• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots

    2022-09-24 08:01:22YiMingLiu劉一銘andJianHuaWei魏建華
    Chinese Physics B 2022年9期
    關(guān)鍵詞:建華

    Yi-Ming Liu(劉一銘) and Jian-Hua Wei(魏建華)

    Department of Physics,Renmin University of China,Beijing 100872,China

    Keywords: quantum dots,Seebeck coefficient,thermoelectric transport

    1. Introduction

    Recently, the field of thermoelectricity has fed an intense interest in nanostructure devices because of its potential applications in highly efficient thermoelectric devices.The violation of the Wiedemann-Franz law[1,2]in these devices makes it possible to achieve much higher thermoelectric efficiency.[3-7]The thermoelectric efficiency of a material is measured by the dimensionless thermoelectrical figure of meritZT=S2σT/κ, whereSis the Seebeck coefficient,σis conductance,andκis thermal conductivity. Recent studies indicate that zero-dimensional quantum dot structures result in novel thermoelectric phenomena and significantly increase thermoelectric efficiency.[8-10]

    In these studies, the Seebeck coefficient (thermopower)is an important parameter characterizing the thermoelectric transport properties of quantum dot (QD) systems, which plays a significant role in improving thermoelectric efficiency.In general,the magnitude and sign of the thermopower can be changed by tuning the gate voltage,[11]level shift space,[12]and interdot tunneling[13]through the QDs. For a QD embedded in a ring structure, the Aharonov-Bohm-type oscillations of the Seebeck coefficient have indicated that the thermopower strongly depends on the flux.[14]Consequently, the thermopower can be used as an experimental tool to study the phase-sensitive Aharonov-Bohm interferometer.[15]Moreover,the thermopower is a direct measurement of the weighted spectral density of the states in correlated systems with respect to the Fermi energy. Therefore, we can easily obtain information concerning electron-like or hole-like transport by calculating the Seebeck coefficient of a QD system. In experiments,the Seebeck coefficient is primarily derived via current heating[16]and electron heating techniques.[11,17]Some experimental studies have shown a clear breakdown of transport electron-hole symmetry in the vicinity of Kondo spin correlations,accompanied by deviations from the semiclassical Mott relation,[11,18,19]

    which describes the relationship between the thermopowerSand conductanceG, withkBbeing Boltzmann constant andεthe gate voltage. Theoretical researches have focused on strongly correlated QDs,and the Seebeck coefficient has been shown to be a very sensitive and powerful tool to study the Kondo effect. The Seebeck coefficient manifests itself as an energy peak in the density of state slightly above the Fermi energy,leading to a change in the sign of the thermopower. For example,the Seebeck coefficient exhibits two sign changes in the Kondo regime,showing that the thermopower is sensitive to the Kondo resonance scattering of conduction electrons[20]and that the thermocurrent charge polarity reverses with a significantly enhanced magnitude at low temperatures as a result of the formation of a Kondo singlet.[21]

    In addition, triple quantum dots (TQD) with various structures have been theoretically studied and prepared in experiments, exhibiting rich many-particle interactions.Such studies have focused on the stability diagram, electron transport, quantum interference effect, and thermoelectric transport.[13,22-29]In particular, the thermoelectric transport properties in serially TQD structure have already been investigated,[13]showing that the Seebeck coefficient is strongly enhanced near the subradiant state, leading to the enhancement of the thermoelectric efficiency. Moreover, the triangular triple-quantum-dot (TTQD) system has additional extended freedoms and complex geometrical configurations,which are expected to enable various many-body effects in the strongly correlated regime,[26,27]and has interesting thermoelectric transport properties because of the existence of the quantum interference effect.[28,29]In addition,the spin chirality induced by the noncoplanar spin configuration[30]in the TTQD structure exhibits rich physical phenomena,such as the application of spin chiral interactions in quantum computation via spin cluster qubits,[30,31]as well as a bias-induced chiral current resulting from the splitting of the degeneracy of the chiral states in TTQD system.[33]However,to the best of our knowledge, thermoelectric transport through the TTQD system remains less studied,particularly transport accounting for the influence of spin chiral interactions.

    Fig.1.(a)Schematic of thermoelectric transport through the TTQD system. The QD2 is tunneling coupled to two reservoirs via the dot-lead coupling strength ΔL/R,Δ=2ΔL/R=0.5 meV in this paper,three quantum dots are coupled with each other through tunneling strength t. The left reservoir(red)is the hot bath and the right reservoir(blue)is the cold bath. The temperature gradient is ΔT =Th-Tc, kBΔT =0.002 meV in this work. (b) The Seebeck coefficient S as a function of interdot tunneling strength t at the electron-hole symmetry point without magnetic field. The ring structure(red solid line)is calculated in the TTQD structure with the same interdot tunneling strength t12 =t13 =t23; the open structure (black solid line) is calculated in serially coupled TQD structure, namely the tunneling strength t13 between QD1 and QD3 is zero. The other parameters for the system are taken as U =2 meV,ε =-1 meV, the bandwidth is W =0.5 meV and the temperature for system is kBT =0.2 meV.

    On the basis of the above research results and applications, we propose a system composed of three triangularly configured and coupled QDs,with one dot(QD2)connected to two electron reservoirs via the dot-reservoir coupling strengthΔL/R, as schematically shown in Fig. 1(a). The temperature of the system is defined asT= (Th-Tc)/2. The electron on each dot is single occupation, i.e., spin=1/2, and moves through the three QDs in the clockwise or anticlockwise direction. Three noncoplanar spin structures contribute to the spin chiral operatorS1·(S2×S3) of the chiral interaction in the TTQD system. The chiral interactions involving both spin and orbital degrees of freedom generated in the TTQD system lead to novel thermoelectric transport behavior,which differs vastly from the thermoelectric properties in the serially TQD structure. As shown in Fig.1(b), a large Seebeck coefficient for the ring structure(solid red line)of the TTQD system is obtained with the increasing interdot tunneling strengtht, (t12=t13=t23). Conversely,Sremains at a value of zero for a open structure (solid black line) of the serially TQD,

    where the interdot tunneling between QD1 and QD3 is zero andt12=t23=t.

    In this paper, we analyze the thermoelectric effects in a tunneling-coupled TTQD system coupling two metal leads. The basic thermoelectric coefficients in the linear response regime are obtained using the hierarchical-equationsof-motion (HEOM) approach. We present a systematic investigation of the influence of the tunneling strengtht, the magnetic fluxφ, and the on-site energyε, on the Seebeck coefficientS(thermopower), through the TTQD system. We demonstrate that a large Seebeck coefficient can be obtained when properly matching the interdot tunneling strength via a ring-like TTQD system, as a result of the formation of spin chiral interactions;whereasSfor the serially TQD remains at zero. Numerical computation results show that the semiclassical Mott relation between the thermopower and conductance is failed to describe the asymmetry of the electron-hole transport in the Kondo and mixed-valence regimes. This is attributed to the many-particle nature of the Kondo correlation induced resonance together with the spin chiral interactions through the TTQD system.

    2. Theory and approach

    2.1. Model and Hamiltonian

    We adopt Anderson imparity model to represent the TTQD system in this work. The total Hamiltonian is

    We can measure the Seebeck coefficient by searching for the bias voltageVthat cancelsVT,[7]with the HEOM approach,Sdefcan be computed precisely by following the definition of Eq.(3).[12]While it is computationally more convenient to focus on the linear regime,the total current is[3]

    wherenis the average occupation number on each dot. The first term will vanish in the half-filling situation(n=1). The second term is Heisenberg exchange interaction withJ=4t2/U. The third term is the chiral term with chiral operator ^S1·(^S2×^S3),[35]whereχis the chiral interaction withχ= 24t3sin(2πφ/φ0)/U2, andφis the magnetic flux enclosed by the TTQD structure. Here,φ0=hc/eis the unit of quantum flux. For simplicity, we letφ=2πφ/φ0; thus,χ=24t3sin(φ)/U2.

    2.2. HEOM approach for QDs

    The HEOM approach investigates the properties of quantum dots in both equilibrium and non-equilibrium states via the reduced density operator,which has a universal formalism for an arbitrary system Hamiltonian;thus,it can be used to accurately solve the three-impurity Anderson model. We show a brief derivation of the HEOM approach,[36,37]at timet, the reduced system density operatorρ(t) = trresρT(t) is related to the initial value at timet0via the reduced Liouville-space propagatorG(t,t0)by

    andA(ω)=∑iμAiμ(ω).

    The HEOM approach is established based on the Feynman-Vernon influence functional path-integral theory[38]and implemented with Grassmann algebra for fermion dissipations.[39]Basically, the HEOM approach is a nonperturbative method for general quantum systems coupled to reservoir that satisfies Grassmann Gaussian statistics.[39-41]Based on the linear response theory of quantum open systems, we can accurately and efficiently obtain a dynamical observable quantity of strongly correlated quantum impurity systems.[36]In practical calculations, we must minimize the computational expenditure while maintaining the quantitative accuracy. For this purpose, we usually impose a truncationLas the highest tier of the ADOs. This truncation decreases the number of EOMs to match the insufficient calculation capacity, without affecting the nonperturbation characteristic of HEOM.This truncationLis measured by the quantitative convergence atA(ω=0) when the Kondo effect is considered,usuallyL=4 for most physical cases. However, lower temperatures demand a higher truncation tier and more computing resources to achieved numerical convergence. In recent years,the HEOM approach has been widely used to investigate the Kondo effect and transport properties under equilibrium and non-equilibrium conditions in quantum dot systems.[36,42-44]

    3. Results and discussions

    3.1. Interdot tunneling dependence of thermoelectric transport properties

    To distinguish the influence of the tunneling strengthton the Seebeck coefficientS, in the two types of TQD structures, that is, the ring structure for the TTQD system and the open structure for the serially TQD system, we calculate the Seebeck coefficient for two cases at the electron-hole symmetry point. The on-site energy for each QD isε=-U/2=-1 meV,and a diagram is presented in Fig.1(b). In the TTQD system,the Seebeck coefficient for ring(solid red line)is calculated in a structure where the three QDs coupled with each other via the same tunneling strengtht(t12=t13=t23). For an open structure (solid black line) calculated in a serially coupled TQD system,the tunneling strengtht13between QD1 and QD3 is zero and theSis a function of the tunneling strengtht(t12=t23=t).

    As depicted in Fig. 1(b), the most distinctive feature of the Seebeck coefficientSin the ring structure is a large magnitude with increasing tunneling strengtht, compared with the open structure where it maintains a value near zero. In addition, the Seebeck coefficient exhibits different behaviors for weak and strong interdot tunneling strengths. For the ring structure (solid red line) in the TTQD system, the Seebeck coefficient maintains a value of zero for small tunneling strengths,t0.1 meV, and the very small coupling strength between QDs causes QD2 to decouple from the other two dots(QD1 and QD3). Therefore,the thermoelectric transport behavior is similar to that of a single QD coupled with two leads,where the thermocurrent maintains a value of zero at the electron-hole symmetry point.[21]That is,the number of electrons transported is equal to the number of holes transported.Hence, the Seebeck coefficient is zero. Meanwhile, with increasing tunneling strength,t0.1 meV,the induced secondorder antiferrmomagnetic spin couplingJ=4t2/Uis dominant in the thermoelectric transport process, leading to small negativeS. However, the competition between the secondorder interactiont2and third-order interactiont3suppresses the magnitude of the negativeSfor 0.2 meVt0.26 meV,leading to the charge polarity reversal of the Seebeck coefficient. Accordingly, the sign ofSchanges from negative to positive at approximatelyt0.26 meV. When the tunneling strengthtincreases beyond the value oft.26 meV,the Seebeck coefficient experiences rapid growth with increasing tunneling strength owing to the chiral interaction formed via the TTQD system. The anomalous behavior of the Seebeck coefficient with the interdot tunneling strength can be understood as follows: a strong tunneling strength links the three spins together to form chiral interactions through three QDs,which breaks the electron-hole symmetry. The electrons contribute to thermoelectric transport, therefore, the electron-like transport is dominant and associated with a negative thermocurrent,leading to a positiveSin the thermoelectric transport process through the ring-like TTQD system. Therefore, a large tunneling strength lifts the symmetry of electron-hole transport,leading to a large enhancement of Seebeck coefficientSas a result of the chiral interactions through the TTQD structure.The chiral interaction makes the entire system more stable,assisting thermoelectric transport through the ring-like TTQD system.In addition,the TTQD system makes it easier to adjust the Seebeck coefficient continuously in experiments,which increases the possibility of improving thermoelectric efficiency by adjusting the interdot tunneling strength at the electronhole symmetry point in the absence of a magnetic field.

    Fig. 2. The Seebeck coefficient S as a function of tunneling strength t (t12 =t23 =t), with different tunneling strengths between QD1 and QD3,t13=0.2t,0.5t,t,1.5t,in the absence of magnetic field.

    Furthermore, for a case of asymmetry structure in the TTQD system,where the interdot tunneling strengtht13is different fromt12=t23=t, the Seebeck coefficient as a function of tunneling strengthtis shown in Fig. 2. It is obvious that the Seebeck coefficient increases with tunneling strengtht, which is the same as that described in the symmetry structure,t12=t13=t23=t.Fort13<t(the solid black line and red line), the Seebeck coefficient is smaller than that of the symmetry structure(solid blue line),because the chiral interaction is weaker than that of the symmetry structure. Whent13>t,the Seebeck coefficient is higher than the symmetry structure(solid green line). Therefore, the tunneling strengths among three QDs are strongly correlated with the magnitude of the Seebeck coefficient, a detailed description is discussed in the following.

    As a further investigation,the Seebeck coefficient can be matched properly by combining the tunneling strength with magnetic flux, and this provides an application of the TTQD system using theoretical basis of thermoelectric transport. As shown in Fig.3(a),the Seebeck coefficient as a function of the tunneling strength,t(t13=t23=t12),is calculated at different magnetic flux phases,φ. Forφ=0(solid black line),the sign ofSis positive with increasingt,whereas it remains negative atφ=π(solid purple line), but with the same magnitude as in the case ofφ=0. Identical behavior appears atφ=0.25π(solid red line)andφ=0.75π(solid green line). In addition,the magnitude ofSis zero when the magnetic flux phase isφ=0.5π(solid blue line). Therefore, the numerical computation results demonstrate that the magnitude of the Seebeck coefficient can be changed by tuning the tunneling strength,leading to novel behavior as a result of the chiral interactions forming through the TTQD system. Meanwhile,the magnetic flux can adjust the sign of the Seebeck coefficient to determine whether electron-like or hole-like transport occurs in the TTQD system.

    Fig.3. The Seebeck coefficient S as a function of tunneling strength t(t12 =t13 =t23) at different magnetic flux phases: φ =0, φ =0.25π,φ =0.5π,φ =0.75π,and φ =π. We choose large tunneling strength t 0.26 meV in(a),and show the linear fitting relation of the Seebeck coefficient dependence on tunneling strength t3 at different magnetic flux phases in(b),that is,φ =0,φ =0.25π,φ =0.75π,and φ =π.

    To investigate the detailed relationship between the Seebeck coefficient and the tunneling strength, we examine a large tunneling strength (t0.26 meV) in Fig. 3(a), where the Seebeck coefficient shows distinct growth with increasing strength. We also show the linear fitting relation of the Seebeck coefficient dependence on the tunneling strengtht3at different magnetic flux phases ofφ=0 (solid black line),φ=0.25π(solid red line),φ=0.75π(solid blue line), andφ=π(solid magenta line) in Fig. 3(b). As depicted in Fig.3(b),the magnitude of the Seebeck coefficient is perfectly linear with respect tot3. Consequently, the Seebeck coefficient is closely related to the chiral interaction induced by the three spins through the TTQD structure, making the system more stable and assisting the thermoelectric transport.

    3.2. Magnetic field dependence of thermoelectric transport properties

    As is well known,the quantum interference effect plays a significant role in thermoelectric transport.For the TTQD system,it is very convenient to obtain the influence of the interference on the thermoelectric quantities by tuning the magnetic flux,threading into a ring-like structure. These thermoelectric quantities are periodic functions in the magnetic flux phaseφ,with a period of 2πorπ. The magnetic flux phase resulting from the phase factorteiφ/3, whereφis the magnetic flux,threads the TTQD system.

    Fig.4. (a)Thermocurrent Ith,(b)conductance G,and(c)Seebeck coefficient S,versus magnetic flux phase φ,under a perpendicular magnetic field at the system temperature kBT =0.2 meV,with a large tunneling strength t12=t23=t13=t=0.4 meV.

    At the electron-hole symmetry point (ε=-U/2), the number of electrons tunneling through the QDs system is equal to the number of tunneling holes. Therefore, the total thermocurrent through QD and double-QD systems is zero.[21]However, because of the presence of tunneling term in the TTQD system, the numbers of electrons and holes are not naturally identical under the electron-hole transition of the Hamiltonian of an isolated TTQD system at the pointε=-U/2=-1 meV. The numbers of electrons and holes will recover being identical when a perpendicular magnetic field is applied to the TTQD system.[45]Existing studies show that the sign of the thermocurrent reflects the dominance of the electron (-) or hole (+) transport in the thermoelectric transport process through a QD system.[11,21]Therefore,the thermocurrent can be seen as an observation to detect either hole-like or electron-like transport through the QDs system.

    We choose a large tunneling strength oft= 0.4 meV

    where the chiral interaction termχwill react and present a diagram of the thermocurrentIthas a function of magnetic flux phaseφin Fig.4(a). It is seen thatIthis a periodic function inφwith a period of 2π. In detail,the sign of the thermocurrent is negative at the point ofφ=0,which indicates electron-like transport through the system without a magnetic field. The thermocurrent varies from negative to positive when changing the magnitude of the magnetic flux with a period of 2π, andIthexperiences a zero point atφ=π/2+kπ(k=0,1,2...).Therefore,the electron-hole will become symmetric at a specific magnetic flux ofφ=π/2+kπ(k= 0,1,2...) in the TTQD system. In addition,as shown in Fig.4(b),the magnitude of the conductanceGmanifests as a periodic function inφwith a period ofπ. In detail,theGreaches minima atφ=π/2+kπ(k=0,1,2...) and maxima atkπ(k=0,1,2...).The Seebeck coefficient is calculated via the thermocurrent divided by the conductance. Therefore,the Seebeck coefficient has the same period as that of the thermocurrent. The amplitude of the Seebeck coefficient as a function of the magnetic flux(Fig.4(c))indicates that the charge polarity reversal of the Seebeck coefficient from positive to negative, and vice versa,is induced by the regulation of the magnetic flux.

    3.3. On-site energy dependence of the thermoelectric transport properties and violation of the Mott relation

    As mentioned above, we have discussed the thermoelectric transport properties via the TTQD system under the condition of electron-hole symmetry. In general, the QDs system can be tuned from the Kondo to the mixed-valence or empty-orbital regimes via the gate voltage,[20]leading to novel thermoelectric transport properties. Previous studies of the thermoelectric properties by altering the gate voltage mainly involving two-level QD[12]and single-level QD,[21]indicating that the Kondo resonance assists thermoelectric transport through strongly correlated QD at low temperatures. Experimentally, the thermopower shows a clear deviation from the semiclassical Mott relation in the vicinity of the spin Kondo correlation regimes.[11]In this work,we also observe the phenomenon of the violation of semiclassical Mott relation, because the Kondo effect induced on QD2 at low temperature,as well as the spin chiral interactions formed in the TTQDs system,assists thermoelectric transport.

    We calculate the Seebeck coefficient as a function of the on-site energies under a low temperature ofkBT=0.05 meV,as shown in Fig. 5, and we choose a large interdot tunneling strengtht= 0.4 meV, where the chiral interactions act through the TTQD system. As shown in Fig. 5, the numerical computation results for the Seebeck coefficient show a nonmonotonic behavior with increasing on-site energiesεin the range of-2 meVε0.5 meV,remaining in the Kondo and mixed-valence regimes. In the Kondo regime, the occupancy for QD2 is nearly 1 and a localized spin formed on the dot atkBT=0.05 meV, where the on-site energy is approximately-1.5 meVε-0.5 meV. Physical properties are characterized by spin fluctuations in this regime. Therefore,there are two sign changes of the Seebeck coefficient arising atε ?-1.5 meV andε ?-0.5 meV.The Kondo singlet state forming between the QD2 and conduction electrons will assist the transport process,contributing to a positive Seebeck coefficient. In the mixed regime,the charges fluctuates between 0 and 1 resulting in an average occupation number of 0.5,so the physical mechanism is governed by the charges together with the spin fluctuations,contributing to complex behavior of thermoelectric transport. The magnitude ofSoscillates with the increasing on-site energy,arising at-2 meVε-1.5 meV and-0.5 meVε0.5 meV,because of the interference effects of the charges together with the spin fluctuations at low temperature.

    Fig. 5. The Seebeck coefficient calculated by Eq. (1) (dashed red line) in comparison with Eq. (6) (solid black line) at the temperature,kBT = 0.05 meV, in the absence of magnetic field. The blue solid lines divide the space into three physical regions,where-2 meVε -1.5 meV and-0.5 meVε0.5m eV is the mixed-valence regime,-1.5 meVε -0.5 meV is the Kondo regime,0.5 meVε 2 meV is the empty orbital regime. The electron-hole symmetry point is εsys = -U/2 = -1 meV and the interdot tunneling strength set as t12=t23=t13=0.4 meV.

    We compare the Seebeck coefficient calculated using Eq. (1) (dashed red lines) with that calculated using Eq. (6)(solid black lines) in the linear regime, as depicted in Fig. 5(kBT=0.05 meV). The numerical computation results show a clear deviation from the semiclassical Mott relation in the range of Kondo and mixed regimes(-2 meVε0.5 meV).A comparison betweenSlinearand the semiclassical expectedSMottshows the additional contributions of the thermopower in the Kondo and mixed-valence regimes, where spin correlations induced by the Kondo effect is a prime candidate for explaining the occurrence of these extra contributions. In addition, the chiral interaction also acts through the TTQD system. With increasing the interdot tunnelingt,the three quantum dots are tied together to make the system more stable,assisting the thermal transport of electrons. Therefore,SlinearandSMottshow a complex nonmonotonic behavior with an increasing magnitude because of the Kondo effect together with the chiral interaction-assisted thermoelectric transport.

    4. Summary

    We have theoretically investigated the thermoelectric transport properties in a ring-like TTQD system with one dot coupled to two leads. We examine the thermoelectric effect dependence on the tunneling strength,magnetic flux,and onsite energy and find that a large enhancement of the Seebeck coefficient arises through the TTQD structure, which results from the spin chiral interaction with increasing the interdot tunnelingt. At the electron-hole symmetry point, with the increasing interdot tunneling strengtht, the numerical results indicate that the Seebeck coefficient is linear with respect to the tunneling strengtht3for different values of the magnetic flux. Therefore, the magnitude of the Seebeck coefficient could be adjusted by the interdot tunneling,and the charge polarity reversal of the Seebeck coefficient is linked to the magnetic flux. Under a perpendicular magnetic field,the quantum interference effect plays a significant role in the thermoelectric transport, where the Seebeck coefficient, thermocurrent,and conductance are periodic functions of the magnetic flux phase through the TTQD system. Moreover, at low temperature,the Seebeck coefficient dependence on the on-site energy indicates that the semiclassical Mott relation between the thermopower and conductance is failed to describe the asymmetry of the electron-hole transport in the Kondo and mixed-valence regimes,since the many-body effects of the Kondo correlation induced resonance act as well as the spin chiral interaction work through the TTQD system.

    Acknowledgements

    Computational resources were provided by the Physical Laboratory of High Performance Computing at Renmin University of China.

    Project supported by the National Natural Science Foundation of China (Grant Nos. 11774418, 11374363, and 21373191).

    猜你喜歡
    建華
    倒立奇奇
    故事作文·低年級(jí)(2018年11期)2018-11-19 17:25:58
    托尼逃跑
    米沙在書里
    可怕的事
    哈比的愿望
    100歲的貝其
    變變變
    阿嗚想做貓
    快樂的秘密
    不卡av一区二区三区| 91在线观看av| 国内久久婷婷六月综合欲色啪| 国产97色在线日韩免费| 可以在线观看的亚洲视频| 成人av在线播放网站| 国产成人欧美在线观看| 午夜精品一区二区三区免费看| 亚洲中文日韩欧美视频| 中文字幕av在线有码专区| 国产99久久九九免费精品| 欧美绝顶高潮抽搐喷水| 欧美激情久久久久久爽电影| 国产精品久久久久久久电影 | 国产高清激情床上av| 亚洲av成人av| 19禁男女啪啪无遮挡网站| 黄色视频不卡| 最近视频中文字幕2019在线8| av在线天堂中文字幕| 99国产精品一区二区蜜桃av| 国产熟女午夜一区二区三区| 又爽又黄无遮挡网站| 50天的宝宝边吃奶边哭怎么回事| 国产99久久九九免费精品| 中文资源天堂在线| 女同久久另类99精品国产91| av天堂在线播放| avwww免费| 午夜免费观看网址| 一个人免费在线观看的高清视频| 搡老妇女老女人老熟妇| 禁无遮挡网站| 国产69精品久久久久777片 | 别揉我奶头~嗯~啊~动态视频| 又爽又黄无遮挡网站| 精品久久久久久久久久免费视频| 亚洲欧美日韩高清在线视频| 老司机福利观看| 亚洲国产精品久久男人天堂| 在线播放国产精品三级| 伦理电影免费视频| 国产99久久九九免费精品| 亚洲avbb在线观看| 又爽又黄无遮挡网站| 在线观看免费午夜福利视频| 香蕉国产在线看| 男人舔女人下体高潮全视频| 欧美日本亚洲视频在线播放| 日韩欧美国产一区二区入口| 色在线成人网| 国产又色又爽无遮挡免费看| 国产欧美日韩一区二区三| 亚洲男人天堂网一区| 亚洲精品美女久久av网站| 久久人人精品亚洲av| 精华霜和精华液先用哪个| 久久亚洲精品不卡| 岛国视频午夜一区免费看| 一个人免费在线观看的高清视频| 久久天躁狠狠躁夜夜2o2o| 黄片大片在线免费观看| 午夜精品在线福利| 少妇的丰满在线观看| 高清在线国产一区| 男男h啪啪无遮挡| 亚洲色图av天堂| 又黄又粗又硬又大视频| 一区二区三区国产精品乱码| 国产亚洲欧美98| 成年女人毛片免费观看观看9| 性欧美人与动物交配| 国产aⅴ精品一区二区三区波| 国产人伦9x9x在线观看| 国产又黄又爽又无遮挡在线| 欧美中文综合在线视频| 欧美极品一区二区三区四区| 日本三级黄在线观看| 中文字幕高清在线视频| 一本大道久久a久久精品| 午夜两性在线视频| 人人妻,人人澡人人爽秒播| 香蕉av资源在线| 中文字幕熟女人妻在线| 国产精华一区二区三区| 成人三级做爰电影| 欧美一级a爱片免费观看看 | 一区福利在线观看| 五月玫瑰六月丁香| 九九热线精品视视频播放| 大型av网站在线播放| 国模一区二区三区四区视频 | 成人18禁高潮啪啪吃奶动态图| 国产免费男女视频| 久久婷婷成人综合色麻豆| 国产av在哪里看| 波多野结衣高清作品| 国产精品精品国产色婷婷| 久久久久国内视频| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜成年电影在线免费观看| 亚洲第一电影网av| 亚洲av成人精品一区久久| 亚洲av成人一区二区三| 老司机靠b影院| 深夜精品福利| 中亚洲国语对白在线视频| 亚洲人成伊人成综合网2020| 精品欧美国产一区二区三| 国产成人影院久久av| 亚洲成av人片免费观看| 精品午夜福利视频在线观看一区| 成人精品一区二区免费| 99久久久亚洲精品蜜臀av| 宅男免费午夜| 麻豆av在线久日| 免费在线观看黄色视频的| 99在线视频只有这里精品首页| 久久久国产成人免费| 99热6这里只有精品| 国产99久久九九免费精品| 三级国产精品欧美在线观看 | 久久欧美精品欧美久久欧美| 国产在线观看jvid| a级毛片a级免费在线| 免费人成视频x8x8入口观看| 日韩高清综合在线| 亚洲一区高清亚洲精品| 欧美最黄视频在线播放免费| 国产亚洲av高清不卡| 日本免费一区二区三区高清不卡| 亚洲真实伦在线观看| ponron亚洲| 久久精品人妻少妇| 在线免费观看的www视频| 一个人观看的视频www高清免费观看 | 亚洲成人国产一区在线观看| 无遮挡黄片免费观看| 日韩欧美国产一区二区入口| 精品久久久久久,| 久久精品夜夜夜夜夜久久蜜豆 | 久久中文看片网| 国产精品日韩av在线免费观看| 麻豆av在线久日| 国产亚洲欧美98| 欧美另类亚洲清纯唯美| 天堂av国产一区二区熟女人妻 | 精品少妇一区二区三区视频日本电影| 亚洲成人久久性| 国产一区二区在线观看日韩 | 99在线人妻在线中文字幕| 亚洲黑人精品在线| 免费看日本二区| 特级一级黄色大片| 此物有八面人人有两片| 免费高清视频大片| 这个男人来自地球电影免费观看| 欧美成人免费av一区二区三区| 99久久99久久久精品蜜桃| 色哟哟哟哟哟哟| 国产精品久久久人人做人人爽| 丝袜美腿诱惑在线| 黄色丝袜av网址大全| 超碰成人久久| 国产三级在线视频| 久久久水蜜桃国产精品网| www.999成人在线观看| 国产精品久久久久久人妻精品电影| 两人在一起打扑克的视频| 亚洲欧美激情综合另类| 久久久久国产一级毛片高清牌| 色综合婷婷激情| 国产精品亚洲一级av第二区| 免费看a级黄色片| 国产精品,欧美在线| 亚洲自拍偷在线| 国产一区二区三区在线臀色熟女| 最近在线观看免费完整版| 少妇的丰满在线观看| 亚洲国产精品合色在线| 在线视频色国产色| 舔av片在线| 国产97色在线日韩免费| 成熟少妇高潮喷水视频| 757午夜福利合集在线观看| 国产三级在线视频| 精品久久久久久久毛片微露脸| 国产精品久久久久久人妻精品电影| 禁无遮挡网站| 国产精品一区二区免费欧美| 欧美成人午夜精品| 久久精品亚洲精品国产色婷小说| 精品高清国产在线一区| 日本在线视频免费播放| 亚洲精品国产一区二区精华液| 丝袜人妻中文字幕| 国产成人aa在线观看| 中文字幕人妻丝袜一区二区| 在线免费观看的www视频| 国产精品1区2区在线观看.| 欧美日韩精品网址| 女人爽到高潮嗷嗷叫在线视频| 欧美激情久久久久久爽电影| 欧美国产日韩亚洲一区| 国产精品亚洲美女久久久| 曰老女人黄片| 国产精品一区二区精品视频观看| 一级黄色大片毛片| 亚洲av成人精品一区久久| 麻豆一二三区av精品| 国产成人精品久久二区二区免费| 91在线观看av| 熟妇人妻久久中文字幕3abv| 国产精品1区2区在线观看.| 欧美精品亚洲一区二区| 国产三级在线视频| 国产免费av片在线观看野外av| 日日夜夜操网爽| 久久精品91无色码中文字幕| 波多野结衣高清作品| 国产精品久久久人人做人人爽| 久久久水蜜桃国产精品网| 亚洲七黄色美女视频| 久久草成人影院| 精品久久久久久成人av| 禁无遮挡网站| 高清毛片免费观看视频网站| 黄片大片在线免费观看| 亚洲人与动物交配视频| 国产麻豆成人av免费视频| 国产69精品久久久久777片 | 成人三级黄色视频| 亚洲激情在线av| 91国产中文字幕| 欧美3d第一页| svipshipincom国产片| 亚洲人成网站高清观看| 白带黄色成豆腐渣| 午夜两性在线视频| 久久人人精品亚洲av| 一a级毛片在线观看| 亚洲精品色激情综合| 欧美日韩中文字幕国产精品一区二区三区| 亚洲五月婷婷丁香| 夜夜夜夜夜久久久久| 黑人欧美特级aaaaaa片| 精品高清国产在线一区| 色噜噜av男人的天堂激情| 久久香蕉激情| 欧美绝顶高潮抽搐喷水| 日本 av在线| 日韩有码中文字幕| 成人国产综合亚洲| 1024香蕉在线观看| √禁漫天堂资源中文www| 日本成人三级电影网站| 国产午夜精品久久久久久| 精品久久久久久成人av| 12—13女人毛片做爰片一| 人成视频在线观看免费观看| 1024手机看黄色片| 欧美乱码精品一区二区三区| 日本黄大片高清| 精品久久久久久久毛片微露脸| 精品无人区乱码1区二区| 国产精品乱码一区二三区的特点| 少妇人妻一区二区三区视频| av片东京热男人的天堂| 女同久久另类99精品国产91| 国产精品av久久久久免费| 色尼玛亚洲综合影院| 国产男靠女视频免费网站| 黄频高清免费视频| 国内久久婷婷六月综合欲色啪| 久久久国产欧美日韩av| 夜夜躁狠狠躁天天躁| 少妇粗大呻吟视频| 后天国语完整版免费观看| 看免费av毛片| 99国产极品粉嫩在线观看| 亚洲欧美日韩高清专用| 国产熟女xx| 午夜a级毛片| 最好的美女福利视频网| a在线观看视频网站| 99热这里只有是精品50| 少妇粗大呻吟视频| 亚洲五月婷婷丁香| 欧美性长视频在线观看| 丰满的人妻完整版| 精品国产乱码久久久久久男人| 日日摸夜夜添夜夜添小说| 久久久国产欧美日韩av| 麻豆成人午夜福利视频| 国产亚洲av高清不卡| 日韩三级视频一区二区三区| 无人区码免费观看不卡| 又紧又爽又黄一区二区| 日本 欧美在线| 亚洲欧美日韩高清在线视频| 搡老岳熟女国产| 亚洲国产欧美人成| 亚洲在线自拍视频| 美女免费视频网站| 老鸭窝网址在线观看| 欧美中文综合在线视频| 美女大奶头视频| 1024视频免费在线观看| 中文字幕av在线有码专区| 丁香欧美五月| 精品无人区乱码1区二区| 国产黄片美女视频| 国产亚洲欧美在线一区二区| 狂野欧美白嫩少妇大欣赏| 日本黄大片高清| 国产黄a三级三级三级人| e午夜精品久久久久久久| 欧美精品亚洲一区二区| 亚洲精品美女久久久久99蜜臀| 天堂影院成人在线观看| 老司机靠b影院| 国产精品av久久久久免费| 成人国语在线视频| 亚洲国产精品sss在线观看| 1024视频免费在线观看| 黄色毛片三级朝国网站| 国产一区二区在线观看日韩 | 天堂影院成人在线观看| 久久亚洲精品不卡| 欧美成人性av电影在线观看| 看片在线看免费视频| 亚洲欧美日韩无卡精品| 中出人妻视频一区二区| 一级黄色大片毛片| 99在线人妻在线中文字幕| 色综合欧美亚洲国产小说| 一二三四在线观看免费中文在| 99国产精品一区二区蜜桃av| 国产激情欧美一区二区| 色哟哟哟哟哟哟| 两个人免费观看高清视频| 欧美日韩福利视频一区二区| 国产精品电影一区二区三区| 全区人妻精品视频| 国产男靠女视频免费网站| 少妇裸体淫交视频免费看高清 | 亚洲狠狠婷婷综合久久图片| 老鸭窝网址在线观看| 无人区码免费观看不卡| 国产片内射在线| 男男h啪啪无遮挡| 在线a可以看的网站| 久久精品人妻少妇| 成人永久免费在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 中文在线观看免费www的网站 | 亚洲美女视频黄频| 久久久久久久久久黄片| 琪琪午夜伦伦电影理论片6080| 国产精品久久久久久人妻精品电影| 久久天躁狠狠躁夜夜2o2o| 黄色a级毛片大全视频| 一区二区三区激情视频| 国产一区二区在线av高清观看| 亚洲男人的天堂狠狠| 日韩国内少妇激情av| 少妇人妻一区二区三区视频| 亚洲五月婷婷丁香| 国产单亲对白刺激| 精品国内亚洲2022精品成人| 亚洲电影在线观看av| 亚洲精品美女久久av网站| 非洲黑人性xxxx精品又粗又长| 麻豆一二三区av精品| 亚洲中文字幕日韩| 亚洲精品久久成人aⅴ小说| 天天添夜夜摸| 色尼玛亚洲综合影院| 一区二区三区激情视频| 久久这里只有精品中国| 亚洲精品中文字幕一二三四区| 欧美中文日本在线观看视频| 91在线观看av| av天堂在线播放| 午夜亚洲福利在线播放| 亚洲国产精品久久男人天堂| 不卡av一区二区三区| 少妇粗大呻吟视频| 淫秽高清视频在线观看| 国产成人av教育| 在线观看舔阴道视频| 一级a爱片免费观看的视频| 欧美成人免费av一区二区三区| 精品国产亚洲在线| 大型av网站在线播放| 欧美最黄视频在线播放免费| 亚洲无线在线观看| 午夜精品一区二区三区免费看| 不卡一级毛片| 黄色片一级片一级黄色片| 97碰自拍视频| 欧美日韩一级在线毛片| 中文亚洲av片在线观看爽| 国产高清有码在线观看视频 | 免费一级毛片在线播放高清视频| 亚洲人成77777在线视频| 蜜桃久久精品国产亚洲av| 99久久精品热视频| 免费看日本二区| 中文字幕人成人乱码亚洲影| 国产精品久久久久久亚洲av鲁大| 51午夜福利影视在线观看| 又大又爽又粗| 久久久久国产一级毛片高清牌| 一级a爱片免费观看的视频| 黄片小视频在线播放| 国产精品久久久人人做人人爽| 日本a在线网址| 国产av麻豆久久久久久久| 国产野战对白在线观看| 国产蜜桃级精品一区二区三区| 亚洲激情在线av| 国语自产精品视频在线第100页| 国产黄片美女视频| 国产成人系列免费观看| 国产欧美日韩一区二区三| 成人三级黄色视频| 宅男免费午夜| 欧美在线一区亚洲| 亚洲一区高清亚洲精品| 久久久久国产精品人妻aⅴ院| 在线观看舔阴道视频| 国产亚洲精品久久久久久毛片| 搡老岳熟女国产| 久久久精品欧美日韩精品| 亚洲欧美激情综合另类| xxx96com| 久久久久久久久中文| 欧美+亚洲+日韩+国产| 亚洲精品美女久久久久99蜜臀| 日韩高清综合在线| 夜夜躁狠狠躁天天躁| 日韩精品中文字幕看吧| 他把我摸到了高潮在线观看| 老司机午夜福利在线观看视频| 欧美日韩精品网址| or卡值多少钱| 亚洲第一欧美日韩一区二区三区| 精品人妻1区二区| 中国美女看黄片| 国产熟女xx| 18禁黄网站禁片免费观看直播| 精品午夜福利视频在线观看一区| ponron亚洲| 亚洲片人在线观看| 12—13女人毛片做爰片一| 男女床上黄色一级片免费看| 久久这里只有精品19| 亚洲av片天天在线观看| 久久久久久久久久黄片| 免费在线观看黄色视频的| 韩国av一区二区三区四区| 2021天堂中文幕一二区在线观| 最近在线观看免费完整版| 天堂av国产一区二区熟女人妻 | 日本免费一区二区三区高清不卡| 香蕉丝袜av| 成年女人毛片免费观看观看9| 美女大奶头视频| 在线观看www视频免费| 亚洲精品美女久久久久99蜜臀| 久久精品aⅴ一区二区三区四区| 久久久国产成人免费| 婷婷精品国产亚洲av在线| 免费看美女性在线毛片视频| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久久久人妻精品电影| 超碰成人久久| 俺也久久电影网| 国产午夜精品论理片| 日日干狠狠操夜夜爽| 啦啦啦韩国在线观看视频| 99热这里只有精品一区 | 91大片在线观看| 亚洲国产看品久久| 50天的宝宝边吃奶边哭怎么回事| 女人高潮潮喷娇喘18禁视频| √禁漫天堂资源中文www| 精华霜和精华液先用哪个| 精品无人区乱码1区二区| 色噜噜av男人的天堂激情| 99久久国产精品久久久| av在线播放免费不卡| 国产成人一区二区三区免费视频网站| 午夜福利欧美成人| 久久久久国产一级毛片高清牌| 久久天堂一区二区三区四区| 亚洲欧美日韩高清在线视频| 久久精品影院6| 九色国产91popny在线| 久久久久久久午夜电影| 看黄色毛片网站| 免费高清视频大片| 不卡av一区二区三区| 亚洲av熟女| 国产一区二区三区视频了| 亚洲精品久久国产高清桃花| 又粗又爽又猛毛片免费看| 免费看日本二区| 日韩成人在线观看一区二区三区| 欧美大码av| 美女黄网站色视频| 国产亚洲精品一区二区www| 亚洲九九香蕉| 超碰成人久久| 后天国语完整版免费观看| 妹子高潮喷水视频| 久久性视频一级片| 国产三级在线视频| 91麻豆av在线| 啦啦啦免费观看视频1| 黄色a级毛片大全视频| 天堂动漫精品| 久久国产精品人妻蜜桃| 一个人免费在线观看的高清视频| 黑人操中国人逼视频| 久久久国产精品麻豆| 国语自产精品视频在线第100页| a级毛片在线看网站| 欧美日韩精品网址| 国产精品美女特级片免费视频播放器 | 亚洲欧美激情综合另类| 国产精品影院久久| 亚洲欧洲精品一区二区精品久久久| 黄色 视频免费看| 亚洲五月婷婷丁香| 国产视频一区二区在线看| aaaaa片日本免费| 好男人电影高清在线观看| 青草久久国产| 色在线成人网| 人妻久久中文字幕网| 久久香蕉国产精品| 又黄又爽又免费观看的视频| 精品熟女少妇八av免费久了| 国产不卡一卡二| 亚洲欧美精品综合久久99| 女人爽到高潮嗷嗷叫在线视频| 一夜夜www| 黑人巨大精品欧美一区二区mp4| 国产精华一区二区三区| 日韩大尺度精品在线看网址| 男女之事视频高清在线观看| 免费无遮挡裸体视频| 在线观看免费午夜福利视频| 亚洲真实伦在线观看| 最新美女视频免费是黄的| 极品教师在线免费播放| 9191精品国产免费久久| 男女视频在线观看网站免费 | 亚洲成人中文字幕在线播放| 国产成人aa在线观看| 免费看a级黄色片| 成年免费大片在线观看| 宅男免费午夜| 国产久久久一区二区三区| 18禁国产床啪视频网站| 欧美乱色亚洲激情| 国产精品久久久久久人妻精品电影| 亚洲国产日韩欧美精品在线观看 | 麻豆成人av在线观看| a在线观看视频网站| 无遮挡黄片免费观看| 亚洲精品国产一区二区精华液| 黄色女人牲交| 日韩欧美在线乱码| 嫩草影院精品99| 国产亚洲精品av在线| 青草久久国产| 亚洲 国产 在线| 最近在线观看免费完整版| 美女午夜性视频免费| 在线播放国产精品三级| 免费看美女性在线毛片视频| 亚洲午夜精品一区,二区,三区| 一进一出抽搐动态| 麻豆成人av在线观看| 无人区码免费观看不卡| 国产私拍福利视频在线观看| 国产v大片淫在线免费观看| 日本 av在线| 亚洲国产日韩欧美精品在线观看 | 国产伦在线观看视频一区| 欧美成狂野欧美在线观看| 中文亚洲av片在线观看爽| 精品欧美一区二区三区在线| 五月伊人婷婷丁香| 国产1区2区3区精品| 我要搜黄色片| 久久久久久人人人人人| av福利片在线| 一进一出好大好爽视频| 高清在线国产一区| 午夜亚洲福利在线播放| 一区二区三区高清视频在线| 国产区一区二久久| 宅男免费午夜| 国产1区2区3区精品| 俺也久久电影网| 波多野结衣高清无吗| 精品一区二区三区av网在线观看| 久久久国产精品麻豆| 精品一区二区三区视频在线观看免费| 亚洲人与动物交配视频| 99热只有精品国产|