLSM,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    5School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    6Beijing Academy of Quantum Information Sciences,Beijing 100193,China

    7Huangpu Research and Graduate School of Guangzhou University,Guangzhou 510700,China

    Keywords: quantum anomalous Hall effect,Chern number,disordered system,localization

    1. Introduction

    A Chern insulator is a two-dimensional (2D) material without time reversal symmetry, whose occupied bands possess a nonzero Chern number.[1,2]This Chern number gives rise to topological edge states in the bulk gap, leading to robust transports against weak disorder. The earliest example is the integer quantum Hall (IQH) effect in an external magnetic field, where energy bands are flat and highly degenerate Landau levels.[3]Disorder introduces localized states and broadens Landau levels.Taking states associated with nonzero Chern number as current carrying(CC) or delocalized states,previous numerical studies show that in the thermodynamic limit, these CC states shrink into one single energy value in each disorder broadened Landau level.[4-7]In the presence of a random magnetic field, it takes some endeavors to understand that a similar picture holds.[7-9]

    Quantum anomalous Hall (QAH) effect corresponds to a Chern insulator without an external magnetic field, which was firstly proposed by Haldane[10]and realized in recent years.[11-15]In the clean limit, instead of flat Landau levels in IQH systems, the energy bands of a QAH system are dispersive and with finite widths. With increasing disorder, the global route towards localization of QHE effects in the transport picture has been investigated extensively.[16-19]Very recent researches shed light on the difference of localization between QAH and IQH effects.[19,20]However,a detailed picture of CC states is not clear so far,for example,their distributions and evolutions under increasing disorder. Moreover, at weak disorder,will the spectrum width of CC states within each dispersive bulk band still vanish in the thermodynamic limit?

    To resolve these issues,in this manuscript,we perform a numerical investigation on a disordered two-band QHA lattice model with Chern number 1. Based on a real space method of evaluating Chern numbers, we study the picture of CC states before localization through size scaling. We find that,in spite of dispersive bulk bands with finite width, the CC states also shrink into a single energy value in the thermodynamic limit.The rate of shrinking during size scaling depends on the disorder strength. At the intermediate disorder,it is equal to that found in the IQH effect.[4]

    2. Model and method

    Fig.1. (a)The band structure of a ribbon geometry with width Ny=40 and open boundary condition. (b)Chern number at Fermi energyμ=0 as a function of disorder strength W,for different sample sizes Nx×Nx.All data are averaged over at least 100 disorder configurations. The model parameters are: A=0.3,B=0.2,D=0,M=0.2,which will be used throughout this manuscript.

    In real space, the effect of disorder is included as a random potential term to the Hamiltonian as

    whereUiare independent random numbers uniformly distributed in(-0.5,0.5)andWis the disorder strength.

    Topological invariants are usually conveniently defined in the momentum space.[1,2,24,26,27]However here, disorder destroys the translation invariant symmetry. Therefore it is more convenient to investigate this problem in the real space. For a disordered finite-size system,our evaluation of Chern numbers is based on the real space algorithm of the topological marker at positionr=(x,y)and Fermi energyμ[28,29]

    whereP= ∑εn<μ|ψn〉〈ψn| is the projector over occupied eigenstates{|ψn〉}of the Hamiltonian, andQ= 1-P. It has been argued that its value at the sample center tends to be the Chern number at thermodynamic limit.[29,30]Taking each energy level as the Fermi level one by one,we can associate a quantized Chern number to each level based on reasonable considerations. Details of this calculation are described in the Appendix. Following previous spirits and definitions in Refs. [4,5,7,31], we take the eigenstates associated with nonzero Chern numbers as CC states, which play the role as delocalized states. Then, the Chern number resolved density of states(DOS)is defined to be[4,31]

    where the sum is over energy levels associated with the same Chern numberC. Hereafter in this manuscript,all finite samples are square shaped with lattice sitesN ≡Nx×Nx.

    For a Chern number resolved DOS, the spectrum width ΔEalong the energy axis is a key property. In the pioneer work,[4]this was defined as the standard deviation of the energy level distribution. This was suitable there because their calculations were strictly restricted within the lowest Landau level alone.[4]Here however, we are facing a lattice model with two bands,and disorder may generate more subbands as sub-peaks of DOS[see,e.g.,Fig.3(b)]. In this case,the standard deviation over the whole energy is not a good definition as ΔEof a certain band or peak,since far sub-peaks will contribute remarkable but unwanted standard deviation. Instead,we adopt the width at half height of the main peak as the spectrum width ΔEhere.

    3. Results

    In Fig.1(b),we plot the disorder averaged Chern numberCas a function of disorder strengthW, for different sample sizesN ≡Nx×Nx,which is evaluated at Fermi energyμ=0.Here and in the rest of this paper,we check the convergence of the averaging by adopting sufficiently number of disorder samples,which is the most time consuming part of this work. The Chern number is a well quantized plateau whenW1,reflecting the robustness of a topological phase against weak disorder. We call this range the Chern number plateau region. After that,the quantization starts to collapse successively,at a largerWfor a larger size.Finally strong disorder leads the system towards an Anderson localization withC=0 afterW2.5. All four curves associated with different sizes cross atWc=2.1,suggesting a critical point of disorder induced topological transition at the thermodynamic limit,N →∞.[16,32]Although the transition at infinite size is a single pointWc=2.1, we call the rangeW ∈(1,2.1)the transition region because the Chern number plateau has collapsed for all finite sizes we calculate here. This will give rise to some finite size effects in the following. Since the main interests of this manuscript is the CC or delocalized states, our focus will be situations before the complete localization,i.e.,W <Wc.

    Now we investigate this process in the picture of CC states. In Fig. 2, we show the Chern number resolved DOS as defined in Eq. (5), which are also averaged over disorder ensembles,for different disorder strengths. From the DOS of localized states(associated withC=0)in Figs.2(a)-2(e),one can see that disorder expands both bands along the energy axis,and the bulk gap is filled gradually.In Figs.2(f)-2(j),the DOS of delocalized states,i.e.,CC states associated withC/=0 offers more information. In the clean limit, two bands possess opposite Chern numbers respectively. With increasing disorder, their centers of mass approach towards each other. Then these two opposite Chern numbers touch, merge and finally annihilate into topologically trivial states. This picture is consistent with previous studies.[16,17,32]

    Fig. 2. Chern number resolved DOS ρC at different disorder strength W. The left(right)column corresponds to zero(nonzero)Chern numbers. Black,red and blue curves are for Chern numbers 0,-1 and+1 respectively. All data are calculated with the sample size N =20×20 and averaged over 1000 disorder configurations.

    The above result was for a finite size sample (20×20),where the spectrum of CC states seemed to be broad and finite. Now we study their tendency during size scaling. In each dispersive band, will the CC states shrink to a single energy point in the thermodynamic limit as well?

    To answer this question, we need to scrutinize the size dependence. Figure 3 presents the Chern number resolved DOS at a fixed weak disorder strengthW=0.7 (well before theC=1 plateau collapses)with different sizes,for localized(C=0) (a), and CC (C/=0) states (b), respectively. We first notice remarkably different energy scales in these two panels.This suggests that,for sufficiently large sizes,there are much more CC states than localized states. With increasing size,these two types of states exhibit different dependence on the size scaling.For the localized states[Fig.3(a)],the DOS spectrum is almost unaffected. On the contrary,the main peaks of CC states [Fig. 3(b)] become sharper and narrower with size scaling, for both valance and conduction bands. This result implies that, although the band widths of QAH effect are finite at weak disorder, the spectrum widths of CC states still tend to be very narrow in the thermodynamic limit.

    Fig. 3. Chern number resolved DOS ρC for different sample sizes Nx×Nx, at a definite disorder strength W = 0.7, (a) for zero Chern number and,(b)for nonzero Chern numbers. All data are averaged over at least 100 disorder configurations.

    To see this narrowing in a more quantitative way,we show the log-log plot between the spectrum width of CC states ΔEand the sample sizeN ≡Nx×Nxin Figs.4(a)and 4(b),in the Chern number plateau regionW ≤1, well before the disorder induced localization. For both Chern numbers,C=±1,approximate linearities suggest that the scaling relation is a power law

    wherexis determined by the absolute value of the slope in this figure. This is similar to the case of IQH effect.[4]In other words, in each bulk band of a disordered QAH system, although the total band width is finite, all extended states (CC states) within this bulk band still shrink to a single energy point in the thermodynamic limit. We call this energy point of CC states as the topological center(TC)of each band. All other bulk states around the TC are localized, which will be called bulk localized states in the following, since their presence and properties do not depend on the situation of boundary conditions. Such a broad distribution of localized states is not surprising for a 2D system.[33]

    This leads to a picture illustrated as follows. In a disordered QAH system at the thermodynamic limit, there is one TC in each bulk band, with opposite-sign Chern numbers for the valence and conduction bands respectively. Since they are CC states, there will always be topological induced currents when the Fermi energy is between them. From the topological view this is not surprising because in the presence of edges,topological edge states always connect TCs with opposite Chern numbers.[24]In the bulk gap without any bulk states,they give rise to a quantized and robust Hall conductance. On the other hand,inevitably,some edge states will traverse bulk localized states around topological centers. If some of these bulk localized states are sufficiently flat, then edge states can exhibit their quantized transports in subgaps between these flat localized states. This is consistent with our previous observations in disordered 2D topological insulators,[34]where for the quantized conductance plateau,the larger portion is a topological Anderson insulator(edge states living in a mobility gap),instead of a topological band insulator(edge states living in an energy gap).

    Fig.4. Characteristic quantities of CC states as functions of sample size N ≡Nx×Nx in double logarithm scales. (a)and(b)Spectrum width of CC DOS peak ΔE. (c)and(d)Number of CC states Nc. The upper(lower)row is for Chern number C=1(C=-1).

    Besides the spectrum width ΔE, another aspect of CC states is their numberNcwith respect to the scaling of sizeN. In Figs. 4(c) and 4(d), we present the log-log plot of this relation. Again, the linearities suggest a power law between them as

    where the exponent is determined by the slopes of lines in Figs.5(c)and 5(d).

    In Fig.5,we present the dependence of exponentsxandy(solid dotted lines) on the disorder strengthW. The dependence is weak and all curves seem to be constant approximately, especially in the plateau region with weak disorderW <1. We attribute the irregular fluctuations to disorders at finite sizes.At the intermediate disorder,the exponentx~0.2,close to that found in IQH systems.[4]Moreover,the sumx+y(dashed lines in Fig.5)tends to be~1.1. This was found to be 1 in IQH systems, so that the CC DOS at the TC can be finite.[4]We believe this should also be the case here in the thermodynamic limit,because we have checked that for larger sample sizes, and this sum is really closer to 1. Again, the discrepancy may come from strong disorder fluctuations and finite size effects of lattice models. For example, as one can see from Fig. 1(b), although the critical disorder strength is believed to beWc~2.1 in the thermodynamic limit,the averaged Chern numbers have lost their quantization afterW~1.5,for all sample sizes within our calculation capability. This will lead to remarkable finite size effects,and some subsequent statistical uncertainties exhibited in Figs.4 and 5.

    Fig.5. Size scaling exponents of CC states with C=±1 as functions of the disorder strength W: x defined in Eq. (6) for the spectrum width ΔE, and y defined in Eq. (7) for the number of CC states. Dashed lines are their sums x+y.

    4. Summary

    As a summary, we numerically investigate the CC states in a disordered QAH system. Performing the finite-size scaling,we conclude that within the dispersive bulk band,all CC states converge to a single energy value, similar to what happens in disorder broadened Landau levels of an IQH system.At the intermediate disorder,the shrinking rate of the spectrum width of CC states is close to that in the IQH system. This is consistent with the previous picture that the topological Anderson insulator constitutes a large portion of the quantized conductance plateau in the presence of disorder.

    Appendix A: Real space representation of the BHZ model

    Here we present the derivation of BHZ model of spin-up part in real space. In the momentum space,the spin-up part of the BHZ Hamiltonian reads[21]

    Appendix B: Numerical evaluation of Chern numbers

    In this Appendix, we introduce how to associate a quantized Chern numbers to each energy level of a finite size system, based on the real space algorithm of the topological marker.[28]Consider a finite size tight-binding model with totalNorbitals (and thereforeNenergy levels). If the Fermi level isEn, i.e., the energy levels are occupied up to then-th one, then the ground state projectorPand its complementQare defined as[28-30]

    So far,the Chern number,as well as the Chern marker,is associated with the occupied states as a whole. On the other hand,the current carrying states are defined to be energy levels with nonzero Chern numbers, so one needs to associate each level with a quantized Chern number. For example, we need to investigate the density of states(DOS)from different Chern numbers separately,[4-7,31]i.e.,Eq.(5).

    However,for a generic Fermi levelEnof a finite size system,the ground-state Chern markerCnmay deviate from integer remarkably.This corresponds to the case that the Fermi energy is within a subband(consisting of a cluster of consecutive energy levels, which will be explained in the following) and therefore the integrated Berry curvature is not quantized.[24]As a result,a quantized Chern number can only be defined to a cluster of consecutive energy levels which constitute a physical subband, instead of to a single level. In our numerical calculations,as illustrated in Fig.B1,we first search all levelsEnr(r=1,2,...andn1≡1)at which the ground state Chern markerCnris well quantized,i.e.,the deviation ofCnrfrom an integer is smaller than a tolerance errorε. Then,with two adjacent quantization levels as the upper and lower band boundary respectively, a subband consisting of all levels between them can be well defined. Consequently, a quantized Chern number can be naturally attributed to this subband. In other words,now levels with indices fromnr-1+1 tonrconstitute a subband possessing Chern numberC(r)≡Cnr-Cnr-1, and all these levels contribute toρC(r)(E)in Eq.(5). We call these levels as “associated with Chern numberC”. Notice the difference between notationsCnandC(r). The notationCncorresponds to the Chern marker associated with the lowestnlevels,whileC(r)corresponds to the Chern number(which has been defined to be quantized)associated with ther-th subband.

    Fig. B1. Illustration of associating a quantized Chern number to discrete energy levels. All quantization levels Enr are picked out where the ground state Chern marker Cnr are quantized. Then levels from Enr-1 +1 to Enr are defined to be the r-th subband with a quantized Chern number C(r)≡Cnr-1-Cnr.

    This picture of a subband (on which a quantized Chern number can be defined)is equivalent to that defined in the momentum space of disordered supercells, with the momentum running over the disorder folded Brillioun zone.[16,35]It should be noted that, although subgaps between these subbands are finite for a certain finite-size sample, most of them will vanish after disorder average and in/or the thermodynamic limit.Only the gap survives after these two processes is a “truly”physical gap. Correspondingly, a truly physical band (which may consists of many subbands)is the set of all energy levels between two physical gaps.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Grant Nos. 11774336, 12104108, and 61427901) and the Starting Research Fund from Guangzhou University(Grant Nos.RQ2020082 and 62104360).

    猜你喜歡
    艷陽思思
    李思思漆畫作品
    收藏與投資(2022年7期)2022-08-02 08:27:52
    陸思思作品
    藝術(shù)家(2020年9期)2020-11-03 11:34:06
    田思思作品
    寶寶快樂每一天
    運(yùn)動(dòng)場上奪金牌
    The Exploration of Group Work in College English Teaching
    東方教育(2016年4期)2016-12-14 21:22:52
    《艷陽泛水》套色水印版畫
    新聞傳播(2016年9期)2016-09-26 12:20:41
    Discussion of the relationship between the constructionist and news media
    卷宗(2016年7期)2016-09-26 00:37:43
    坐家中,享清涼
    女友·花園(2015年7期)2015-05-30 10:48:04
    “久久艷陽”長者福音
    福利中國(2015年3期)2015-01-03 08:02:03
    亚洲人成电影免费在线| 国语自产精品视频在线第100页| 12—13女人毛片做爰片一| 美女午夜性视频免费| 国产av不卡久久| 亚洲黑人精品在线| 欧美成人免费av一区二区三区| 两性夫妻黄色片| av女优亚洲男人天堂 | 在线观看一区二区三区| 欧美激情在线99| 麻豆成人午夜福利视频| 国产成人av激情在线播放| 国产精品一区二区精品视频观看| 国产不卡一卡二| 香蕉丝袜av| 国产精品美女特级片免费视频播放器 | 国内精品久久久久久久电影| 人人妻人人看人人澡| av在线蜜桃| 丰满人妻一区二区三区视频av | 亚洲人成电影免费在线| 波多野结衣巨乳人妻| 欧美日韩黄片免| 亚洲激情在线av| 老鸭窝网址在线观看| xxxwww97欧美| 一个人看视频在线观看www免费 | av视频在线观看入口| 少妇的丰满在线观看| 成人精品一区二区免费| 午夜福利18| 欧美性猛交黑人性爽| 麻豆国产av国片精品| 男女那种视频在线观看| 色哟哟哟哟哟哟| 97超视频在线观看视频| 精品一区二区三区视频在线 | 1000部很黄的大片| 久久久久久国产a免费观看| 午夜精品在线福利| 日日摸夜夜添夜夜添小说| 老汉色∧v一级毛片| 丰满人妻一区二区三区视频av | 99热6这里只有精品| 可以在线观看毛片的网站| 不卡一级毛片| 琪琪午夜伦伦电影理论片6080| 午夜精品久久久久久毛片777| 中文字幕最新亚洲高清| 亚洲 欧美 日韩 在线 免费| 床上黄色一级片| 久久久久九九精品影院| 啦啦啦观看免费观看视频高清| 亚洲电影在线观看av| 丰满人妻一区二区三区视频av | 国产日本99.免费观看| 一级毛片高清免费大全| 日韩精品青青久久久久久| 长腿黑丝高跟| 狂野欧美白嫩少妇大欣赏| 国产精品野战在线观看| 国产精品久久久久久亚洲av鲁大| 精品免费久久久久久久清纯| 国产人伦9x9x在线观看| 午夜视频精品福利| 国产精品精品国产色婷婷| 很黄的视频免费| 人人妻人人看人人澡| 欧美又色又爽又黄视频| 亚洲av熟女| 蜜桃久久精品国产亚洲av| 欧美日韩精品网址| 亚洲熟女毛片儿| 91麻豆精品激情在线观看国产| 麻豆av在线久日| 国产人伦9x9x在线观看| 国产爱豆传媒在线观看| 露出奶头的视频| 欧美色欧美亚洲另类二区| 国产伦在线观看视频一区| 国产野战对白在线观看| 免费搜索国产男女视频| 国产精品永久免费网站| 亚洲电影在线观看av| 亚洲国产欧洲综合997久久,| 国产日本99.免费观看| 国产亚洲精品一区二区www| 国产爱豆传媒在线观看| 久久久久久久久久黄片| 岛国在线免费视频观看| aaaaa片日本免费| 午夜精品一区二区三区免费看| 成人欧美大片| 午夜视频精品福利| 亚洲中文av在线| 亚洲成av人片免费观看| 91老司机精品| 夜夜看夜夜爽夜夜摸| 免费av毛片视频| 亚洲七黄色美女视频| 国产麻豆成人av免费视频| 久久久久久久久免费视频了| 一个人看的www免费观看视频| 美女午夜性视频免费| а√天堂www在线а√下载| 女人被狂操c到高潮| 国产精品野战在线观看| 亚洲人成网站在线播放欧美日韩| 草草在线视频免费看| 免费搜索国产男女视频| 两人在一起打扑克的视频| 韩国av一区二区三区四区| 日韩免费av在线播放| 十八禁网站免费在线| a在线观看视频网站| 亚洲一区高清亚洲精品| 国产亚洲精品一区二区www| 国产av在哪里看| 国产精品精品国产色婷婷| 国产单亲对白刺激| 亚洲va日本ⅴa欧美va伊人久久| 亚洲乱码一区二区免费版| 亚洲av成人av| 日本 欧美在线| 国产成人欧美在线观看| 小蜜桃在线观看免费完整版高清| 成人特级黄色片久久久久久久| 国产精品久久久久久精品电影| 亚洲精品中文字幕一二三四区| 亚洲人成伊人成综合网2020| 亚洲av成人一区二区三| 一区二区三区高清视频在线| 长腿黑丝高跟| 禁无遮挡网站| 色av中文字幕| 少妇熟女aⅴ在线视频| 日韩欧美精品v在线| 亚洲av电影在线进入| 男人的好看免费观看在线视频| 黄色丝袜av网址大全| 日本熟妇午夜| 国产三级中文精品| 1024香蕉在线观看| 午夜免费激情av| xxx96com| 在线a可以看的网站| av欧美777| 国产高清有码在线观看视频| 老司机福利观看| 国产成+人综合+亚洲专区| 亚洲精品一区av在线观看| 国产黄a三级三级三级人| 精品熟女少妇八av免费久了| 午夜精品一区二区三区免费看| 欧美中文综合在线视频| 不卡av一区二区三区| 亚洲精品一区av在线观看| 中文字幕人妻丝袜一区二区| 国产精品自产拍在线观看55亚洲| www.www免费av| 这个男人来自地球电影免费观看| 精品久久久久久成人av| 最新在线观看一区二区三区| 波多野结衣巨乳人妻| 嫩草影视91久久| av在线天堂中文字幕| 欧美中文日本在线观看视频| 色综合婷婷激情| 一进一出抽搐gif免费好疼| 免费电影在线观看免费观看| 岛国在线免费视频观看| 色综合欧美亚洲国产小说| 国产aⅴ精品一区二区三区波| 黄色日韩在线| 亚洲国产看品久久| 最近最新中文字幕大全免费视频| 美女高潮的动态| 国产1区2区3区精品| 午夜视频精品福利| 日韩欧美三级三区| 欧美在线一区亚洲| 免费看日本二区| 久久久久久久久免费视频了| 又紧又爽又黄一区二区| 热99在线观看视频| 欧美zozozo另类| 欧美黄色淫秽网站| 亚洲国产欧美网| 亚洲av成人不卡在线观看播放网| 亚洲精品美女久久久久99蜜臀| 桃红色精品国产亚洲av| 国产人伦9x9x在线观看| 亚洲欧美精品综合一区二区三区| 一a级毛片在线观看| 一个人免费在线观看电影 | 久久久久国产精品人妻aⅴ院| 国产一区二区在线观看日韩 | 国产成人一区二区三区免费视频网站| 老司机在亚洲福利影院| 全区人妻精品视频| 日本 av在线| 真人一进一出gif抽搐免费| 国产免费男女视频| 国产三级黄色录像| 精品久久久久久久久久久久久| 午夜福利高清视频| 免费看十八禁软件| 亚洲无线观看免费| 国产精品九九99| 成人三级做爰电影| 国产精品久久久久久亚洲av鲁大| 两性夫妻黄色片| 搞女人的毛片| 90打野战视频偷拍视频| 高潮久久久久久久久久久不卡| 女人高潮潮喷娇喘18禁视频| 亚洲色图 男人天堂 中文字幕| 国产伦在线观看视频一区| 国产精品免费一区二区三区在线| 成年免费大片在线观看| 一区二区三区高清视频在线| 国产成人影院久久av| 欧美乱码精品一区二区三区| 亚洲精品美女久久久久99蜜臀| 亚洲欧美精品综合久久99| 我的老师免费观看完整版| 91在线精品国自产拍蜜月 | 日韩欧美 国产精品| av视频在线观看入口| 国产激情欧美一区二区| 久久中文看片网| 久久久国产成人精品二区| 亚洲一区二区三区色噜噜| 国产伦人伦偷精品视频| 午夜久久久久精精品| av中文乱码字幕在线| 18禁裸乳无遮挡免费网站照片| 国产亚洲精品一区二区www| 88av欧美| 国产精品久久电影中文字幕| 2021天堂中文幕一二区在线观| 黄片大片在线免费观看| 成年版毛片免费区| 90打野战视频偷拍视频| 日韩大尺度精品在线看网址| 国产精品久久久久久精品电影| 国产亚洲欧美98| 国内精品美女久久久久久| 亚洲aⅴ乱码一区二区在线播放| 丁香六月欧美| 99精品欧美一区二区三区四区| 色综合欧美亚洲国产小说| 18禁观看日本| 欧美成狂野欧美在线观看| 亚洲va日本ⅴa欧美va伊人久久| 一二三四社区在线视频社区8| 亚洲男人的天堂狠狠| www.自偷自拍.com| tocl精华| 老司机在亚洲福利影院| 91在线精品国自产拍蜜月 | 波多野结衣高清无吗| 久久久久九九精品影院| 日韩精品中文字幕看吧| 国产精品女同一区二区软件 | 免费大片18禁| 国产亚洲精品综合一区在线观看| 国产成人福利小说| 日本一本二区三区精品| 在线永久观看黄色视频| 欧美成人免费av一区二区三区| 男人舔女人的私密视频| 久久久色成人| 在线a可以看的网站| 偷拍熟女少妇极品色| 夜夜躁狠狠躁天天躁| www日本黄色视频网| 成人av在线播放网站| 亚洲精品一卡2卡三卡4卡5卡| 久久中文字幕人妻熟女| 小蜜桃在线观看免费完整版高清| 国产成人福利小说| 久久久久久久久免费视频了| 18禁国产床啪视频网站| 午夜成年电影在线免费观看| 欧美日本亚洲视频在线播放| x7x7x7水蜜桃| 色哟哟哟哟哟哟| 久久精品91无色码中文字幕| 搞女人的毛片| 欧美日韩乱码在线| 亚洲av片天天在线观看| 变态另类丝袜制服| 看免费av毛片| 亚洲av成人av| 精品国产乱子伦一区二区三区| 午夜a级毛片| 性欧美人与动物交配| 欧美一区二区精品小视频在线| a在线观看视频网站| 欧美不卡视频在线免费观看| 黄频高清免费视频| 亚洲自偷自拍图片 自拍| 90打野战视频偷拍视频| 中文字幕高清在线视频| 男女床上黄色一级片免费看| 午夜久久久久精精品| 在线观看一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 午夜免费成人在线视频| 国产成人aa在线观看| 国产极品精品免费视频能看的| a级毛片在线看网站| 757午夜福利合集在线观看| 99国产综合亚洲精品| 国产激情欧美一区二区| 变态另类丝袜制服| 美女被艹到高潮喷水动态| 97超视频在线观看视频| 久久久久久久久免费视频了| 国产成年人精品一区二区| 亚洲人与动物交配视频| 久久精品人妻少妇| 后天国语完整版免费观看| 综合色av麻豆| av黄色大香蕉| 国产精品一及| 国产高清videossex| 美女免费视频网站| 中出人妻视频一区二区| 2021天堂中文幕一二区在线观| 国产成人一区二区三区免费视频网站| 此物有八面人人有两片| 成人性生交大片免费视频hd| 欧美不卡视频在线免费观看| 我要搜黄色片| 天天一区二区日本电影三级| 亚洲av日韩精品久久久久久密| 淫妇啪啪啪对白视频| 亚洲激情在线av| 欧美国产日韩亚洲一区| 色综合亚洲欧美另类图片| 蜜桃久久精品国产亚洲av| 五月伊人婷婷丁香| 精品99又大又爽又粗少妇毛片 | 国产黄色小视频在线观看| 看黄色毛片网站| 亚洲精品美女久久av网站| 最近最新中文字幕大全电影3| 国产高清激情床上av| 色综合欧美亚洲国产小说| 国产成人系列免费观看| 色av中文字幕| 九九久久精品国产亚洲av麻豆 | av天堂在线播放| 国产美女午夜福利| 人人妻,人人澡人人爽秒播| 黄色片一级片一级黄色片| 变态另类成人亚洲欧美熟女| 亚洲国产欧美一区二区综合| 在线观看免费视频日本深夜| 国产精华一区二区三区| 亚洲一区二区三区色噜噜| 麻豆av在线久日| 黄色日韩在线| 美女cb高潮喷水在线观看 | 两人在一起打扑克的视频| 99国产极品粉嫩在线观看| 午夜激情欧美在线| 免费看a级黄色片| av片东京热男人的天堂| 色在线成人网| 欧美极品一区二区三区四区| 久久99热这里只有精品18| www.熟女人妻精品国产| 欧美黄色片欧美黄色片| 99精品在免费线老司机午夜| 亚洲国产欧美人成| 久久久久久久久中文| 亚洲av电影在线进入| 午夜日韩欧美国产| 亚洲九九香蕉| 日韩精品中文字幕看吧| 欧美成人一区二区免费高清观看 | 黄色片一级片一级黄色片| 欧美+亚洲+日韩+国产| 狂野欧美白嫩少妇大欣赏| www.自偷自拍.com| 女人被狂操c到高潮| 搡老岳熟女国产| 人妻久久中文字幕网| www日本黄色视频网| 女人被狂操c到高潮| 成人三级黄色视频| 国产久久久一区二区三区| 久久亚洲精品不卡| 日本在线视频免费播放| 精品乱码久久久久久99久播| 人妻丰满熟妇av一区二区三区| 色吧在线观看| 成熟少妇高潮喷水视频| 精品久久久久久,| 亚洲精品456在线播放app | 99热精品在线国产| 舔av片在线| 搞女人的毛片| 色精品久久人妻99蜜桃| 国产一级毛片七仙女欲春2| 亚洲色图 男人天堂 中文字幕| 日韩欧美 国产精品| 国产成人一区二区三区免费视频网站| 亚洲成人精品中文字幕电影| 欧美极品一区二区三区四区| 国产精品,欧美在线| 国产精品一区二区免费欧美| 亚洲中文av在线| 亚洲国产日韩欧美精品在线观看 | 色av中文字幕| 18禁国产床啪视频网站| 国产欧美日韩精品一区二区| 久久久国产精品麻豆| 亚洲无线观看免费| 一个人观看的视频www高清免费观看 | av福利片在线观看| 后天国语完整版免费观看| 18禁观看日本| 国产单亲对白刺激| 色综合亚洲欧美另类图片| 91老司机精品| 中文字幕熟女人妻在线| 亚洲最大成人中文| 高清毛片免费观看视频网站| 悠悠久久av| 久久这里只有精品19| 国产男靠女视频免费网站| 特大巨黑吊av在线直播| 久久中文看片网| 亚洲 欧美一区二区三区| or卡值多少钱| 国内精品一区二区在线观看| 免费看十八禁软件| 欧美一区二区精品小视频在线| 久久久久性生活片| 精品国产三级普通话版| 精品国产乱子伦一区二区三区| 视频区欧美日本亚洲| 久久久久免费精品人妻一区二区| 国产成人精品无人区| 国产亚洲精品久久久久久毛片| 麻豆国产av国片精品| 精品人妻1区二区| 99久久综合精品五月天人人| 91麻豆精品激情在线观看国产| 啦啦啦观看免费观看视频高清| 黄频高清免费视频| 免费av不卡在线播放| tocl精华| 国产野战对白在线观看| 日本在线视频免费播放| 国产成人福利小说| 日本熟妇午夜| 久久性视频一级片| 亚洲真实伦在线观看| 99热这里只有精品一区 | 法律面前人人平等表现在哪些方面| 97超视频在线观看视频| 9191精品国产免费久久| 嫩草影院入口| 1000部很黄的大片| 亚洲精品456在线播放app | 最近最新中文字幕大全电影3| 草草在线视频免费看| 欧美成人免费av一区二区三区| 村上凉子中文字幕在线| 国产97色在线日韩免费| 午夜福利18| 夜夜夜夜夜久久久久| 欧美+亚洲+日韩+国产| 欧美日韩福利视频一区二区| 国产爱豆传媒在线观看| 国产美女午夜福利| 国产三级中文精品| 热99re8久久精品国产| 国产高清视频在线播放一区| 午夜精品久久久久久毛片777| 国产极品精品免费视频能看的| 俺也久久电影网| 三级男女做爰猛烈吃奶摸视频| 99国产精品一区二区蜜桃av| 又黄又爽又免费观看的视频| 搡老妇女老女人老熟妇| 亚洲国产日韩欧美精品在线观看 | 免费高清视频大片| 欧美一级a爱片免费观看看| 男女做爰动态图高潮gif福利片| x7x7x7水蜜桃| 国产爱豆传媒在线观看| bbb黄色大片| 国内少妇人妻偷人精品xxx网站 | 国产高清视频在线播放一区| 99精品久久久久人妻精品| 两个人的视频大全免费| 91av网站免费观看| 国产精品亚洲美女久久久| 国产精品av久久久久免费| 人人妻人人看人人澡| 露出奶头的视频| 99久久99久久久精品蜜桃| 亚洲av电影在线进入| 日韩欧美在线乱码| 噜噜噜噜噜久久久久久91| 人人妻人人看人人澡| 国产精品爽爽va在线观看网站| 国产免费男女视频| 久久九九热精品免费| 日本与韩国留学比较| 久久久久精品国产欧美久久久| 床上黄色一级片| 少妇熟女aⅴ在线视频| 午夜精品在线福利| 91av网一区二区| 久久人妻av系列| 一个人免费在线观看的高清视频| 免费av不卡在线播放| 黄色片一级片一级黄色片| 男女下面进入的视频免费午夜| 中文字幕久久专区| 最近最新中文字幕大全免费视频| 身体一侧抽搐| 精品日产1卡2卡| 免费高清视频大片| 国内精品一区二区在线观看| 国产淫片久久久久久久久 | 天天一区二区日本电影三级| 久久久色成人| 欧美在线黄色| 哪里可以看免费的av片| 成人高潮视频无遮挡免费网站| 真人一进一出gif抽搐免费| 精品久久久久久,| 黑人欧美特级aaaaaa片| 国产精品女同一区二区软件 | 精品无人区乱码1区二区| 久久亚洲精品不卡| 中文字幕高清在线视频| 欧美成人一区二区免费高清观看 | 午夜成年电影在线免费观看| 欧美一区二区国产精品久久精品| 国产精品98久久久久久宅男小说| 午夜激情福利司机影院| 国产欧美日韩一区二区三| 一区二区三区国产精品乱码| 啪啪无遮挡十八禁网站| 午夜福利高清视频| 日本在线视频免费播放| 天天添夜夜摸| 亚洲人成网站在线播放欧美日韩| 亚洲成人久久爱视频| 热99在线观看视频| 亚洲午夜理论影院| a在线观看视频网站| 色在线成人网| 啦啦啦观看免费观看视频高清| 亚洲欧美日韩卡通动漫| 男人舔女人的私密视频| 国产av一区在线观看免费| 极品教师在线免费播放| 全区人妻精品视频| 老司机午夜福利在线观看视频| 免费高清视频大片| 成年版毛片免费区| 免费在线观看亚洲国产| 91麻豆精品激情在线观看国产| 国产伦在线观看视频一区| tocl精华| 精品国产三级普通话版| netflix在线观看网站| 亚洲精华国产精华精| 又粗又爽又猛毛片免费看| 亚洲欧洲精品一区二区精品久久久| 国产精品女同一区二区软件 | 久久久国产成人精品二区| 免费高清视频大片| 国产黄片美女视频| 在线看三级毛片| 男女床上黄色一级片免费看| 亚洲午夜精品一区,二区,三区| 国产成人一区二区三区免费视频网站| 91麻豆精品激情在线观看国产| 搞女人的毛片| 亚洲成人久久爱视频| 香蕉av资源在线| 免费在线观看视频国产中文字幕亚洲| 真人一进一出gif抽搐免费| 精品国产三级普通话版| 国产亚洲精品av在线| 久久久色成人| 久久这里只有精品中国| 亚洲成av人片在线播放无| 黄片大片在线免费观看| 99re在线观看精品视频| 国产成人精品久久二区二区免费| 久久久久国内视频| 日韩欧美精品v在线| 国产欧美日韩精品一区二区| 成人无遮挡网站| 久久人人精品亚洲av| 高潮久久久久久久久久久不卡| 天天躁日日操中文字幕| 国产av在哪里看| 精品国内亚洲2022精品成人| 国模一区二区三区四区视频 | 中文在线观看免费www的网站| 51午夜福利影视在线观看|